
U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Assignment 12
Semantics, WS 2009/10

Prof. Dr. Gert Smolka, Dr. Jan Schwinghammer, Christian Doczkal
www.ps.uni-sb.de/courses/sem-ws09/

Recommended reading: Chapter 7 of the lecture notes.

Exercise 12.1 (Leibniz equality) Prove with natural deduction that Leibniz equa-

lity is reflexive.

Exercise 12.2 (Leibniz equality) Prove that Coq’s predefined equality agrees

with Leibniz equality.

Definition eq (X:Type) (x y : X) : Prop :=
forall p : X -> Prop, p x -> p y.

Lemma eq_agrees : forall (X : Type) (x y : X), eq X x y <-> x=y.

Exercise 12.3 (Non-termination) Give a term s on which β-reduction does not

terminate.

Exercise 12.4 (Bool) Give a term of type ∀X : U0. bool → X → X → X that acts as

conditional.

Exercise 12.5 (Sum types) Express sum types in CCω and in Coq. That is, give

closed terms of the following types.

sum : U0 → U0 → U0

inl : ∀X : U0. ∀Y : U0. X → sumX Y

inr : ∀X : U0. ∀Y : U0. Y → sumX Y

case : ∀X : U0. ∀Y : U0. ∀Z : U0. sumX Y → (X → Z)→ (Y → Z)→ Z

Exercise 12.6 (Polymorphic lists) Express polymorphic lists in CCω and in Coq.

That is, give closed terms of the following types.

list : U0 → U0

nil : ∀X : U0. list X

cons : ∀X : U0. X → list X → list X

foldl : ∀X : U0. ∀Y : U0. (X → Y → Y)→ Y → list X → Y

2010–01–29 11:30



Exercise 12.7 (Predecessor) Express the predecessor function for nat in

CCω and in Coq. Recall that the trick is to iterate through the pairs

(0,0), (1,0), (2,1), . . . , (n,n− 1).

Exercise 12.8 (Natrec) Express primitive recursion for nat in CCω and in Coq.

2010–01–29 11:30


