

Semantics, WS 2011-2012: Solution for Assignment 8

Prof. Dr. Gert Smolka, Dr. Chad Brown

Exercise 8.1 For sequential Imp, the small-step semantics agrees with the bigstep semantics. The file *agreement.v* contains all necessary definitions and lemmas for the agreement proof with some of the proofs deleted. Fill in the missing proofs.

Solution to Exercise 8.1 See the Coq file.

Exercise 8.2 Prove the following goals.

- a) Goal forall r, reflexive $r \rightarrow \infty$ exists x, normal r x.
- b) Goal forall r s, functional r -> functional s -> functional (comp r s).
- c) Do not use *firstorder* or *eauto*.

```
Goal forall r s, reflexive r -> reflexive s -> reflexive (comp r s).
```

d) Do not use firstorder.

```
Lemma transitive_rap r s :
rap r s -> transitive s -> rap (comp r s) s.
```

e) Do not use *firstorder*. Hint: Use *hnf* as a convenient means for top-level unfolding.

```
Lemma reflexive_rap r s :
rap r s -> reflexive s -> rap r (comp r s).
```

Solution to Exercise 8.2 See the Coq file.

Exercise 8.3 Prove the following goals.

- a) Lemma star_expansive r : rap r (star r).
- b) **Lemma** normal_form_functional (r : rel) : functional r -> functional (normal_form r).
- C) Lemma star_least r s :
 reflexive s -> transitive s -> rap r s -> rap (star r) s.

```
d) Lemma star_idempotent r :
req (star (star r)) (star r).
```

Solution to Exercise 8.3 See the Coq file.

Exercise 8.4 Prove the lemma used to prove that the diamond property implies confluence.

```
Lemma diamond_confluence' (r : rel) x y z : diamond r \rightarrow r x y \rightarrow star r x z \rightarrow joinable (star r) y z.
```

Solution to Exercise 8.4 See the Coq file.

Exercise 8.5 Prove the following goals.

```
Lemma joinable_sym (r : rel) x y :
joinable r x y -> joinable r y x.

Lemma joinable_1 (r : rel) x y z :
r x y -> joinable (star r) y z -> joinable (star r) x z.

Lemma joinable_star (r : rel) x y z :
star r x y -> joinable (star r) y z -> joinable (star r) x z.
```

Solution to Exercise 8.5 See the Coq file.

Exercise 8.6 A relation r is **locally confluent** if y and z are joinable by r^* whenever rxy and rxz. In Coq, the definition is given as follows.

```
Definition locally_confluent (r : rel) : Prop := forall x y z, r x y -> r x z -> joinable (star r) y z.
```

Give an example of a relation (on a finite X) that is locally confluent, but not confluent.

Solution to Exercise 8.6 $0 \leftarrow 1 \leftrightarrow 2 \rightarrow 3$