
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics of Programming Languages
Solutions to Assignment 12

Patrick Maier, Jan Schwinghammer
http://www.ps.uni-sb.de/courses/sem-ws01/

���
�

�� k

I N F O R M A T I K

We are terribly sorry, there is a typo in program P . The condition in the if-statement
should be negated so that the assert-statement is never reached. This does not affect
exercise 12.1 but 12.2 does not make sense with the original P . Here is the corrected
version, which we will use throughout the solutions; x and y are both initialized to 0.

l1: while (*) {

l2: x++;

l3: y++;

}

l4: while (*) {

l5: x--;

l6: y--;

}

l7: if (x != y) {

l8: assert(0);

}

Exercise 12.1 We use the notation of [1].

1. The set of states is States = ValVar where Var = {x, y} and Val = Z. We have just
one predicate, so the set of abstract states States# = {0, 1, ∗} is the set of trivectors
with one component. Therefore the abstract program will have just one variable v1.

• Consider the assignment x := x + 1.

The corresponding abstract statement is v1 := H(cond1, cond0), where the func-
tion H takes two boolean expressions (with free variable v1) to a value in {0, 1, ∗}
and can be expressed by a nested conditional H(cond 1, cond0) = cond1 ? 1 :
cond0 ? 0 : ∗.

We compute cond 1 and cond0 by under-approximating the weakest precondition;
cond1 ≡ false because

F(p̃re({s ∈ States | s |= p1})) = F({s ∈ States | s |= x + 1 = y}) = false.

On the other hand, cond0 ≡ v1 = 1 since

F(p̃re({s ∈ States | s |= ¬p1})) = F({s ∈ States | s |= x + 1 6= y}) = p1.

Hence the abstract statement is v1 := v1 = 1 ? 0 : ∗.

1

• Consider the assignment y := y + 1.

Due to the symmetry of p1, the abstract statement for incrementing y is the
same than for incrementing x, i. e., v1 := v1 = 1 ? 0 : ∗.

• Consider the assignment x := x − 1.

v1 := cond1 ? 1 : cond0 ? 0 : ∗ where cond1 ≡ false and cond0 ≡ v1 = 1 because

F(p̃re({s ∈ States | s |= p1})) = F({s ∈ States | s |= x − 1 = y}) = false

F(p̃re({s ∈ States | s |= ¬p1})) = F({s ∈ States | s |= x − 1 6= y}) = p1.

Hence the abstract statement is v1 := v1 = 1 ? 0 : ∗ again.

• Consider the assignment y := y − 1.

Due to symmetry, the abstract statement is v1 := v1 = 1 ? 0 : ∗.

2. To construct the abstract program P #, we still need to abstract the conditions in P .
This is trivial for the while-loops (l1 and l4), ∗ remains ∗. For the if-statement (l7),
the then-branch must be taken if v1 = 0 and must not be taken if v1 = 1. If v1 = ∗
then the branch can be taken or not, there is a non-deterministic choice. We may
consider ∗ as a numeric constant having the value 0.5 so we can express the abstract
condition as 1 − v1, because 1 − 0 = 1, 1 − 1 = 0 and 1 − ∗ = ∗.1

Here is the abstract program P # (in C syntax) whose post operator equals the post
#

b·c

operator of P ; the boolean variable v1 must be initialized to 1 because the initial
state of P satisfies p1.

l1: while (*) {

l2: v1 = (v1 == 1) ? 0 : *;

l3: v1 = (v1 == 1) ? 0 : *;

}

l4: while (*) {

l5: v1 = (v1 == 1) ? 0 : *;

l6: v1 = (v1 == 1) ? 0 : *;

}

l7: if (1 - v1) {

l8: assert(0);

}

3. The set of abstract states States# = {0, 1, ∗}{v1} which we identify with the set of
one-component trivectors {0, 1, ∗}. Thus the set of initial abstract states init# = {1}.

1Actually, we abuse the arithmetic function x 7→ 1−x on {0, 0.5, 1} to express negation in a three-valued

logic. Unfortunately such a hack does not work for conjunction and disjunction; the binary three-valued

junctors have to be defined explicitly.

2

The equation system for the collecting semantics of P # is

acc#(l1) = init# ∪ acc#(l3)

acc#(l2) = {v′ | ∃v ∈ acc#(l1) : v = 1 ∧ v′ = 0 ∨ v 6= 1 ∧ v′ = ∗}

acc#(l3) = {v′ | ∃v ∈ acc#(l2) : v = 1 ∧ v′ = 0 ∨ v 6= 1 ∧ v′ = ∗}

acc#(l4) = acc#(l1) ∪ acc#(l6)

acc#(l5) = {v′ | ∃v ∈ acc#(l4) : v = 1 ∧ v′ = 0 ∨ v 6= 1 ∧ v′ = ∗}

acc#(l6) = {v′ | ∃v ∈ acc#(l5) : v = 1 ∧ v′ = 0 ∨ v 6= 1 ∧ v′ = ∗}

acc#(l7) = acc#(l4)

acc#(l8) = {v ∈ acc#(l7) | v = 0 ∨ v = ∗}

Least solution:

acc#(l1) = {1, ∗} acc#(l4) = {1, ∗} acc#(l7) = {1, ∗}

acc#(l2) = {0, ∗} acc#(l5) = {0, ∗} acc#(l8) = {∗}

acc#(l3) = {∗} acc#(l6) = {∗}

As acc#(l8) 6= ∅, label l8 is reachable in program P #.

Exercise 12.2 We define two additional predicates p2 ≡ x + 1 = y and p3 ≡ x − 1 = y.
Note that p2 ≡ x = y − 1 and p3 ≡ x = y + 1.

To construct the abstract statement for the assignment x := x+1, we have to compute
six under-approximations of weakest preconditions:

F(p̃re({s ∈ States | s |= p1})) = F({s ∈ States | s |= x + 1 = y}) = p2

F(p̃re({s ∈ States | s |= ¬p1})) = F({s ∈ States | s |= x + 1 6= y}) = ¬p2

F(p̃re({s ∈ States | s |= p2})) = F({s ∈ States | s |= x + 2 = y}) = false

F(p̃re({s ∈ States | s |= ¬p2})) = F({s ∈ States | s |= x + 2 6= y}) = p1 ∨ p2 ∨ p3

F(p̃re({s ∈ States | s |= p3})) = F({s ∈ States | s |= x = y}) = p1

F(p̃re({s ∈ States | s |= ¬p3})) = F({s ∈ States | s |= x 6= y}) = ¬p1

This yields the abstract assignment

〈v1, v2, v3〉 := 〈v2 = 1 ? 1 : v2 = 0 ? 0 : ∗,
false ? 1 : v1 = 1 ∨ v2 = 1 ∨ v3 = 1 ? 0 : ∗,
v1 = 1 ? 1 : v1 = 0 ? 0 : ∗〉

which can be written shorter as 〈v1, v2, v3〉 := 〈v2, v1 = 1 ∨ v2 = 1 ∨ v3 = 1 ? 0 : ∗, v1〉.
As the condition of the if-statement in P is exactly ¬p1, the abstract condition remains

1 − v1.
Here is the refined boolean program P #; the boolean vector 〈v1, v2, v3〉 must be ini-

tialized to 〈1, 0, 0〉.

3

l1: while (*) {

l2: <v1, v2, v3> = <v2, (v1 = 1 || v2 = 1 || v3 = 1) ? 0 : *, v1>;

l3: <v1, v2, v3> = <v3, v1, (v1 = 1 || v2 = 1 || v3 = 1) ? 0 : *>;

}

l4: while (*) {

l5: <v1, v2, v3> = <v3, v1, (v1 = 1 || v2 = 1 || v3 = 1) ? 0 : *>;

l6: <v1, v2, v3> = <v2, (v1 = 1 || v2 = 1 || v3 = 1) ? 0 : *, v1>;

}

l7: if (1 - v1) {

l8: assert(0);

}

Here is an informal argument that l8 is unreachable in P #.

• Initially, the value of v1 is 1.

• The first loop preserves the value of v1 because its first assignment stores the value
of v1 in v3, then the second assignment restores it from there.

• Similarly, the second loop preserves the value of v1 because it stores v1 to v2 and
then restores it from there.

• Therefore, at label l7 the value of v1 must be 1, so the condition 1− v1 evaluates to
0 and the then-branch is not taken.

Exercise 12.3 Given a program with k variables {x1, . . . , xk}, all of type Z, we should
define the set of predicates P = {xi = z | 1 ≤ i ≤ k, z ∈ Z}. This induces a predicate ab-
straction in the canonical way, however the bitvectors are of infinite length, more precisely,
αbool maps sets of states to 2{0,1}{1,... ,k}×Z

. And a cartesian abstraction on top of αbool would
still yield an infinite trivector in {0, 1, ∗}{1,... ,k}×Z. As we can not handle infinite objects in
real computers, this analysis is not implementable.

However, we might restrict to predicates that compare the xi only to those integers
which appear as literal constants in the program text. There can only be finitely many
constants, let’s say l, then the size of P would be kl, so bitvectors and trivectors are of
length kl. This analysis can not achieve full constant propagation, for instance, it will not
detect that the expression xi + 1 is constant when xi is constant. However, it will still
detect xj as constant after the assignment xj := xi where xi is constant.

Does a cartesian abstraction on top of the boolean abstraction cause a loss of precision
for constant propagation? Let S be a set of states and assume that the variable xi is
constant in S, i. e., ∃z ∈ Z ∀s ∈ S : s(xi) = z. Then for all bitvectors v ∈ αbool (S),
v(xi = z) = 1 and v(xi = z′) = 0 for all z′ ∈ Z\{z}. Hence the trivector that comes out of
αcart(αbool (S)) will have a 1 at position xi = z and 0 at all positions xi = z′ for z′ ∈ Z\{z}.
This means that the information detected by the boolean abstraction is not destroyed by
a further cartesian abstraction; constant propagation can be implemented using trivectors
rather than sets of bitvectors.

4

Exercise 12.4 Let D = 〈D,v〉 and D# = 〈D#,v#〉 be posets. A function f : D → D#

is called completely additive if for all X ⊆ D, the existence of
⊔

X implies that
⊔#

f(X)
exists and f(

⊔
X) =

⊔#
f(X). Obviously, a completely additive function is additive.

Let D
γ

α D# be a Galois connection. To prove that α is completely additive, we pick
a set X ⊆ D such that

⊔
X exists.

• As
⊔

X is an upper bound of X, ∀x ∈ X : x v
⊔

X, so by monotonicity of α,
∀x ∈ X : α(x) v# α(

⊔
X). Hence α(

⊔
X) is an upper bound of α(X).

• Let y ∈ D# be an upper bound of α(X), i. e., ∀x ∈ X : α(x) v# y. As α and γ

form a Galois connection, ∀x ∈ X : x v γ(y), i. e., γ(y) is an upper bound of X, so⊔
X v γ(y), for

⊔
X is the least upper bound of X. Again because of the Galois

connection, α(
⊔

X) v# y.

To summarize, α(
⊔

X) is the least upper bound of α(X), i. e.,
⊔#

α(X) exists and α(
⊔

X) =⊔#
α(X).
By duality, γ is completely multiplicative, i. e., for all Y ⊆ D#, if the greatest lower

bound of Y exists in D# then the greatest lower bound of γ(Y) exists in D is equal to the
image of the greatest lower of Y under γ.

To see that γ need not be additive, let D = 〈D,v〉 with D = {a, b} ∪ {z ∈ Z | z ≤ 0}
and a, b v z for all z ∈ Z and z v z′ iff z ≤ z′ for all z, z′ ∈ Z. Let D# = 〈D#,v#〉 where
D# = {a, b, 0} ⊆ D and v# is the order induced by v on D#. We define α : D → D#

by α(a) = a, α(b) = b and α(z) = 0 for all z ∈ Z; γ : D# → D is the identity. Then
D

γ
α D# is a Galois connection. Furthermore, at# b exists in D# (it is 0) but γ(a)tγ(b)

does not exist in D (in D, all z ∈ Z are upper bounds of γ({a, b}) = {a, b}).

References

[1] Thomas Ball, Andreas Podelski and Sriram K. Rajamani. Boolean and Cartesian
Abstraction for Model Checking C Programs. In Proceedings of TACAS, 2001.

5

