

Assignment 5 Semantics, WS 2009/10

Prof. Dr. Gert Smolka, Dr. Jan Schwinghammer, Christian Doczkal www.ps.uni-sb.de/courses/sem-ws09/

Hand in by 11.59am, Tuesday, November 24

Send your solutions to Exercises 5.2–5.5 in a file named lastname.v to doczkal@ps.uni-sb.de. Make sure that the entire file compiles without errors.

Exercise 5.1 (Contextual equivalence)

- a) Show that the following terms are *not* contextually equivalent in PCF⁻, by finding separating contexts.
 - SO and S(SO)
 - $\lambda x y.x$ and $\lambda x y.y$
 - x and $natcase x 0 (\lambda y. Sy)$
 - f and $\lambda x \cdot f x$
- b) Find two terms $s \sim t$ such that $\emptyset \vdash s : nat$ and $\emptyset \not\vdash t : nat$.

Exercise 5.2 (Typing relation) Prove the following facts about PCF⁻ in Coq.

- a) There exists a type *T* such that $\emptyset \vdash (\lambda x.x) \ 0 : T$.
- b) $S \neq S \rightarrow T$ for all types S and T.
- c) There is no type T such that $\Gamma \vdash t \ t : T$.

Exercise 5.3 (Canonical forms) Show the following properties of PCF⁻ in Coq.

- a) If $\emptyset \vdash t$: *nat* and t is a value, then either t = 0 or t = Sv for some value v.
- b) If $\emptyset \vdash t : S \to T$ and t is a value, then $t = \lambda x : S . s$ for some x and s.

Exercise 5.4 (Closure semantics) Define the closure semantics for PCF⁻ as a relation cl_eval : $(env\ sv) \rightarrow ter \rightarrow sv \rightarrow Prop$ in Coq, where the type sv implements the semantic values.

Exercise 5.5 (Natrec) Extend the Coq formalization of PCF⁻ with *natrec*, and adapt the proofs of unique types, progress, preservation and determinacy.