Solutions to Assignment 10

Patrick Maier, Jan Schwinghammer
http://www.ps.uni-sb.de/courses/sem-ws01/

Semantics of Programming Languages

aa=i

INFORMATIK

Exercise 10.1 Define a: L® — LT : f+ gy with gy : T — L : x — f(x).

Let f € L® and g € LT. Then

Exercise 10.2 You should have guessed that the program, after running for an infinite
amount of time, computes the total function f: N — N with f(k) = k + 1 for all k£ € N,

i.e., the successor function on the natural numbers.

Exercise 10.3 Collecting semantics as system of equations:

acc(l) = Store
acc(2) = undefine ;(zero,(acc(1)))
acc(3) = ace(2) U ace(b)
acc(4) = define ;) (acc(3))
acc(b) = inc,(ace(4))
where the functions zero,, inc,, undefine, define s, : 2store _, 95tore are defined as follows:
zero,(S) ={s’ € Store | 3s € S : §'(f) = s(f),s'(n) =0}
inc,(S) = {s' € Store | Is € S : '(f) = s(f),s'(n) = +1}
undefine;(S) = {s' € Store | Is € S : '(n) = s(n), dom(s'(f)) =0}
define s,y (S) = {s' € Store | 3s € S : s'(n) = s(n), dom(s'(f)) = dom(s(f)) U{s(n)},
s'(f)(s(n)) = s(n) + 1,

Note that all these functions are monotone.

Exercise 10.4 F : (25%m¢)PP —, (25tre)PP g defined as F(d) = (fi(d), ..., f5(d)) where
the f; : (25%r¢)PP — 25t are defined as follows:

fi(d) = Store
fa(d) = undeﬁnef(zeron((1))
f3(d) = d(2) U d(5)
fu(d) = define s,y (d(3))
J5(d) = incn(d(4))
The f; are monotone, so F'is monotone, so acc = lfp F' exists, and here it is:
acc(1) = Store
acc(2) = {s € Store | s(n) =0, dom(s(f)) = 0}
acc(3) = {s € Store | dom(s(f)) ={0,...,s(n) — 1},Vk € dom(s(f)) : s(f)(k) =k + 1}
acc(4) = {s € Store | dom(s(f)) ={0,...,s(n)},Vk € dom(s(f)):s(f)(k) =k+ 1}
acc(b) = {s € Store | s(n) > 0,dom(s(f)) =10,...,s(n) — 1},Vk € dom(s(f)) : s(f)(k) =k + 1}
The collecting semantics does not yield the total successor function on N but it yields all
partial successor functions whose domain is {0, ..., k} for k € N.
Exercise 10.5 Define v : D# — D as v(M) = {s € Store | M C dom(s(f))}.
Let S € D and M € D#. Then
a(S)E M & M C a(S) e M C({dom(s(f)) | s € S}
S Vse S: M C dom(s(f))
& S C{se Store | M C dom(s(f))} < S C~(M) .

Hence (D, C) <D# C).

Exercise 10.6 Best approximations are:

fI(d) = a(Store) =0
fQ#(d) = a(undeﬁnef(zeron(v(d(l))))) = un deﬁnef (zero (d(1)))
F3(d) = a(y(d(2)) U (d(5))) = d(2) ud(5) = d(2) Nd(5)
[T (@) = aldefine i, (v(d(3)))) = definef,\(d(3))
() = aline,(v(d(4)))) = mCﬁ(d(‘l))
where the functions zero#, inci undeﬁnef , deﬁne : D# — D7 are as follows:
zero = a o zero, o~y =id
inc = o oinc, oy =id

undeﬁnejfE = a o undefine; oy = AM.{)
deﬁneﬁn) = ao definesy oy =id

The equations for zero? | inc’ and undeﬁne? are obvious. To see why deﬁneﬁn) = id note
that for every M € D# and s € (M), the counter n can have any value in N, independent
of the domain of the partial function f. Therefore, defining f(n) need not strictly increase
the domain of f.

Now, the least fixpoint of the continuous (check this!) functionF# : p*™ D
d— F#(d) = (fF(d),..., fF(d) is easily computed as lfp F# = (0,...,0) € D*™". We
get no information for which natural numbers the program defines f.

#PP .

Exercise 10.7 Unfolding the loop once means inserting the assignments
f=Akif k =n then n +1else f(k); n:==n+1

right before program point 2. This changes the collecting semantics acc in such a way
that from program point p > 2 on, s(f)(0) = 1 in all stores s € acc(p). Accordingly,
f# = Xd.{0} and therefore Ifp F# = (0, {0},...,{0}).

In general, unfolding the loop m times has the effect that at program point 2, f is
already defined at {0,...,m — 1}. Therfore, ¥ = Ad.{0,...,m — 1} and thus lfp F'# =
0,{0,...,m—1},...,{0,... ,m — 1}). Obviously, the analysis for which natural number
the program defines f is the more precise (i.e., Ifp F'# is the smaller) the larger m is.

