
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Assignment 9

Semantics, WS 2011-2012

Prof. Dr. Gert Smolka, Dr. Chad Brown

www.ps.uni-saarland.de/courses/cl-ss11/

Read in the lecture notes: Chapter 5

Exercise 9.1

a) Prove that r is confluent if and only if star r satisfies the diamond property.

b) Prove that relations satisfying the diamond property are strongly confluent.

c) Prove that star preserves the diamond property.

Exercise 9.2 Prove the following goals stating two variants of the principle of

well-founded induction.

Goal forall (r : rel) (p : X −> Prop) (x : X),

terminates r x −>

(forall x, (forall y, r x y −> p y) −> p x) −>

p x.

Goal forall (r : rel) (p : X −> Prop) (x : X),

terminates r x −>

(forall x, terminates r x −> (forall y, r x y −> p y) −> p x) −>

p x.

Exercise 9.3 Size induction generalizes complete induction to arbitrary types

by employing a size function. Prove the following lemma providing for proofs by

size induction.

Lemma size_induction {X : Type} (f : X −> nat) (p: X −>Prop) (x : X) :

(forall x, (forall y, f y < f x −> p y) −> p x) −> p x.

Hint: Follow the proof script for complete induction. Before doing the induction

insert remember (f x) as n so that you can do induction on n.

Exercise 9.4 Prove the following lemma, which says that a relation terminates if

each step decreases the size of a node.

Lemma size_termination {X : Type} (r : rel X) (f : X −> nat) :

(forall x y, r x y −> f x > f y) −> terminating r.

2011–12–21 19:30

Exercise 9.5 The lexical product of two relations is defined as follows.

Definition lex {X Y : Type} (r : rel X) (s : rel Y) : rel (X ∗ Y) :=

fun p q => let (x,y) := p in let (x’,y’) := q in

r x x’ \/ x=x’ /\ s y y’.

a) Prove that the lexical product of two terminating relations is terminating.

Lemma lex_terminates {X Y : Type} (r : rel X) (s : rel Y) x y :

terminates r x −> terminating s −> terminates (lex r s) (x,y).

b) Find an example that shows that the lemma is unprovable if the termination

of s is only required for y .

Exercise 9.6 Consider the following type of infinitely branching trees and

subtree relation.

Inductive tree : Type :=

| treeL : tree

| treeN : (nat −> tree) −> tree.

Definition subtree : rel tree :=

fun s t => match s with

| treeL => False

| treeN f => exists n, f n = t

end.

a) Prove subtree terminates.

b) Prove treeL is normal.

c) Prove treeL is the normal form of any tree.

d) Prove subtree is confluent.

e) Prove subtree does not have the diamond property.

Exercise 9.7 We consider arithmetic expressions

e ::= O | Se | e+ e

a) Define an abstract syntax as an inductive type exp.

b) Define a semantics eval : exp → nat.

c) Define an inductive predicate step : rel exp representing the rewrite rules

0+ e → e

Se1 + e2 → S(e1 + e2)

d) Prove that step is sound.

2011–12–21 19:30

e) Define a size function for exp.

f) Prove that step is terminating.

g) Give an inductive definition red : exp− > Prop characterizing reducible ex-

pressions.

h) Prove red agrees with reducible step.

i) Give an inductive definition norm : exp− > Prop characterizing normal ex-

pressions.

j) Prove exhaustiveness of red and norm. (That is, every expression satisfies red

or norm.)

k) Prove disjointness of red and norm. (That is, no expression satisfies both red

and norm.)

l) Prove norm agrees with normal step.

m) Prove that reducible step is decidable.

n) Prove that step is complete.

o) Prove that step is normalizing.

p) Prove that step is confluent.

q) Prove that two expressions are convertible (by step) if and only if they eva-

luation to the same natural number.

r) Challenge: Define a function nf:exp −> exp that computes the normal form

of an expression and prove it correct.

Exercise 9.8 Give the invariants for the following verification problems.

a) {P}while true do skip {Q}

b) {X ≤ 3}whileX ≤ 2 do incX {X = 3}

c) {X = x ∧ Z = z}whileX 6= 0 do decZ ; decX {Z = z − x}

d) {X = x}Y := 0; whileX 6= 0 do incY ; decX {Y = x}

e) {X = x}Y := 0; whileX 6= 0 doY := 1− Y ; decX {Y = 0 ↔ evenx}

Exercise 9.9 Prove the following in Coq.

a) ∀PQ.HoareP (while true do skip)Q

b) ∀PQ.hoareP (while true do skip)Q

2011–12–21 19:30

