
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics of Programming Languages
Solutions to Assignment 11

Patrick Maier, Jan Schwinghammer
http://www.ps.uni-sb.de/courses/sem-ws01/

���
�

�� k

I N F O R M A T I K

Exercise 11.1 Let x ∈ D and y ∈ D#. We have to show that α(x) v y ⇔ x ≤ γ(y).
Assume α(x) v y, then by definition of v, for all l ∈ L, α(x)(l) ≤ y(l). So for all

l ∈ L, x ∧ δ(l) = α(x)(l) ≤ y(l) ≤
∨

l∈L y(l) = γ(y), i. e., γ(y) is an upper bound of
x ∧ δ(l). Therefore,

∨
l∈L(x ∧ δ(l)) ≤ γ(y). And finally by the cover property of δ and by

distributivity of the join over meets in D, x = x∧> = x∧
∨

l∈L δ(l) =
∨

l∈L(x∧δ(l)) ≤ γ(y).
Now assume x ≤ γ(y) and fix k ∈ L. From x ≤ γ(y) =

∨
l∈L y(l) and distributivity

follows x ∧ δ(k) ≤ (
∨

l∈L y(l)) ∧ δ(k) =
∨

l∈L(y(l) ∧ δ(k)). Note that by definition of
D#, for all l ∈ L, y(l) ∈ {x′ ∧ δ(l) | x′ ∈ D}, i. e., for all l ∈ L exists x′ ∈ D such
that y(l) = x′ ∧ δ(l) ≤ δ(l). Therefore, y(l) ∧ δ(k) = y(k) if l = k. If l 6= k then
y(l) ∧ δ(k) = ⊥ because y(l) ∧ δ(k) ≤ δ(l) ∧ δ(k) = ⊥ by the disjointness property of δ.
Thus,

∨
l∈L(y(l) ∧ δ(k)) = y(k), so finally α(x)(k) = x ∧ δ(k) ≤

∨
l∈L(y(l) ∧ δ(k)) = y(k).

As k was chosen arbitrary, we conclude α(x) v y by definition of v.

Exercise 11.2 For any set X, proving that 〈2X,⊆,
⋃

,
⋂
〉 is a complete lattice amounts

to showing that

1. 2X is non-empty,

2. 〈2X ,⊆〉 is a poset, i. e., ⊆ is a reflexive, transitive and antisymmetric binary relation
on 2X , and

3. for all S ⊆ 2X ,
⋃

S is the least upper bound and
⋂

S the greatest lower bound of S

in 〈2X ,⊆〉.

These are all elementary facts. Just to exemplify a proof of these facts, we show the first
half of 3. Let S ⊆ 2X . For all A ∈ S, A ⊆

⋃
S, so

⋃
S is an upper bound of S. Let

U ∈ 2X be an upper bound of S, i. e., A ⊆ U for all A ∈ S. Then
⋃

S ⊆ U (since for every
x ∈

⋃
S there is an A ∈ S such that x ∈ A ⊆ U), so

⋃
S is the least upper bound of S.

To show that the join completely distributes over meets, let A ∈ 2X and S ⊆ 2X . Then
A ∩

⋃
S =

⋃
{A ∩ B | B ∈ S} because for all x ∈ X,

x ∈ A ∩
⋃

S ⇔ x ∈ A and x ∈
⋃

S

⇔ x ∈ A and ∃B ∈ S : x ∈ B

⇔ ∃B ∈ S : x ∈ A and x ∈ B

⇔ ∃B ∈ S : x ∈ A ∩ B

⇔ x ∈
⋃

{A ∩ B | B ∈ S}.

1

For the second part of the exercise, the natural partition of D indexed by the program
points PP is the one which gathers stores with the same value of the program counter pc,
i. e., δ(p) = {s ∈ Store | s(pc) = p}. Obviously,

⋃
p∈PP

{s ∈ Store | s(pc) = p} = Store, so
δ has the cover property. It also has the disjointness property, i. e., {s ∈ Store | s(pc) =
p} ∩ {s ∈ Store | s(pc) = q} = ∅ for p, q ∈ PP with p 6= q, since stores are functions.

Exercise 11.3 Exercise 11.2 shows that we can apply exercise 11.1 to D and δ. We obtain
the abstract domain D# = 〈D#,v〉 with D# =

∏
p∈PP

{S ∩ δ(p) | S ∈ 2Store} and for all

d, d′ ∈ D#, d v d′ ⇔ ∀p ∈ PP : d(p) ⊆ d′(p).
It is easy to see that D# =

∏
p∈PP

2δ(p). What remains to prove is that the α and γ

which we get from exercise 11.1 are really the required ones. Obviously,
⋃

p∈PP
d(p) = γ(d)

for all d ∈ D#. Furthermore, for all S ∈ 2Store and p ∈ PP , {s ∈ S | s(pc) = p} = S ∩{s ∈
Store | s(pc) = p} = S ∩ δ(p) = α(S)(p).

Exercise 11.4 The order on (2Store
′

)PP is pointwise inclusion, i. e., for all e, e′ ∈ (2Store
′

)PP ,
e v′ e′ iff ∀p ∈ PP : e(p) ⊆ e′(p).

Define ϕ : D# → (2Store
′

)PP such that for all p ∈ PP , (ϕ(d))(p) = {s′ ∈ Store ′ | ∃s ∈
d(p) ∀x ∈ Var ′ : s′(x) = s(x)}. In words: ϕ(d) eliminates the program counter pc from
the stores in d(p) by restricting them to variables in Var ′.

We have to prove that ϕ is full monotone (i. e., d v d∗ ⇔ ϕ(d) v′ ϕ(d∗) for all
d, d′ ∈ D#) and bijective.

• Let d, d∗ ∈ D# such that d v d∗ and fix an arbitrary p ∈ PP . Then d(p) ⊆ d∗(p),
so (ϕ(d))(p) = {s′ ∈ Store ′ | ∃s ∈ d(p) ∀x ∈ Var ′ : s′(x) = s(x)} ⊆ {s′ ∈ Store ′ |
∃s ∈ d∗(p) ∀x ∈ Var ′ : s′(x) = s(x)} = (ϕ(d∗))(p). As p was chosen arbitrary,
ϕ(d) v′ ϕ(d∗), hence ϕ is monotone.

• Let d, d∗ ∈ D# such that ϕ(d) v′ ϕ(d∗) and fix an arbitrary p ∈ PP and s ∈ d(p).
Then there is s′ ∈ (ϕ(d))(p) such that s′(x) = s(x) for all x ∈ Var ′, and since
(ϕ(d))(p) ⊆ (ϕ(d∗))(p), there exists s∗ ∈ d∗(p) such that s∗(x) = s′(x) = s(x) for
all x ∈ Var ′. By exercise 11.3, we know that d(p), d∗(p) ∈ 2δ(p), so s, s∗ ∈ δ(p),
which means s(pc) = p = s∗(pc). Hence s(x) = s∗(x) for all x ∈ Var and therefore
s = s∗ ∈ d∗(p). As s was chosen arbitrary, d(p) ⊆ d∗(p), and p was chosen arbitrary,
d v d∗, hence ϕ is even full monotone.

• Full monotone functions are always injective: Let d, d∗ ∈ D# such that ϕ(d) = ϕ(d∗).
Then ϕ(d) v′ ϕ(d∗) ∧ ϕ(d∗) v′ ϕ(d), so by full monotony d v d∗ ∧ d∗ v d, hence
d = d∗.

• Finally, let e ∈ (2Store
′

)PP . We define d ∈ (2Store)PP such that for all p ∈ PP ,
d(p) = {s ∈ Store | s(pc) = p, ∃s′ ∈ e(p) ∀x ∈ Var ′ : s(x) = s′(x)}. Obviously,
d ∈ D# =

∏
p∈PP

2δ(p), see exercise 11.3. It is also obvious that for all p ∈ PP ,
(ϕ(d))(p) = e(p), i. e., ϕ(d) = e, hence ϕ is surjective.

2

Exercise 11.5 We define α′ = ϕ ◦ α and γ′ = γ ◦ ϕ−1 where α and γ are the Galois
connection from exercise 11.3 and ϕ is the isomorphism from exercise 11.4. To see that
this really is a Galois connection, let S ∈ 2Store and e ∈ (2Store′

)PP . Then

ϕ(α(S)) v′ e ⇔ α(S) v ϕ−1(e) ⇔ S ⊆ γ(ϕ−1(e))

where the last equivalence is due to 〈2Store ,⊆〉
γ
α D# being a Galois connection.

To prove the rest, it suffices to show that α is an order isomorphism and γ = α−1. We
prove this by showing that γ ◦ α = idD, that α ◦ γ = idD# and that α is full monotone.

• Let S ∈ 2Store . Then γ(α(S)) =
⋃

p∈PP
{s ∈ S | s(pc) = p} = S. Hence γ ◦ α = idD.

• Let d ∈ D# =
∏

p∈PP
2δ(p) and fix an arbitrary p ∈ PP . Then α(γ(d))(p) = {s ∈⋃

q∈PP
d(q) | s(pc) = p}. As d(p) ⊆ δ(p), s(pc) = p for all s ∈ d(p), so d(p) ⊆

α(γ(d))(p). And since α and γ form a Galois connection, α ◦ γ is reductive, i. e.,
α(γ(d))(p) ⊆ d(p). As p was chosen arbitrary, α ◦ γ = idD#.

• Let S, S ′ ∈ 2Store such that α(S) v α(S ′) and fix an arbitrary s ∈ S. Let p = s(pc),
then s ∈ α(S)(p) ⊆ α(S ′)(p) ⊆ S ′. As s was chosen arbitrary, S ⊆ S ′, hence α is full
monotone. (Note that we already knew that α was monotone because α and γ form
a Galois connection.)

Final remark: These exercises showed that it makes no difference whether control flow
is treated implicitly (program counter is part of the store) or explicitly. Exercise: Define
the post (or next) operator in both cases.

3

