

Assignment 10 Semantics, WS 2011-2012

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-saarland.de/courses/cl-ss11/

Read in Software Foundations: Types and Stlc

Exercise 10.1 Study the Coq development of Hoare logic that is available through the *resources* page. Do all exercises given in this development.

Exercise 10.2 Wednesday's lecture introduced the programming language PCF. The Coq file for this assignment defines the syntax of PCF (types *ty*, *var*, and *tm*). Do the following.

- a) Write a term t:tm representing a function that adds two numbers.
- b) Define an inductive predicate *free*: $var \rightarrow tm \rightarrow Prop$ such that *free* x t is provable iff x is free in t.
- c) Define a function $freeb: var \rightarrow tm \rightarrow bool$ that checks whether a variable is free in a term.
- d) Define a function $subst: tm \rightarrow var \rightarrow tm \rightarrow tm$ such that $subst t \times s$ yields the term that is obtained from t by replacing every free occurrence of x with s. Capture of free variables in s through local variables in t is fine.
- e) Define predicates $nvalue: tm \rightarrow Prop$ and $value: tm \rightarrow Prop$ saying which terms are numeric values and values.
- f) Define the small-step semantics of PCF with an inductive predicate $step: tm \rightarrow tm \rightarrow Prop$.
- g) Define the big-step semantics of PCF with an inductive predicate $sem: tm \rightarrow tm \rightarrow Prop$.
- h) Prove forall t t', sem $t t' \rightarrow value t'$.