Proof of Substitution Property, case "*t* **abstraction**"

First, we need three propositions:

 $\Gamma \vdash t : T \land x \notin Dom \Gamma \implies \Gamma, x : T' \vdash t : T$ **P1** $\Gamma \vdash t : T \implies FVt \subseteq Dom \, \Gamma$ **P**2 $(\lambda x:T.t)[x':=t'] = \lambda x:T.t[x':=t']$ if $x \neq x'$ and $x \notin FVt'$ **P3** Prove P1 and P2 for exercise, they follow by induction on |t|. $\forall \Gamma, x, t, t', T, T'$: $\Gamma, x: T' \vdash t: T \land \Gamma \vdash t': T' \implies \Gamma \vdash t[x:=t']: T$ Claim **Proof** By induction on |t|. Let Γ , x : $T' \vdash t$: T and $\Gamma \vdash t'$: T'. (1)Let *t* be an abstraction (case considered). By definition of typing relation: $T = T_1 \rightarrow T_2$ (for some T_1, T_2) $t = \lambda x_1 : T_1. t_1 \text{ and } x_1 \neq x \text{ and } x_1 \notin Dom \Gamma$ (for some x_1, t_1) (2) Γ , x : T', $x_1 : T_1 \vdash t_1 : T_2$ By P1, induction hypothesis, and definition of typing relation: Γ , $x_1 : T_1 \vdash t_1[x := t'] : T_2$ $\Gamma \vdash \lambda x_1 : T_1. t_1[x := t'] : T$ By (2), (1) and P2: $x_1 \neq x$ and $x_1 \notin FVt'$. By P3 and (2): $\Gamma \vdash (\lambda x_1 : T_1, t_1) [x := t'] : T$ $\Gamma \vdash t[x := t'] : T$