

Assignment 1 Semantics, WS 2011-2012

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-saarland.de/courses/cl-ss11/

Read in the lecture notes: Chapter 2

Read the web pages for the course. Install the Coq system on your computer. Read Sections 2.1-2.4 of the lecture notes for "Computational Logic". Then do the following exercises. Also read through the chapter "Basics" of the "Software Foundations" text.

Exercise 1.1 (Disjunction) A boolean disjunction $x \lor y$ yields *false* if and only if both x and y are *false*.

- a) Define disjunction as a function $orb : bool \rightarrow bool \rightarrow bool$ in Coq.
- b) Prove the de Morgan law $\neg(x \lor y) = \neg x \land \neg y$ in Coq.

Exercise 1.2 Define functions as follows.

- a) A function *power*: $nat \rightarrow nat$ that yields x^n for x and n.
- b) A function $fac : nat \rightarrow nat$ that yields n! for n.
- c) A function *even*: $nat \rightarrow bool$ that tests whether its argument is even.
- d) A function mod3: $nat \rightarrow nat$ that yields the remainder of x on division by 3.

Exercise 1.3 Prove the following lemmas.

```
Lemma mul_O (x : nat) : mul_X O = O.
```

Lemma mul_S (x y : nat) : mul x (S y) = add (mul x y) x.

Lemma $mul_com(x y : nat) : mul x y = mul y x$.

Lemma $mul_dist(x y z: nat): mul(add x y) z = add(mul x z) (mul y z).$

Lemma $mul_asso(x y z: nat): mul(mul x y) z = mul x (mul y z).$

Exercise 1.4 Consider the following Coq proof. After each tactic in the proof, there will be a number of goals. After each tactic give the number of goals and for each of these goals give the assumptions of the goal and the claim of the goal.

```
Lemma add_S' (x y : nat) : add x (S y) = S (add x y).
Proof.
induction x.
simpl.
reflexivity.
simpl.
rewrite IHx.
reflexivity.
```

Qed.