
1

Type Reconstruction

We consider the simply typed lambda calculus with types and terms as follows:

T ∈ Ty = X | T → T

t ∈ Ter = x | λx :T .t | t t

Type Substitutions

A type substitution is a function σ ∈ Ty → Ty with the following properties:

1. ∀T1, T2 : σ(T1 → T2) = σT1 → σT1 (Compatibility)

2. {X | σX ≠ X } finite (Finiteness)

The symbol σ will always denote a type substitution. We use TSubst to denote

the set of all type substitutions and define:

Var σ
def
= {X | σX ≠ X } instantiated variables

Con σ
def
= { (X,σX) | σX ≠ X } constraint representation

σ ◦ σ ′
def
= λT ∈ Ty. σ ′(σT) composition

Gen σ
def
= {σ ◦ σ ′ | σ ′ ∈ TSubst } generated substitutions

id
def
= λT ∈ Ty. T identity substitution

The identity id is a type substitution with Con id = � and Gen id = TSubst . A type

substitution σ is idempotent if σ = σ ◦ σ . Note that id is idempotent. A type

substitution σ is a renaming if it is bijective.

Proposition 1 For all σ,σ ′ ∈ TSubst :

1. σ ◦ σ ′ ∈ TSubst

2. σ = σ ′ ⇐⇒ Con σ = Con σ ′

3. Gen σ = Gen σ ′ ⇐⇒ ∃ renaming σ ′′ : σ = σ ′ ◦ σ ′′

Note that Con σ is a finite representation of σ .

Proposition 2 Let C = {X1 = T1, . . . , Xn = Tn} where X1, . . . , Xn are pairwise
distinct and Xi ≠ Ti for all i ∈ {1, . . . , n}. Then there exists exactly one type

substitution σ such that Con σ = C .

We say that σ is more general than σ ′ if Gen σ ′ ⊆ Gen σ .

2

Constraints and Unification

A constraint is a finite subset of Ty2. We see a constraint as a finite set of equa-

tions between types and take the freedom to write T = T ′ for a pair (T , T ′). The

letter C will always denote a constraint. For every type substitution σ we see

the set Con σ as a constraint. This means that every type substitution can be

represented as a constraint.

Let C be a constraint. A type substitution σ is called a

• solution of C if ∀(T , T ′) ∈ C : σT = σT ′

• principal solution of C if Gen σ is the set of all solutions of C .

We say that σ solves C if σ is a solution of C . A constraint is called satisfiable

if it has a solution.

Unification Theorem If a constraint has a solution, then it has a principal

solution that is idempotent.

We will develop a unification algorithm that computes for a constraint an idem-

potent and principal solution if there exists one.

Equivalence of constraints is defined as follows:

C ≈ C′
def
⇐⇒ ∀σ : σ solves C ⇐⇒ σ solves C′

Proposition 3 (Unification Rules)

1. C ∪ {T = T} ≈ C (Reflexivity)

2. C ∪ {T1 → T2 = T
′
1 → T ′2} ≈ C ∪ {T1 = T

′
1, T2 = T

′
2} (Decomposition)

3. C ∪ {X = T} ≈ C[X := T]∪ {X = T} (Replacement)

4. C ∪ {T1 = T2} ≈ C ∪ {T2 = T1} (Symmetry)

5. If C contains an equation X = T1 → T2 where X occurs in T1 or T2, then C is

unsatisfiable.

A constraint C is solved if it has the form {X1 = T1, . . . , Xn = Tn} whe-

re X1, . . . , Xn are pairwise distinct type variables that don’t occur in the types

T1, . . . , Tn.

Proposition 4 C solved ⇐⇒ ∃σ : C = Con σ ∧ σ idempotent.

Proposition 5 If σ is idempotent, then σ is a principal solution of Con σ .

A constraint is explicit if it is solved or has the form {X = X → X}.

Proposition 6 An explicit constraint is satisfiable if and only if it is solved.

© G. Smolka, 6. 2. 2006

3

The unification algorithm simplifies a constraint until an equivalent explicit cons-

traint is obtained. The required simplification steps appear in Proposition 3. Here

is an example:

{X → Y = Z → X → Z} ≈ {X = Z, Y = X → Z} decomposition

≈ {X = Z, Y = Z → Z} replacement

To obtain a terminating algorithm, we work with two constraints C1, C2 satisfying

the following conditions:

1. C1 ∪ C2 is equivalent to the initial constraint.

2. C2 is solved.

3. ∀(X, T) ∈ C2 : X doesn’t occur in C1.

We always start with C,�. If the initial constraint is satisfiable, we end up with

�,C′ where C′ is solved and equivalent to the initial constraint. Otherwise, we

end up with {X = X → X}, �. The solved part of the constraint grows which each

replacement step eliminating a variable from the unsolved part.

Proposition 7 If C = {X1 = T1, . . . , Xn = Tn} is solved and X and X1, . . . , Xn
don’t occur in T , then C[X := T]∪ {X = T} is solved.

Typings and Constraint Extraction

Proposition 8 Γ ` t : T =⇒ σ Γ ` σt : σT

Given Γ and t, we call a type substitution σ a

• typing of Γ , t if ∃T : σ Γ ` σt : T .

• principal typing of Γ , t if Gen σ is the set of all typings of Γ , t.

Note that a principal typing of Γ , t is a typing of Γ , t that represents all other

typings of Γ , t. Example: id is a principal typing of �, λx :X.x.

Typing Theorem If Γ and t have a typing, then they have a principal typing

that is idempotent.

A type reconstruction algorithm that computes for Γ , t an idempotent and prin-

cipal typing if there exists one can be obtained by combining a unification al-

gorithm with an extraction algorithm that computes for Γ and t a constraint C

such that the solutions of C are the typings of Γ , t up to a minor modification.

We will describe the extraction algorithm through inference rules defining an

extraction relation “Γ , t� T ,C” satisfying the following properties:

• FV t ⊆ Dom Γ =⇒ ∃T ,C : Γ , t� T ,C (Totality)

• Γ , t� T ,C ∧ σ solves C =⇒ σ Γ ` σt : σT (Soundness)

4

• Γ , t� T ,C ∧ σ Γ ` σt : T ′ =⇒ (Completeness)

∃σ ′ : σ ′ solves C ∧ ∀X ∈ TV (Γ , t) : σX = σ ′X

where TV (Γ , t) denotes the set of all type variables that occur in Γ , t.

If σ is a type substitution and V is a set of type variables, the type substitution

σ |V called the restriction of σ to V is defined as follows:

Con(σ |V) = { (X, T) ∈ Con σ | X ∈ V }

Extraction Theorem Let Γ , t� T ,C . Then:

1. Γ , t has a typing ⇐⇒ C has a solution.

2. σ principal solution of C =⇒ σ |TV (Γ , t) principal typing of Γ , t.

The Extraction Theorem is a consequence of the soundness and completeness

of the extraction relation. The Typing Theorem follows with the totality of the

extraction relation from the Extraction Theorem and the Unification Theorem.

The theorems tell us that a type reconstruction algorithm can be obtained from

a type extraction algorithm and a unification algorithm.

The extraction relation is defined by the following inference rules:

Γx = T

Γ , x � T , �

Γ[x := T], t � T ′, C

Γ , λx :T .t � T → T ′, C

Γ , t1 � T1, C1 Γ , t2 � T2, C2 X fresh

Γ , t1t2 � X, C1 ∪ C2 ∪ {T1 = T2 → X}

where “X fresh” is an abbreviation for the lengthy condition

V1 ∩W = � ∧ V2 ∩W = � ∧ V1 ∩ V2 = � ∧ X ∉ V1 ∪ V2 ∪W

where V1 = TV (T1, C1)− TV (Γ , t1)

V2 = TV (T2, C2)− TV (Γ , t2)

W = TV (Γ , t1t2)

The inference rules defining the extraction relation also define an algorithm that
for Γ and t computes T and C such that Γ , t� T ,C .

The soundness and completeness properties of the extraction relation can be

shown by induction on |t|. The totality property requires a proof of the stronger

claim

FV t ⊆ Dom Γ ∧ V finite =⇒ ∃T ,C : Γ , t� T ,C ∧ TV (T ,C)∩ V ⊆ TV (Γ , t)

which once again can be carried out by induction on |t|.

© G. Smolka, 6. 2. 2006

5

Principal Types

A type T is a principal type of a closed term t if

∀T ′ : (∃σ : � ` σt : T ′) ⇐⇒ (∃σ : T ′ = σT)

Proposition 8 Let σ be a principal typing of �, t and � ` σt : T . Then T is a

principal type of t.

