

Semantics of Programming Languages Solutions to Assignment 10

Patrick Maier, Jan Schwinghammer http://www.ps.uni-sb.de/courses/sem-ws01/

Exercise 10.1 Define $\alpha: L^S \to L^T: f \mapsto g_f$ with $g_f: T \to L: x \mapsto f(x)$. Let $f \in L^S$ and $g \in L^T$. Then

$$\alpha(f) \sqsubseteq_T g \Leftrightarrow g_f \sqsubseteq_T g$$

$$\Leftrightarrow \forall x \in T : g_f(x) \sqsubseteq g(x)$$

$$\Leftrightarrow \forall x \in T : f(x) \sqsubseteq g(x)$$

$$\Leftrightarrow \forall x \in S : f(x) \sqsubseteq \begin{cases} g(x) & \text{if } x \in T \\ \top & \text{otherwise} \end{cases}$$

$$\Leftrightarrow \forall x \in S : f(x) \sqsubseteq f_g(x)$$

$$\Leftrightarrow f \sqsubseteq_S f_g$$

$$\Leftrightarrow f \sqsubseteq_S \gamma(g) .$$

Exercise 10.2 You should have guessed that the program, after running for an infinite amount of time, computes the total function $f: \mathbb{N} \to \mathbb{N}$ with f(k) = k+1 for all $k \in \mathbb{N}$, i. e., the successor function on the natural numbers.

Exercise 10.3 Collecting semantics as system of equations:

$$acc(1) = Store$$

 $acc(2) = undefine_f(zero_n(acc(1)))$
 $acc(3) = acc(2) \cup acc(5)$
 $acc(4) = define_{f(n)}(acc(3))$
 $acc(5) = inc_n(acc(4))$

where the functions $zero_n$, inc_n , $undefine_f$, $define_{f(n)}: 2^{Store} \to 2^{Store}$ are defined as follows:

$$zero_{n}(S) = \{s' \in Store \mid \exists s \in S : s'(f) = s(f), s'(n) = 0\}$$

$$inc_{n}(S) = \{s' \in Store \mid \exists s \in S : s'(f) = s(f), s'(n) = s(n) + 1\}$$

$$undefine_{f}(S) = \{s' \in Store \mid \exists s \in S : s'(n) = s(n), dom(s'(f)) = \emptyset\}$$

$$define_{f(n)}(S) = \{s' \in Store \mid \exists s \in S : s'(n) = s(n), dom(s'(f)) = dom(s(f)) \cup \{s(n)\}, s'(f)(s(n)) = s(n) + 1,$$

$$\forall k \in dom(s(f)) \setminus \{s(n)\} : s'(f)(k) = s(f)(k)\}$$

Note that all these functions are monotone.

Exercise 10.4 $F:(2^{Store})^{PP} \to (2^{Store})^{PP}$ is defined as $F(d) = \langle f_1(d), \dots, f_5(d) \rangle$ where the $f_i:(2^{Store})^{PP} \to 2^{Store}$ are defined as follows:

$$f_1(d) = Store$$

$$f_2(d) = undefine_f(zero_n(d(1)))$$

$$f_3(d) = d(2) \cup d(5)$$

$$f_4(d) = define_{f(n)}(d(3))$$

$$f_5(d) = inc_n(d(4))$$

The f_i are monotone, so F is monotone, so acc = lfp F exists, and here it is:

$$acc(1) = Store$$

$$acc(2) = \{ s \in Store \mid s(n) = 0, dom(s(f)) = \emptyset \}$$

$$acc(3) = \{s \in Store \mid dom(s(f)) = \{0, \dots, s(n) - 1\}, \forall k \in dom(s(f)) : s(f)(k) = k + 1\}$$

$$acc(4) = \{s \in Store \mid dom(s(f)) = \{0, \dots, s(n)\}, \forall k \in dom(s(f)) : s(f)(k) = k+1\}$$

$$acc(5) = \{s \in Store \mid s(n) > 0, dom(s(f)) = \{0, \dots, s(n) - 1\}, \forall k \in dom(s(f)) : s(f)(k) = k + 1\}$$

The collecting semantics does not yield the total successor function on \mathbb{N} but it yields all partial successor functions whose domain is $\{0, \ldots, k\}$ for $k \in \mathbb{N}$.

Exercise 10.5 Define $\gamma: D^{\#} \to D$ as $\gamma(M) = \{s \in Store \mid M \subseteq dom(s(f))\}$. Let $S \in D$ and $M \in D^{\#}$. Then

$$\alpha(S) \sqsubseteq M \Leftrightarrow M \subseteq \alpha(S) \Leftrightarrow M \subseteq \bigcap \{dom(s(f)) \mid s \in S\}$$
$$\Leftrightarrow \forall s \in S : M \subseteq dom(s(f))$$
$$\Leftrightarrow S \subseteq \{s \in Store \mid M \subseteq dom(s(f))\} \Leftrightarrow S \subseteq \gamma(M) .$$

Hence $\langle D, \subseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\rightleftharpoons}} \langle D^{\#}, \sqsubseteq \rangle$.

Exercise 10.6 Best approximations are:

$$f_1^{\#}(d) = \alpha(Store) = \emptyset$$

$$f_2^{\#}(d) = \alpha(undefine_f(zero_n(\gamma(d(1))))) = undefine_f^{\#}(zero_n^{\#}(d(1)))$$

$$f_3^{\#}(d) = \alpha(\gamma(d(2)) \cup \gamma(d(5))) = d(2) \cup d(5) = d(2) \cap d(5)$$

$$f_4^{\#}(d) = \alpha(define_{f(n)}(\gamma(d(3)))) = define_{f(n)}^{\#}(d(3))$$

$$f_5^{\#}(d) = \alpha(inc_n(\gamma(d(4)))) = inc_n^{\#}(d(4))$$

where the functions $zero_n^{\#}$, $inc_n^{\#}$, $undefine_f^{\#}$, $define_{f(n)}^{\#}: D^{\#} \to D^{\#}$ are as follows:

$$\begin{split} zero_n^\# &= \alpha \circ zero_n \circ \gamma &= \mathrm{id} \\ inc_n^\# &= \alpha \circ inc_n \circ \gamma &= \mathrm{id} \\ undefine_f^\# &= \alpha \circ undefine_f \circ \gamma = \lambda M. \emptyset \\ define_{f(n)}^\# &= \alpha \circ define_{f(n)} \circ \gamma &= \mathrm{id} \end{split}$$

The equations for $zero_n^\#$, $inc_n^\#$ and $undefine_f^\#$ are obvious. To see why $define_{f(n)}^\# = \mathrm{id}$ note that for every $M \in D^\#$ and $s \in \gamma(M)$, the counter n can have any value in $\mathbb N$, independent of the domain of the partial function f. Therefore, defining f(n) need not strictly increase the domain of f.

Now, the least fixpoint of the continuous (check this!) function $F^{\#}:D^{\#^{PP}}\to D^{\#^{PP}}:d\mapsto F^{\#}(d)=\langle f_1^{\#}(d),\ldots,f_1^{\#}(d)\rangle$ is easily computed as $\operatorname{lfp}F^{\#}=\langle\emptyset,\ldots,\emptyset\rangle\in D^{\#^{PP}}$. We get no information for which natural numbers the program defines f.

Exercise 10.7 Unfolding the loop once means inserting the assignments

$$f := \lambda k$$
.if $k = n$ then $n + 1$ else $f(k)$; $n := n + 1$

right before program point 2. This changes the collecting semantics acc in such a way that from program point $p \geq 2$ on, s(f)(0) = 1 in all stores $s \in acc(p)$. Accordingly, $f_2^\# = \lambda d.\{0\}$ and therefore $f \in F^\# = \langle \emptyset, \{0\}, \dots, \{0\} \rangle$.

 $f_2^\# = \lambda d.\{0\}$ and therefore $\text{lfp } F^\# = \langle \emptyset, \{0\}, \dots, \{0\} \rangle$. In general, unfolding the loop m times has the effect that at program point 2, f is already defined at $\{0, \dots, m-1\}$. Therfore, $f_2^\# = \lambda d.\{0, \dots, m-1\}$ and thus $\text{lfp } F^\# = \langle \emptyset, \{0, \dots, m-1\}, \dots, \{0, \dots, m-1\} \rangle$. Obviously, the analysis for which natural number the program defines f is the more precise (i. e., $\text{lfp } F^\#$ is the smaller) the larger m is.