
1

Object Calculus O

Classes are names for which a method table is declared. Methods are procedures
that take the invoking object (self) as first argument.

Objects are pairs consisting of a class and a field table. All values can be fields.

If o is an object and l is a label, a selection o.l reduces either to the field for o
and l or to the application t o, where t is the method for the class of o and l.

Interfaces are names that are used for typing. Classes and interfaces are collec-

tively referred to as object types.

C ∈ Cla class

O ∈ OTy = Cla⊎ Int object type

T ∈ Ty = O | T → T type

l ∈ Lab label

x ∈ Var variable

f ∈ Lab
fin
⇀ Ter field table

t ∈ Ter = x | λx :T .t | t t | obj C f | t.l term

Γ ∈ Var ⇀ Ty type environment

A procedure is a closed abstraction λx :T .t. The set of all procedures is denoted

by Pro. A program consists of two sets Cla and Int and three further constituents:

1. a method table mth ∈ Cla → Lab
fin
⇀ Pro

2. a type table ty ∈ OTy → Lab
fin
⇀ Ty

3. a subtype order, which is a partial order on OTy .

The proper reduction rules are as follows:

(λx :T .t)t′ → t[x := t′] beta reduction

(obj C f).l → f l if l ∈ Dom f field access

(obj C f).l → (mth C l)(obj C f) if l ∈ Dom (mth C) method invocation

The subtype order is extended to all types by
T ′1 ≤ T1 T2 ≤ T

′
2

T1 → T2 ≤ T
′
1 → T ′2

.

The typing relations are defined as follows:

Γ ⊢ t : T
def
⇐⇒ ∃T ′ : Γ ⊢→ t : T ′ ∧ T ′ ≤ T

2

Γx = T

Γ ⊢→ x : T

Γ[x := T] ⊢→ t : T ′

Γ ⊢→ λx :T .t : T → T ′
Γ ⊢→ t : T ′ → T Γ ⊢ t′ : T ′

Γ ⊢→ t t′ : T

Dom f = Dom (ty C)−Dom (mth C) ∀l ∈ Dom f : Γ ⊢ f l : ty C l

Γ ⊢→ obj C f : C

Γ ⊢→ t : O ty O l = T

Γ ⊢→ t.l : T

A programm is well-typed if the following conditions hold:

1. Dom (mth C) ⊆ Dom (ty C)

2. t = mth C l ∧ T = ty C l =⇒ 0 ⊢ t : C → T

3. C ≤ C′ =⇒ Dom (ty C) ⊇ Dom (ty C′) ∧ ∀l ∈ Dom (ty C′) : ty C l ≤ ty C′ l

For well-typed programs we have the following properties:

• Subsumption and Least Type

• Preservation and Progress

• Confluent reduction

Exercise (Recursion Operators) Let T , T ′ be types. Write a class Fix that pro-

vides a recursion operator for T → T ′ through a method fix.

Type Case

O can be extended with a type case as follows:

t = . . . | case O t t t

case O (obj C f) t0 t1 → t0 (obj C f) if C ≤ O

case O (obj C f) t0 t1 → t1 (obj C f) if not C ≤ O

Γ ⊢ t : O1 Γ ⊢→ t0 : O0 → T0 Γ ⊢→ t1 : O1 → T1 O ≤ O0 T = lub T0 T1

Γ ⊢→ case O t t0 t1 : T

Exercise (Type Tests) Show how a construct t instanceof O that tests whether

the object t evaluates to has typeO can be expressed with type case. Assume that

Boolean values are realized with an interface Bool and two subclasses False and

True that have no fields and no methods.

Exercise (Conditionals) Show how a conditional if t then t0 else t1 can be ex-

pressed with type case.

© G. Smolka, 17. 2. 2006

3

Example Program

The following program shows how unit, bool and the natural numbers can be

implemented in O.

class Unit

interface Bool

if : (Unit → Nat) → (Unit → Nat) → Nat

class False < Bool

mth if = λσ fg. g(obj Unit {})

class True < Bool

mth if = λσ fg. f (obj Unit {})

interface Nat

pred : Nat
add : Nat → Nat

isz : Bool

sub : Nat → Nat

class Z < Nat

mth pred = λσ. σ
mth add = λσn. n

mth isz = λσ. obj True {}

mth sub = λσn. σ

class P < Nat

fld pred : Nat

mth add = λσn. σ .pred.add (obj P {pred = n})
mth isz = λσ. obj False {}

mth sub = λσn. n.isz.if (λu. σ) (λu. σ .pred.sub n.pred)

