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Exercise 11.1 Let z € D and y € D¥. We have to show that a(z) Cy < z < y(y).
Assume a(z) C y, then by definition of C, for all [ € L, a(z)(l) < y(l). So for all
leL,zné(l) = alx)(l) < yl) < Viepyl) = (), ie., y(y) is an upper bound of
x A 0(l). Therefore, \/,.,(x A 6(1)) < v(y). And finally by the cover property of § and by
distributivity of the join over meets in D, x = AT = 2A\/ ., 0(1) = Ve (@A) < y(y).
Now assume z < 7y(y) and fix k € L. From = < y(y) = V,c, y(l) and distributivity
follows = A d(k) < (Ve y(l)) Ao(k) = Ve (y(l) Ad(k)). Note that by definition of
D# for all | € L, y(I) € {a/ AS(l) | 2’ € D}, i.e, for all | € L exists 2’ € D such
that y(I) = 2’ A d(l) < 6(I). Therefore, y(I) A d(k) = y(k) if [ = k. If I # k then
y(l) No(k) = L because y(I) Ad(k) < §(1) Ad(k) = L by the disjointness property of 4.
Thus, Vyep (5(1) A 6(k)) = y(k), 0 finally az)(k) = 2 A 6(k) < Viep (5(0) A 6(K)) = y(k).

As k was chosen arbitrary, we conclude a(x) C y by definition of C.

Exercise 11.2 For any set X, proving that (2%, C [ J,(N) is a complete lattice amounts
to showing that

1. 2% is non-empty,

2. (2% C) is a poset, i.e., C is a reflexive, transitive and antisymmetric binary relation
on 2%, and

3. for all S C 2%, [ JS is the least upper bound and (S the greatest lower bound of S
in (2%, C).

These are all elementary facts. Just to exemplify a proof of these facts, we show the first
half of 3. Let S C 2¥. Forall A e S, A C |JS, so JS is an upper bound of S. Let
U € 2% be an upper bound of S, i.e., A C U for all A€ S. Then |JS C U (since for every
x € JS there is an A € S such that z € A C U), so | S is the least upper bound of S.

To show that the join completely distributes over meets, let A € 2% and S C 2%. Then
ANnUYUS=U{ANn B | B € S} because for all z € X,
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For the second part of the exercise, the natural partition of D indexed by the program
points PP is the one which gathers stores with the same value of the program counter pc,
i.e., d(p) = {s € Store | s(pc) = p}. Obviously, U,cpp{s € Store | s(pc) = p} = Store, so
d has the cover property. It also has the disjointness property, i.e., {s € Store | s(pc) =
pt N {s € Store | s(pc) = q} = 0 for p,q € PP with p # ¢, since stores are functions.

Exercise 11.3 Exercise 11.2 shows that we can apply exercise 11.1 to D and 6. We obtain
the abstract domain D# = (D#, C) with D# = [[ pp{SNd(p) | S € 2%} and for all
d,d € D¥ dC d < Vpe PP :d(p) Cd(p).

It is easy to see that D# = [Lerp 2°(P) . What remains to prove is that the o and ~y
which we get from exercise 11.1 are really the required ones. Obviously, |J,cpp d(p) = v(d)
for all d € D#. Furthermore, for all S € 25 and p € PP, {s € S| s(pc) = p} = SN{s €
Store | s(pe) = p} = SN d(p) = a(S)(p).

Exercise 11.4 The order on (2%7")P is pointwise inclusion, i.e., for all e, ¢’ € (
e’ ¢ iff Vp € PP :e(p) C €(p).

Define ¢ : D# — (25%7"\PP guch that for all p € PP, (p(d))(p) = {s' € Store’ | Is €
d(p) Vz € Var' : §'(x) = s(x)}. In words: ¢(d) eliminates the program counter pc from
the stores in d(p) by restricting them to variables in Var’.

We have to prove that ¢ is full monotone (i.e., d C d* < ¢(d) C' p(d*) for all
d,d € D) and bijective.
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o Let d,d* € D# such that d C d* and fix an arbitrary p € PP. Then d(p) C d*(p),
so (¢(d))(p) = {s' € Store’ | Is € d(p) Vx € Var' : s'(x) = s(x)} C {s' € Store’ |
ds € d*(p) Vx € Var' : §'(z) = s(x)} = (o(d*))(p). As p was chosen arbitrary,
o(d) T ¢(d*), hence ¢ is monotone.

e Let d,d* € D# such that ¢(d) £’ ¢(d*) and fix an arbitrary p € PP and s € d(p).
Then there is s € (p(d))(p) such that s'(z) = s(x) for all x € Var’, and since
(p(d))(p) C (e(d*))(p), there exists s* € d*(p) such that s*(z) = s'(z) = s(z) for
all z € Var'. By exercise 11.3, we know that d(p),d*(p) € 2°?), so s,s* € d(p),
which means s(pc) = p = s*(pc). Hence s(x) = s*(x) for all x € Var and therefore
s = s* € d*(p). As s was chosen arbitrary, d(p) C d*(p), and p was chosen arbitrary,
d C d*, hence ¢ is even full monotone.

e Full monotone functions are always injective: Let d, d* € D# such that ¢(d) = p(d*).
Then ¢(d) C" p(d*) A o(d*) C" ¢(d), so by full monotony d C d* A d* C d, hence
d=d".

e Finally, let e € (25)PP We define d € (25)PP such that for all p € PP,
d(p) = {s € Store | s(pc) = p,3s" € e(p) Vo € Var' : s(x) = s'(x)}. Obviously,
d € D¥ = Hpepp 20(P) " see exercise 11.3. It is also obvious that for all p € PP,
(p(d)(p) = e(p), i.e., ¢(d) = e, hence ¢ is surjective.



Exercise 11.5 We define o/ = poa and ¥/ = 7o ¢! where a and 7 are the Galois
connection from exercise 11.3 and ¢ is the isomorphism from exercise 11.4. To see that
this really is a Galois connection, let S € 257 and e € (25%™')PP. Then

p(a(9)) E' e a(S) Ty l(e) & S Cy(p'(e)
where the last equivalence is due to (2*%”6, <) % D# being a Galois connection.
To prove the rest, it suffices to show that « is an order isomorphism and v = a~*. We
prove this by showing that v o o = idp, that a o v = idp» and that « is full monotone.

e Let S €25 Then v(a(S)) = Uyepp{s € S| s(pc) = p} = S. Hence yoa = idp.

o Let d € D¥ =[] cpp 2°¢) and fix an arbitrary p € PP. Then a(y(d))(p) = {s €
Ugerp (@) | s(pc) = p}t. As d(p) € 6(p), s(pc) = p for all s € d(p), so d(p) C
a(v(d))(p). And since « and 7 form a Galois connection, « o 7 is reductive, i.e.,
a(v(d))(p) C d(p). As p was chosen arbitrary, o oy = id p#.

o Let S, € 257 such that a(S) C «(S’) and fix an arbitrary s € S. Let p = s(pc),
then s € a(5)(p) C a(S")(p) € S’. As s was chosen arbitrary, S C S’ hence « is full
monotone. (Note that we already knew that o was monotone because o and v form
a Galois connection.)

Final remark: These exercises showed that it makes no difference whether control flow
is treated implicitly (program counter is part of the store) or explicitly. Exercise: Define
the post (or next) operator in both cases.



