
U
N I

V E R S IT A
S

S
A

R A V I E N

S I
S

Semantics, WS 2011-2012:

Solution for Assignment 2

Prof. Dr. Gert Smolka, Dr. Chad Brown

Note: The test for this assignment will be given in the first 15 minutes of the

lecture on Wednesday (since Tuesday is a holiday).

Use Coq’s predefined types and functions for booleans, naturals, pairs, lists

and options. Predefined objects can be inspected with the command Print. Prede-

fined notation can be inspected with the command Locate. Here are two examp-

les:

Locate "∗".

Print prod.

Exercise 2.1 Define a function that swaps the components of pairs and prove

swap(swap p) = p for all pairs p.

Solution to Exercise 2.1

Definition swap {X Y : Type} (p : prod X Y) : prod Y X :=

match p with (x,y) => (y,x) end.

Goal forall (X Y : Type) (p : X ∗ Y), swap (swap p) = p.

intros X Y p. destruct p. simpl. reflexivity. Qed.

Exercise 2.2 Prove x ∗ y = iter x (plus y) O for all numbers x and y .

Solution to Exercise 2.2

Goal forall m n : nat, m∗n = iter m (plus n) 0.

intros m n. induction m ; simpl. reflexivity.

rewrite IHm. reflexivity. Qed.

Exercise 2.3 Define an exponentiation function power and prove

power x n = iter n (mult x) (S O) for all x,n : nat.

Solution to Exercise 2.3

Fixpoint power (x n : nat) : nat :=

match n with

| O => 1

2011–10–31 15:50



| S n’ => x ∗ power x n’

end.

Goal forall x n : nat,

power x n = iter n (mult x) 1.

intros x n. induction n ; simpl. reflexivity.

rewrite IHn. reflexivity. Qed.

Exercise 2.4 Prove the following lemmas.

Lemma app_asso (X : Type) (xs ys zs : list X) :

app (app xs ys) zs = app xs (app ys zs).

Lemma length_app (X : Type) (xs ys : list X) :

length (app xs ys) = (length xs) + (length ys).

Lemma rev_app (X : Type) (xs ys : list X) :

rev (app xs ys) = app (rev ys) (rev xs).

Lemma rev_rev (X : Type) (xs : list X) :

rev (rev xs) = xs.

Solution to Exercise 2.4

Lemma app_asso (X : Type) (xs ys zs : list X) :

app (app xs ys) zs = app xs (app ys zs).

Proof.

induction xs ; simpl. reflexivity. rewrite IHxs. reflexivity.

Qed.

Lemma length_app (X : Type) (xs ys : list X) :

length (app xs ys) = (length xs) + (length ys).

Proof.

induction xs ; simpl. reflexivity. rewrite IHxs. reflexivity.

Qed.

Lemma rev_app (X : Type) (xs ys : list X) :

rev (app xs ys) = app (rev ys) (rev xs).

Proof.

induction xs ; simpl. rewrite app_nil. reflexivity.

rewrite <− app_asso. rewrite IHxs. reflexivity.

Qed.

Lemma rev_rev (X : Type) (xs : list X) :

rev (rev xs) = xs.

Proof.

induction xs ; simpl. reflexivity. rewrite rev_app.

2011–10–31 15:50



simpl. rewrite IHxs. reflexivity.

Qed.

Exercise 2.5 Here is a tail-recursive function that obtains the length of a list with

an accumulator argument.

Fixpoint lengthi {X : Type} (xs : list X) (a : nat) :=

match xs with

| nil => a

| cons _ xr => lengthi xr (S a)

end.

Proof the following lemmas.

Lemma lengthi_length {X : Type} (xs : list X) (a : nat) :

lengthi xs a = (length xs) + a.

Lemma length_lengthi {X : Type} (xs : list X) :

length xs = lengthi xs O.

Solution to Exercise 2.5

Lemma lengthi_length {X : Type} (xs : list X) (a : nat) :

lengthi xs a = (length xs) + a.

Proof.

revert a. induction xs ; intros a’ ; simpl. reflexivity.

rewrite IHxs. rewrite add_S. reflexivity.

Qed.

Lemma length_lengthi {X : Type} (xs : list X) :

length xs = lengthi xs O.

Proof.

rewrite lengthi_length. rewrite add_O. reflexivity.

Qed.

Exercise 2.6 Define a predecessor function nat → option nat.

Solution to Exercise 2.6

Definition pred (n : nat) : option nat :=

match n with

| O => None

| S n’ => Some n’

end.

2011–10–31 15:50



Exercise 2.7 One can define a bijection between bool and fin2. Show this fact by

completing the definitions and proving the lemmas shown below.

Definition f (x : bool) : fin 2 :=

Definition g (x : fin 2) : bool :=

Goal forall b : bool, g (f b) = b.

Goal forall x : fin 2, f (g x) = x.

Solution to Exercise 2.7

Definition f (b : bool) : fin 2 := if b then Some None else None.

Definition g (f : fin 2) : bool := match f with None => false | _ => true end.

Goal forall b, g (f b) = b.

destruct b ; reflexivity . Qed.

Goal forall x, f (g x) = x.

destruct x ; simpl. destruct i.

destruct v. reflexivity . reflexivity . Qed.

Exercise 2.8 Prove

Goal forall X:Type, forall x y z:X, x = y −> y = z −> x = z.

Solution to Exercise 2.8

Goal forall X:Type, forall x y z:X, x = y −> y = z −> x = z.

intros X x y z A B. rewrite A. rewrite B. reflexivity .

Qed.

2011–10–31 15:50


