
U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Assignment 3
Semantics, WS 2009/10

Prof. Dr. Gert Smolka, Dr. Jan Schwinghammer, Christian Doczkal
www.ps.uni-sb.de/courses/sem-ws09/

Hand in by 11.59am, Tuesday, November 10

There is a Standard ML file for this assignment. Send your solutions to Exercise

3.3 in a file named lastname.sml to doczkal@ps.uni-sb.de, and make sure that

the entire file compiles without errors.

Exercise 3.1 (System T Shallow) Here is a shallow implementation of System T

in Standard ML:

datatype nat = O | S of nat
fun natrec O x _ = x

| natrec (S n) x f = f n (natrec n x f)

Write the following procedures using only natrec for recursion.

a) iszero : nat → bool

b) pred : nat → nat

c) add : nat → nat → nat

d) mul : nat → nat → nat

e) fac : nat → nat

Exercise 3.2 (PCF− Shallow) Here is a shallow implementation of PCF− in Stan-

dard ML:

datatype nat = O | S of nat
fun natcase O x _ = x

| natcase (S n) x f = f n
fun fix f x = f (fix f) x

A PCF− procedure for addition looks as follows:

val add = fix(fn f => fn x => fn y => natcase x y (fn x’ => f x’ (S y)))

Write and test PCF− procedures for multiplication and factorial.

Exercise 3.3 (PCF− Deep) We implement the abstract syntax of PCF− in Standard

ML as follows:

datatype ty = Nat | P of ty * ty
type var = string
datatype ter = V of var | A of ter * ter | L of var * ty * ter

| O | S of ter | C of ter * ter * ter | F of ter

2009–11–04 17:57

a) Write a procedure isVal : ter → bool that tests whether a term is a value.

b) Write a procedure elab : (var → ty)→ ter → ty that yields the type of a well

typed term. Raise the exception Error if the term is not well-typed. Implement

type environments as follows:

exception Error
fun empty x = raise Error
fun update f x a y = if y=x then a else f y

c) Write a procedure subst : var → ter → ter → ter that computes [x := s]t if s is

closed.

d) Write a procedure eval : ter → ter that yields the value of a closed term if it

exists. Raise the exception Error it eval must quit because of a type inconsis-

tency or a free variable occurrence.

2009–11–04 17:57

