
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics of Programming Languages
Solutions to Assignment 10

Patrick Maier, Jan Schwinghammer
http://www.ps.uni-sb.de/courses/sem-ws01/

���
�

�� k

I N F O R M A T I K

Exercise 10.1 Define α : LS → LT : f 7→ gf with gf : T → L : x 7→ f(x).
Let f ∈ LS and g ∈ LT . Then

α(f) vT g ⇔ gf vT g

⇔ ∀x ∈ T : gf(x) v g(x)

⇔ ∀x ∈ T : f(x) v g(x)

⇔ ∀x ∈ S : f(x) v

{

g(x) if x ∈ T

> otherwise

⇔ ∀x ∈ S : f(x) v fg(x)

⇔ f vS fg

⇔ f vS γ(g) .

Exercise 10.2 You should have guessed that the program, after running for an infinite
amount of time, computes the total function f : N → N with f(k) = k + 1 for all k ∈ N,
i. e., the successor function on the natural numbers.

Exercise 10.3 Collecting semantics as system of equations:

acc(1) = Store

acc(2) = undefinef(zeron(acc(1)))

acc(3) = acc(2) ∪ acc(5)

acc(4) = definef(n)(acc(3))

acc(5) = incn(acc(4))

where the functions zeron, incn, undefinef , definef(n) : 2Store → 2Store are defined as follows:

zeron(S) = {s′ ∈ Store | ∃s ∈ S : s′(f) = s(f), s′(n) = 0}

incn(S) = {s′ ∈ Store | ∃s ∈ S : s′(f) = s(f), s′(n) = s(n) + 1}

undefinef(S) = {s′ ∈ Store | ∃s ∈ S : s′(n) = s(n), dom(s′(f)) = ∅}

definef(n)(S) = {s′ ∈ Store | ∃s ∈ S : s′(n) = s(n), dom(s′(f)) = dom(s(f)) ∪ {s(n)},
s′(f)(s(n)) = s(n) + 1,
∀k ∈ dom(s(f)) \ {s(n)} : s′(f)(k) = s(f)(k)}

Note that all these functions are monotone.

1

Exercise 10.4 F : (2Store)PP → (2Store)PP is defined as F (d) = 〈f1(d), . . . , f5(d)〉 where
the fi : (2Store)PP → 2Store are defined as follows:

f1(d) = Store

f2(d) = undefinef(zeron(d(1)))

f3(d) = d(2) ∪ d(5)

f4(d) = definef(n)(d(3))

f5(d) = incn(d(4))

The fi are monotone, so F is monotone, so acc = lfp F exists, and here it is:

acc(1) = Store

acc(2) = {s ∈ Store | s(n) = 0, dom(s(f)) = ∅}

acc(3) = {s ∈ Store | dom(s(f)) = {0, . . . , s(n) − 1}, ∀k ∈ dom(s(f)) : s(f)(k) = k + 1}

acc(4) = {s ∈ Store | dom(s(f)) = {0, . . . , s(n)}, ∀k ∈ dom(s(f)) : s(f)(k) = k + 1}

acc(5) = {s ∈ Store | s(n) > 0, dom(s(f)) = {0, . . . , s(n) − 1}, ∀k ∈ dom(s(f)) : s(f)(k) = k + 1}

The collecting semantics does not yield the total successor function on N but it yields all
partial successor functions whose domain is {0, . . . , k} for k ∈ N.

Exercise 10.5 Define γ : D# → D as γ(M) = {s ∈ Store | M ⊆ dom(s(f))}.
Let S ∈ D and M ∈ D#. Then

α(S) v M ⇔ M ⊆ α(S) ⇔ M ⊆
⋂

{dom(s(f)) | s ∈ S}

⇔ ∀s ∈ S : M ⊆ dom(s(f))

⇔ S ⊆ {s ∈ Store | M ⊆ dom(s(f))} ⇔ S ⊆ γ(M) .

Hence 〈D,⊆〉
γ

�
α

〈D#,v〉.

Exercise 10.6 Best approximations are:

f
#
1 (d) = α(Store) = ∅

f
#
2 (d) = α(undefinef(zeron(γ(d(1))))) = undefine

#
f (zero#

n (d(1)))

f
#
3 (d) = α(γ(d(2)) ∪ γ(d(5))) = d(2) t d(5) = d(2) ∩ d(5)

f
#
4 (d) = α(definef(n)(γ(d(3)))) = define

#
f(n)(d(3))

f
#
5 (d) = α(incn(γ(d(4)))) = inc#

n (d(4))

where the functions zero#
n , inc#

n , undefine
#
f , define

#
f(n) : D# → D# are as follows:

zero#
n = α ◦ zeron ◦ γ = id

inc#
n = α ◦ incn ◦ γ = id

undefine
#
f = α ◦ undefinef ◦ γ = λM.∅

define
#
f(n) = α ◦ definef(n) ◦ γ = id

2

The equations for zero#
n , inc#

n and undefine
#
f are obvious. To see why define

#
f(n) = id note

that for every M ∈ D# and s ∈ γ(M), the counter n can have any value in N, independent
of the domain of the partial function f . Therefore, defining f(n) need not strictly increase
the domain of f .

Now, the least fixpoint of the continuous (check this!) functionF # : D#PP
→ D#PP

:

d 7→ F #(d) = 〈f#
1 (d), . . . , f

#
1 (d)〉 is easily computed as lfp F # = 〈∅, . . . , ∅〉 ∈ D#PP

. We
get no information for which natural numbers the program defines f .

Exercise 10.7 Unfolding the loop once means inserting the assignments

f := λk.if k = n then n + 1 else f(k); n := n + 1

right before program point 2. This changes the collecting semantics acc in such a way
that from program point p ≥ 2 on, s(f)(0) = 1 in all stores s ∈ acc(p). Accordingly,
f

#
2 = λd.{0} and therefore lfp F # = 〈∅, {0}, . . . , {0}〉.

In general, unfolding the loop m times has the effect that at program point 2, f is
already defined at {0, . . . , m − 1}. Therfore, f

#
2 = λd.{0, . . . , m − 1} and thus lfp F # =

〈∅, {0, . . . , m − 1}, . . . , {0, . . . , m − 1}〉. Obviously, the analysis for which natural number
the program defines f is the more precise (i. e., lfp F # is the smaller) the larger m is.

3

