

Assignment 5 Semantics, WS 2011-2012

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-saarland.de/courses/cl-ss11/

Read in the lecture notes:

Remark: You may use any of the tactics we used in class including *econstructor*, *congruence*, *firstorder* and *auto*. In addition, the tactic *eassumption* is helpful when the claim has an evar, but otherwise matches an assumption.

Exercise 5.1 Formulate the following equivalences as goals in Coq and prove them.

- a) c; skip $\cong c$
- b) if false then c_1 else $c_2 \cong c_2$
- c) while false do $c \cong \text{skip}$
- d) while $b \operatorname{do} c \cong \operatorname{if} b \operatorname{then} c$; while $b \operatorname{do} c \operatorname{else} \operatorname{skip}$

Exercise 5.2 Use Coq to prove that the approximation relation \leq is reflexive and transitive.

Exercise 5.3 Use Coq to prove that program equivalence \cong is reflexive, symmetric and transitive.

Exercise 5.4 Use Coq to prove that if $c_1 \leq c_1'$ and $c_2 \leq c_2'$, then $c_1; c_2 \leq c_1'; c_2'$.

Exercise 5.5 Use Coq to prove that if $c_1 \le c_1'$ and $c_2 \le c_2'$, then if b then c_1 else $c_2 \le$ if b then c_1' else c_2' .

Exercise 5.6 Assume we know the relational semantics is functional.

Lemma ceval_functional c st st1 st2:

```
c / st \parallel st1 \rightarrow c / st \parallel st2 \rightarrow st1 = st2.
```

- a) Prove if skip $\leq c$, then skip $\cong c$.
- b) Prove if $c \leq c'$ and c terminates on all states, then $c \cong c'$.

Exercise 5.7 Assume we have a type of states, an abstract boolean predicate b on states and an abstract function c on states.

Variable state : Type.
Variable b : state -> bool.
Variable c : state -> state.

Suppose we define a relation *rel* on states by the following two rules.

$$\frac{b\sigma = false}{rel \ \sigma \ \sigma} \qquad \frac{b\sigma = true \quad rel \ (c \ \sigma) \ \sigma'}{rel \ \sigma \ \sigma'}$$

Remark: You should be able to do part (a) of this problem with no trouble. Parts (b) - (d) are more challenging. To do a case analysis on the result of a non-variable term t you may write

remember t as x. destruct x.

instead of

destruct t.

a) Define a step function *step:nat -> state -> option state* so that the proposition

```
forall s s', rel s s' \leftarrow exists i, step i s = Some s'.
```

will be provable.

b) Prove

```
Lemma agree s s':
rel s s' <-> exists i, step i s = Some s'.
```

c) Prove

```
Lemma monotone i s s' :
step i s = Some s' -> step (S i) s = Some s'.
```

d) Prove

```
Lemma functional s s' s": rel s s' -> rel s s" -> s'=s".
```