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1 Types, Functions, and Equations

In this chapter we take a first look at Coq and its mathematical programming lan-

guage. We define types and functions for basic data structures like booleans and

natural numbers. Based on these definitions, we formulate equational theorems

and construct their proofs in interaction with the Coq interpreter.

1.1 Booleans

We start with the boolean values false and true and the boolean operations nega-

tion and conjunction. We first define these objects in ordinary mathematical

language. To start with, we fix two different values false and true and define the

set bool := {false, true}. Next we define the operations negation and conjunction

by stating their types and defining equations.

¬ : bool → bool ∧ : bool → bool → bool

¬false = true false∧ y = false

¬true = false true∧ y = y

In general, there is more than one possibility to choose the defining equations of

an operation. We require that for every application of an operation exactly one of

the defining equations applies from left to right. For instance, given true∧ false,

the second defining equation of ∧ applies and yields true∧ false = false.

Our presentation of the booleans translates into three definitions in Coq.

Inductive bool : Type :=

| false : bool

| true : bool.

Definition negb (x : bool) : bool :=

match x with

| false => true

| true => false

end.

Definition andb (x y : bool) : bool :=

match x with

| false => false

| true => y

end.
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1 Types, Functions, and Equations

The first definition (starting with the keyword Inductive) defines a type bool that

has two members false and true. The remaining two definitions (starting with

the keyword Definition) define two functions negb and andb representing the

operations negation and conjunction. The defining equations of the operations

are expressed with so-called matches. Altogether, the definitions introduce 5

identifiers, each equipped with a unique type:

bool : Type

false : bool

true : bool

negb : bool → bool

andb : bool → bool → bool

It is time that you start a Coq interpreter. Enter the 3 definitions one after the

other. Each time Coq checks the well-formedness of the definition. Once Coq

has accepted the definitions, you can explore the defined objects by entering

commands that check and evaluate terms (i.e., expressions).

Check negb true.

% negb true : bool

Compute negb true.

% false : bool

Compute negb (negb true).

% true : bool

Compute andb (negb false) true.

% true : bool

Note that functions are applied without writing parentheses and that multiple

arguments are not separated by commas. Functions that take more than one

argument can also be applied to a single argument.

Check andb (negb false).

% andb(negb false) : bool → bool

Compute andb (negb false).

% fun y : bool ⇒ y : bool → bool

The term fun y : bool ⇒ y decribes a function bool → bool that returns its argu-

ment. Terms that start with the keyword fun are called abstractions and can be

used freely in Coq.

Compute (fun x : bool => andb x x) true

% true : bool

2 2012/2/5



1.2 Proof by Case Analysis and Simplification

1.2 Proof by Case Analysis and Simplification

From our definitions it seems clear that the equation ¬¬x = x holds for all

booleans x. To verify this claim, we perform a case analysis on x.

1. x = false. We have to show ¬¬false = false. This follows with the defining

equations of negation: ¬¬false = ¬true = false.

2. x = true.We have to show ¬¬true = true. This follows with the defining

equations of negation: ¬¬true = ¬false = true.

To carry out the proof with Coq, we state the claim as a lemma.

Lemma negb_negb (x : bool) :

negb (negb x) = x.

The identifier negb_negb serves as the name of the lemma. Once you enter the

lemma, Coq switches to proof mode and you see the initial proof goal. Here is a

proof script that constructs the proof of the lemma.

Proof. destruct x. simpl. reflexivity. simpl. reflexivity. Qed.

At this point, it is crucial that you step through the proof script with Coq. The

script begins with the command Proof and ends with the command Qed. The

commands between Proof und Qed are called tactics. The tactic destruct x does

the case analysis and replaces the initial goal with two subgoals, one for x = false

and one for x = true. Once you have entered destruct x, you will see the first

subgoal on the screen. The tactic simpl simplifies the equation we have to prove

by applying the definition of negb. For the first subgoal, we are now left with the

trivial equality false = false, which is established with the tactic reflexivity . The

second subgoal is established analogously.

It is important that you step back and forth in the proof script with the Coq

and observe what happens. This way you can see how the proof advances. At

each point in the proof you are confronted with a proof goal, which consists of

some assumptions (possibly none) and a claim. Here is the sequence of proof

goals you will see when you step through the proof script.

x : bool

negb (negb x) = x negb (negb false) = false false = false

negb (negb true) = true true = true

In each goal, the assumptions appear above and the claim appears below the

rule. We can shorten the proof script by combining the tactics destruct x and

simpl with the semicolon operator.

Proof. destruct x ; simpl. reflexivity. reflexivity . Qed.
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1 Types, Functions, and Equations

The semicolon operator applies simpl to each of the two subgoals generated by

destruct x. Given the symmetry of the two subgoals, we can shorten the proof

script further.

Proof. destruct x ; simpl ; reflexivity. Qed.

Since the tactic reflexivity first simplifies the equation it is applied to, we can

shorten the proof script even further.

Proof. destruct x ; reflexivity. Qed.

The short proof script has the drawback that you don’t see much when you step

through it. For that reason we will often give proof scripts that are longer than

necessary.

A word on terminology. In mathematics, theorems are usually classified into

propositions, lemmas, theorems, and corollaries. This distinction is a matter of

style and does not matter logically. When we state a theorem in Coq, we will

mostly use the keyword Lemma. Coq also accepts the keywords Proposition,

Theorem, and Corollary, which are treated as synonyms.

Exercise 1.2.1 (Commutativity of conjunction) Prove x ∧y = y ∧ x in Coq.

Exercise 1.2.2 (Disjunction) A boolean disjunction x∨y yields false if and only

if both x and y are false.

a) Define disjunction as a function orb : bool → bool → bool in Coq.

b) Prove the de Morgan law ¬(x ∨y) = ¬x ∧¬y in Coq.

1.3 Natural Numbers and Structural Recursion

Dedekind and Peano discovered that the natural numbers can be obtained with

two constructors O and S. The idea is best expressed with the definition of a type

nat in Coq.

Inductive nat : Type :=

| O : nat

| S : nat −> nat.

The constructor O represents the number 0, and the constructor S yields the

successor of a natural number (i.e., Sn = n + 1). Expressed with O and S, the

natural numbers 0, 1, 2, 3, . . . look as follows:

O, S O, S(S O), S(S(S O)), . . .

We say that the elements of nat are obtained by iterating the successor function S

on the initial number O. This is a form of recursion. The recursion makes it

possible to obtain infinitely many values from finitely many constructors.

Here is a function that yields the predecessor of a positive number.
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1.3 Natural Numbers and Structural Recursion

Definition pred (x : nat) : nat :=

match x with

| O => O

| S x’ => x’

end.

Compute pred (S(S O)).

% S O : nat

Given the constructor represention of the natural numbers, we can define the

operations addition and multiplication:

+ : nat → nat → nat · : nat → nat → nat

0+y = y 0 ·y = O

Sx +y = S(x +y) Sx ·y = x ·y +y

The defining equations become clear if one thinks of Sx as x + 1. Here is a

computation that applies the defining equations for +:

S(S(SO))+y = S(S(SO)+y) = S(S(SO +y)) = S(S(Sy))

One says that the operations + and · are defined by structural recursion over the

first argument. The recursion comes from the second defining equation where

the operation to be defined also appears on the right. Since each recursion step

strips off a constructor S, the recursion must terminate. The mathematical defi-

nitions of addition and multiplication carry over to Coq:

Fixpoint plus (x y : nat) : nat :=

match x with

| O => y

| S x’ => S (plus x’ y)

end.

Fixpoint mult (x y : nat) : nat :=

match x with

| O => O

| S x’ => plus (mult x’ y) y

end.

We use the keyword Fixpoint in place of the keyword Definition to enable recur-

sion. Coq permits only structural recusion. This way Coq makes sure that the

evaluation of recursive functions always terminates. Structural recursion always

happens on an argument taken from an inductive type (a type defined with the

keyword Inductive). Each recursion step in the definition of a recursive function

must take off at least one constructor.

Here is the definition of a comparison function leb : nat → nat → bool that

tests whether its first argument is less or equal than its second argument.
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1 Types, Functions, and Equations

Fixpoint leb (x y: nat) : bool :=

match x with

| O => true

| S x’ => match y with

| O => false

| S y’ => leb x’ y’

end

end.

A shorter, more readable definition of leb looks as follows:

Fixpoint leb (x y: nat) : bool :=

match x, y with

| O, _ => true

| _, O => false

| S x’, S y’ => leb x’ y’

end.

Coq translates the short form automatically into the long form. One says that

the short form is syntactic sugar for the long form. The underline character used

in the short form serves as wildcard pattern that matches everything. The order

of the rules in sugared matches is significant. Without the order sensitivity the

second rule in the sugared match would be incorrect.

You cannot define the same identifier twice in a Coq session. Thus you can

enter either the long or the short definition of leb, but not both. If you want

to have both definitions, choose a different name for the second definition you

enter.

Exercise 1.3.1 Define functions as follows.

a) A function power : nat → nat → nat that yields xn for x and n.

b) A function fac : nat → nat that yields n! for n.

c) A function evenb : nat → bool that tests whether its argument is even.

d) A function mod3 : nat → nat that yields the remainder of x on division by 3.

e) A function minus : nat → nat → nat that yields x −y for x ≥ y .

f) A function gtb : nat → nat → bool that tests x > y .

g) A function eqb : nat → nat → bool that tests x = y . Do not use leb or gtb.

1.4 Proof by Structural Induction and Rewriting

Consider the proof goal

x : nat

px
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1.4 Proof by Structural Induction and Rewriting

where px is a claim that depends on x. By structural induction on x we can

reduce the goal to two subgoals.

pO

x : nat
IHx : px

p(Sx)

This reduction is like a case analysis on the structure of x, but has the added

feature that the second subgoal comes with an extra assumption IHx known as

inductive hypothesis. We think of IHx as a proof of px. If we can prove both

subgoals, we have established the initial claim px for all x : nat. This can be

seen as follows.

1. The first subgoal gives us a proof of pO.

2. The second subgoal gives us a proof of p(SO) from the proof of pO.

3. The second subgoal gives us a proof of p(S(SO)) from the proof of p(SO).

4. After finitely many steps we arrive at a proof of px.

This reasoning is valid since the proof of the second subgoal is a function that

given an x and a proof of px yields a proof of p(Sx). Here is our first inductive

proof in Coq.

Lemma plus_O (x : nat) : plus x O = x.

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

If you step through the proof script with Coq, you will see the following proof

goals.

x : nat

plus x O = x O = O

x : nat
IHx : plus x O = x

S(plus x O) = Sx

x : nat
IHx : plus x O = x

Sx = Sx

induction x ; simpl reflexivity rewrite IHx reflexivity

Of particular interest is the application of the inductive hypothesis with the tactic

rewrite IHx. The tactic rewrites a subterm of the claim with the equation IHx.

Doing inductive proofs with Coq is fun since Coq takes care of the bureau-

cratic aspects of such proofs. Here is our next example.

Lemma plus_S (x y : nat) : plus x (S y) = S (plus x y).

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

Note that the proof scripts for the lemmas plus_S and plus_O are identical. When

you run the script for each of the two lemmas, you see that they generate differ-

ent proofs.
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1 Types, Functions, and Equations

Note that the lemmas plus_O and plus_S provide the symmetric versions of

the defining equations of plus. Using the lemmas, we can prove that addition is

commutative.

Lemma plus_com (x y : nat) : plus x y = plus y x.

Proof. induction x ; simpl.

rewrite plus_O. reflexivity.

rewrite plus_S. rewrite IHx. reflexivity. Qed.

Note that the lemmas are applied with the rewrite tactic. Given that the definition

of plus is not symmetric, the commutativity of plus is an interesting result. Next

we prove that addition is associative.

Lemma plus_asso (x y z: nat) : plus (plus x y) z = plus x (plus y z).

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

Rewriting with plus_com can be tricky since the lemma applies to every sum.

This can be resolved by instantiating the lemma. Here is an example.

Lemma plus_AC (x y z : nat) :

plus y (plus x z) = plus (plus z y) x.

Proof. rewrite (plus_com z). rewrite (plus_com x). rewrite plus_asso. reflexivity. Qed.

Note that the instantiated lemma plus_com z can only rewrite terms of the form

plus z _. Here is a more involved example using the tactic f_equal and (partially)

instantiated lemmas.

Lemma plus_AC’ (x y z : nat) :

plus (plus (mult x y) (mult x z)) (plus y z) =

plus (plus (mult x y) y) (plus (mult x z) z).

Proof. rewrite plus_asso. rewrite plus_asso. f_equal.

rewrite (plus_com _ (plus _ _)). rewrite plus_asso. f_equal.

rewrite plus_com. reflexivity. Qed.

Run the proof script to see the effects of the tactics. The tactic f_equal reduces a

claim st = su to t = u. The first rewrite with plus_com requires that the second

argument of plus is of the form plus _ _.

Exercise 1.4.1 Prove Lemma plus_com by induction on y .

Exercise 1.4.2 Prove the following lemmas.

Lemma mult_O (x : nat) : mult x O = O.

Lemma mult_S (x y : nat) : mult x (S y) = plus (mult x y) x.

Lemma mult_com (x y : nat) : mult x y = mult y x.

Lemma mult_dist (x y z: nat) : mult (plus x y) z = plus (mult x z) (mult y z).
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1.5 Pairs

Lemma mult_asso (x y z: nat) : mult (mult x y) z = mult x (mult y z).

Exercise 1.4.3 Often a claim must be generalized before it can be proven by

induction. For instance, it seems impossible to prove plus (plus x x) x =

plus x(plus x x) without using lemmas. However, a more general claim ex-

pressing the associativity of addition with three variables has a straightforward

inductive proof (see lemma plus_asso).

1.5 Pairs

Given two values x and y , we can form the ordered pair (x,y). Given two

types X and Y , there is a product type X × Y that contains all pairs whose first

component is in X and whose second component is in Y . This leads to the

following Coq definition:

Inductive prod (X Y : Type) : Type :=

| pair : X −> Y −> prod X Y.

The function prod : Type → Type → Type yields for two types X and Y the prod-

uct type X × Y . The constructor pair is a function that takes two types X and

Y and two values x : X and y : Y and yields the pair (x,y). To obtain the pair

(O, true), we write pair nat bool O true. Here is a series of typings helping you

to understand what is going on.

prod : Type → Type → Type

pair : forall X Y : Type, X → Y → prod X Y

pair nat : forall Y : Type, nat → Y → prod nat Y

pair nat bool : nat → bool → prod nat bool

pair nat bool O : bool → prod nat bool

pair nat bool O true : prod nat bool

As is, we have to write the term pair nat bool O true for the pair (O, true). This

can be shortened by writing the underline character for the type arguments of

pair .

Check pair _ _ O true.

% pair nat bool O true : prod nat bool

The underline character leaves it to Coq to derive the type arguments of pair

from the component arguments of pair . We can go one step further and declare

the type arguments X and Y of pair as implicit. This way Coq always derives the

type arguments of pair and we don’t have to write the underlines.
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1 Types, Functions, and Equations

Implicit Arguments pair [X Y].

Check pair O true.

% pair O true : prod nat bool

Sometimes it is necessary to suppress the type inference for implicit arguments.

The implicit arguments of an identifier can be made explicit by writing @ in front

of the identifier.

Check @pair nat.

% @pair nat : forall Y : Type, nat → Y → prod nat Y

Check @pair _ bool O.

% @pair nat bool O : bool → prod nat bool

Here are functions that yield the first and the second component of a pair.

Definition fst {X Y : Type} (p : prod X Y) : X :=

match p with pair x _ => x end.

Definition snd {X Y : Type} (p : prod X Y) : Y :=

match p with pair _ y => y end.

The curly braces around the type arguments declare X and Y as implicit argu-

ments.

Compute fst (pair O true).

% O : nat

Compute snd (pair O true).

% true : bool

We prove the so-called eta law for pairs.

Lemma pair_eta (X Y : Type) (p : prod X Y) :

pair ( fst p) (snd p) = p.

Proof. destruct p. reflexivity. Qed.

Here is a function that swaps the components of a pair:

Definition swap {X Y : Type} (p : prod X Y) : prod Y X := pair (snd p) (fst p).

Compute swap (pair O true).

% pair true nat : prod bool nat

Exercise 1.5.1 Prove swap(swap p) = p for all pairs p. Note that the tactic simpl

fails to simplify the goal obtained with destruct. Use the tactic cbv instead.

Exercise 1.5.2 An operation taking two arguments can be represented either as

a function taking its arguments one by one (cascaded representation) or as a

function taking both arguments bundled in one pair (cartesian representation).
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1.6 Iteration

While the cascaded representation is natural in Coq, the cartesian representation

is commonly used in mathematics. Define functions

car : forall X Y Z : Type, (X → Y → Z)→ (prod X Y → Z)

cas : forall X Y Z : Type, (prod X Y → Z)→ (X → Y → Z)

that translate between the cascaded and cartesian representation and prove the

following lemmas.

Lemma car_P (X Y Z :Type) (f : X −> Y −> Z) (x :X) (y :Y) : car f (pair x y) = f x y.

Lemma cas_P (X Y Z :Type) (f : prod X Y −> Z) (x :X) (y :Y) : cas f x y = f (pair x y).

The type arguments of car and cas are assumed to be implicit.

1.6 Iteration

We now define a function iter that takes a natural number n, a type X, a function

f : X → X, and a value x : X, and yields the value obtained by applying the

function f n-times to x. The defining equations for iter are as follows (type

argument suppressed):

iter 0 f x = x

iter (Sn) f x = f (iter n f x)

The Coq definition is now straightforward:

Fixpoint iter (n : nat) {X : Type} (f : X −> X) (x : X) : X :=

match n with

| O => x

| S n’ => f ( iter n’ f x)

end.

With iter we can give non-recursive definitions of addition and multiplication.

Definition plusi (x y : nat) : nat := iter x S y.

Definition multi (x y : nat) : nat := iter x (plusi y) O.

The function plusi obtains x+y by x-times iterating S on y . The function multi

obtains x ·y by x-times iterating +y on 0.

Lemma iter_plus (x y : nat) :

plus x y = iter x S y.

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

We can see iter n as a functional representation of the number n that carries with

it the structural recursion coming with n. The following definitions implement

this idea.
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1 Types, Functions, and Equations

Definition Nat := forall X : Type, (X −> X) −> X −> X.

Definition encode : nat −> Nat := iter.

Definition decode : Nat −> nat := fun f => f nat S O.

Compute decode (encode (S (S O))).

% S(S O) : nat

Lemma iter_coding (x : nat) :

decode (encode x) = x.

Proof. unfold encode. unfold decode. induction x ; simpl.

reflexivity . rewrite IHx. reflexivity. Qed.

The proof uses the unfold tactic to simplify the applications of encode and decode

since simpl only simplifies functions that involve a match.

A higher-order function is a function that takes a function as argument. The

function iter is our first example of a higher-order function. It formulates a

recursion scheme known as iteration or primitive recursion.

Exercise 1.6.1 Prove mult x y = iter x (plus y) O for all numbers x and y .

Exercise 1.6.2 Define a function power recursively (see Exercise 1.3.1) and prove

power x n = iter n (mult x) (S O) for all x,n : nat.

Exercise 1.6.3 Prove the following lemma.

Lemma iter_move (X : Type) (f : X −> X) (x : X) (n : nat) :

iter (S n) f x = iter n f (f x).

Exercise 1.6.4 (Subtraction with Iteration) Prove the following lemmas about a

subtraction function defined with iter .

Definition minus (x y : nat) : nat := iter y pred x.

Lemma minus_O (y : nat) : minus O y = O.

Lemma minus_O’ (x : nat) : minus x O = x.

Lemma minus_SS (x y : nat) : minus (S x) (S y) = minus x y.

Lemma minus_SP (x y : nat) : minus x (S y) = pred (minus x y).

Lemma minus_SP’ (x y : nat) : minus x (S y) = minus (pred x) y.

Lemma minus_PS (x y : nat) : minus x y = pred (minus (S x) y).

Hint: Do unfold minus as first step in your proofs.
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1.7 Factorials with Iteration

1.7 Factorials with Iteration

We define the factorial n! of a natural number n by a recursive function:

Fixpoint fac (n : nat) : nat :=

match n with

| O => S O

| S n’ => mult n (fac n’)

end.

We can compute factorials with iter if we iterate on pairs:

(0,0!)→ (1,1!)→ (2,2!)→ ·· · → (n,n!)

We realize the idea with two definitions.

Definition step (p : prod nat nat) : prod nat nat :=

match p with pair n f => pair (S n) (mult (S n) f) end.

Definition ifac (n : nat) : nat := snd (iter n step (pair O (S O))).

To verify the correctness of the iterative computation of factorials, we would like

to prove ifac n = fac n for n : nat. An attempt to prove the claim directly fails

miserably. The problem is that we need to account for both components of the

pairs computed by iter . To do so, we prove the following lemma.

Lemma iter_fac (n : nat) :

pair n (fac n) = iter n step (pair O (S O)).

Proof.

induction n. reflexivity.

simpl iter. rewrite <− IHn. unfold step. reflexivity.

Qed.

To avoid large and unreadable terms, the proof simplifies only the application

of iter . The tactic unfold step can be omitted; it is included to help your under-

standing when you step through the proof.

It is now straightforward to prove that ifac and fac agree on all arguments.

Exercise 1.7.1 Prove the following lemmas.

Lemma ifac_fac (n : nat) : ifac n = fac n.

Lemma ifac_step (n : nat) : step (pair n (fac n)) = pair (S n) (fac (S n)).

1.8 Lists

Lists represent finite sequences [x1, . . . , xn] with two constructors nil and cons.
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Inductive list (X : Type) : Type :=

| nil : list X

| cons : X −> list X −> list X.

All elements of a list must be taken from the same type.

Implicit Arguments nil [X].

Implicit Arguments cons [X].

The constructor nil represents the empty sequence, and the constructor cons

represents nonempty sequences.

[] ֏ nil

[x] ֏ cons x nil

[x,y] ֏ cons x (cons y nil)

[x,y, z] ֏ cons x (cons y (cons z nil))

Here are functions defining the length, the concatenation, and the reversal of

lists.

Fixpoint length {X : Type} (xs : list X) : nat :=

match xs with

| nil => O

| cons _ xr => S (length xr)

end.

Fixpoint app {X : Type} (xs ys : list X) : list X :=

match xs with

| nil => ys

| cons x xr => cons x (app xr ys)

end.

Fixpoint rev {X : Type} (xs : list X) : list X :=

match xs with

| nil => nil

| cons x xr => app (rev xr) (cons x nil)

end.

Using informal notation for lists, we have the following.

length [x1, . . . , xn] = n

app [x1, . . . , xm] [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn]

rev [x1, . . . , xn] = [xn, . . . , x1]

Properties of the list operations can be shown by structural induction on lists,

which has much in common with structural induction on numbers.

Lemma app_nil (X : Type) (xs : list X) : app xs nil = xs.
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Proof. induction xs ; simpl. reflexivity. rewrite IHxs. reflexivity. Qed.

Exercise 1.8.1 Prove the following lemmas.

Lemma app_asso (X : Type) (xs ys zs : list X) :

app (app xs ys) zs = app xs (app ys zs).

Lemma length_app (X : Type) (xs ys : list X) :

length (app xs ys) = plus (length xs) (length ys).

Lemma rev_app (X : Type) (xs ys : list X) :

rev (app xs ys) = app (rev ys) (rev xs).

Lemma rev_rev (X : Type) (xs : list X) :

rev (rev xs) = xs.

1.9 Linear List Reversal

We will now see inductive proofs where the inductive hypothesis carries a univer-

sal quantification. Such proofs are needed for the verification of the correctness

of tail-recursive procedures for list reversal and list length. The proofs will em-

ploy the tactics revert and intros.

If you are familiar with functional programming, you will know that the func-

tion rev takes quadratic time to reverse a list since each recursion step involves

an application of the function app. One can write a tail-recursive function that

reverses lists in linear time. The trick is to accumultate the elements of the main

list in an extra argument.

Fixpoint revi {X : Type} (xs ys : list X) : list X :=

match xs with

| nil => ys

| cons x xr => revi xr (cons x ys)

end.

The following lemma gives us a non-recursive characterization of revi.

Lemma revi_rev {X : Type} (xs ys : list X) :

revi xs ys = app (rev xs) ys.

We prove this lemma by induction on xs. For the induction to go through, the

inductive hypothesis must hold for all ys. To get this property, we move the

universal quantification for ys from the assumptions to the claim before we issue

the induction. We do this with the tactic revert ys.

Proof. revert ys. induction xs ; simpl.

intros ys. reflexivity .

intros ys. rewrite IHxs. rewrite app_asso. reflexivity. Qed.
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Step through the proof script to see how it works. The tactic intros ys moves the

universal quantification for ys from the claim back to the assumptions.

Exercise 1.9.1 Prove the following lemma.

Lemma rev_revi {X : Type} (xs : list X) :

rev xs = revi xs nil.

The lemma tells us how we can reverse lists with revi.

Exercise 1.9.2 Here is a tail-recursive function that obtains the length of a list

with an accumulator argument.

Fixpoint lengthi {X : Type} (xs : list X) (a : nat) :=

match xs with

| nil => a

| cons _ xr => lengthi xr (S a)

end.

Proof the following lemmas.

Lemma lengthi_length {X : Type} (xs : list X) (a : nat) :

lengthi xs a = plus (length xs) a.

Lemma length_lengthi {X : Type} (xs : list X) :

length xs = lengthi xs O.

Exercise 1.9.3 Define a tail-recursive function faci that computes factorials.

Prove fac n = faci n O for n : nat. Hint: First you need a lemma that charac-

terizes faci non-recursively using fac.

1.10 Options and Finite Types

An empty type not having members can be defined as an inductive type with no

constructors.

Inductive void : Type := .

Computationally, void seems useless. Logically, however, void is dynamite. If

we assume that void has a member, we can prove that every equation holds. In

other words, if we assume that void is inhabited, logical reasoning crashes.

Lemma void_vacuous (v : void) (X : Type) (x y : X) : x=y.

Proof. destruct v. Qed.

The proof is by case analysis on the assumed member v of void. To prove a claim

by case analysis on a member of an inductive type, we need to prove the claim for

every constructor of the type. Since void has no constructor, the claim follows
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vacuously.1 Every logical system comes with some form of vacuous reasoning.

Typically, there is some proposition False such that from a proof of False one

can obtain a proof of everything.

Next we consider a type constructor option that adds a new element to a type.

Inductive option (X : Type) : Type :=

| None : option X

| Some : X −> option X.

The constructor None yields the new element (none of the old elements) while

the constructor Some yields the old elements. The elements of an option type

are called options.

Implicit Arguments None [X].

Implicit Arguments Some [X].

Option types can be used to represent partial functions. Here is such a represen-

tation of the subtraction function.

Fixpoint subopt (x y : nat) : option nat :=

match x, y with

| _, O => Some x

| O, _ => None

| S x’, S y’ => subopt x’ y’

end.

If one iterates the type constructor option on void n-times, one obtains a type

with n elements.

Definition fin (n : nat) : Type := iter n option void.

Here are definitions naming the elements of the types fin(S O), fin(S(S O)), and

fin(S(S(S O))).

Definition a11 : fin (S O) := @None (fin O).

Definition a21 : fin (S (S O)) := @None (fin (S O)).

Definition a22 : fin (S (S O)) := Some a11.

Definition a31 : fin (S (S (S O))) := @None (fin (S (S O))).

Definition a32 : fin (S (S (S O))) := Some a21.

Definition a33 : fin (S (S (S O))) := Some a22.

Exercise 1.10.1 Define a predecessor function nat → option nat.

Exercise 1.10.2 Prove the following lemma.

1 From Wikipedia: A vacuous truth is a truth that is devoid of content because it asserts some-

thing about all members of a class that is empty or because it says “If A then B” when in fact A

is inherently false. For example, the statement “all cell phones in the room are turned off” may

be true simply because there are no cell phones in the room. In this case, the statement “all

cell phones in the room are turned on” would also be considered true, and vacuously so.
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Lemma fin_SO (x : fin (S O)) : x = @None void.

Exercise 1.10.3 One can define a bijection between bool and fin(S(S O)). Show

this fact by completing the definitions and proving the lemmas shown below.

Definition tofin (x : bool) : fin (S(S O)) :=

Definition fromfin (x : fin (S(S O))) : bool :=

Lemma bool_fin (x : bool) : fromfin (tofin x) = x.

Lemma fin_bool (x : fin (S(S O))) : tofin (fromfin x) = x.

Exercise 1.10.4 One can define a bijection between nat and option nat. Show

this fact by completing the definitions and proving the lemmas shown below.

Definition tonat (x : option nat) : nat :=

Definition fromnat (x : nat) : option nat :=

Lemma opnat_nat (x : option nat) : fromnat (tonat x) = x.

Lemma nat_opnat (x : nat) : tonat (fromnat x) = x.

1.11 Simplifying Subterms

Simplification can be tricky since full simplification of the claim may produce

large terms that do not have the structure needed for rewriting. In such a case

simplifying only a particular subterm may do the job. Moreover, it is usually a

good idea to avoid nested matches since they do not go well with simplification.

As example, we consider two functions that test whether a number is even.

Fixpoint evenb (x : nat) : bool :=

match x with

| O => true

| S x’ => negb (evenb x’)

end.

Simplification will work well for evenb since there are no nested matches. This

is not the case for the following function containing a nested match (hidden by

syntactic sugar).

Fixpoint evenb’ (x : nat) : bool :=

match x with

| O => true

| S O => false

| S (S x’) => evenb’ x’

end.

Lemma evenb’_negb (n : nat) :

evenb’ (S n) = negb (evenb’ n).
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Proof. induction n. reflexivity.

rewrite IHn. rewrite negb_negb. reflexivity. Qed.

Exercise 1.11.1 Prove the following lemmas.

Lemma evenb_evenb’ (n : nat) : evenb n = evenb’ n.

Lemma evenb_SS (n : nat) : evenb (S (S n)) = evenb n.

Lemma evenb_negb (n : nat) : evenb n = negb (evenb (S n)).

Exercise 1.11.2 Identify the nested match in evenb′.

1.12 Discussion and Remarks

A basic feature of Coq’s language are inductive types. We have introduced in-

ductive types for booleans, natural numbers, pairs, and lists. The elements of

inductive types are obtained with so-called constructors. Inductive types gen-

eralize the constructor representation of the natural numbers employed in the

Peano axioms. Inductive types are also a basic feature of functional program-

ming languagues (e.g., ML, Haskell).

Inductive types are accompanied by structural case analysis, structural recur-

sion, and structural induction. Typical examples of recursive functions are addi-

tion and multiplication of numbers and concatenation and reversal of lists. We

have also seen a higher-order function iter that formulates a recursion scheme

known as iteration.

Coq is designed such that evaluation always terminates. For this reason Coq

restricts recursion to structural recursion on inductive types. Every recursion

step must strip off at least one constructor of a given argument.

Coq’s language is very regular. Both functions and types are first-class values,

and functions can take types and functions as arguments.

Coq provides for the formulation and proof of theorems. So far we have seen

equational theorems. As it comes to proof techniques, we have used simplifi-

cation, case analysis, induction, and rewriting. Proofs are constructed by proof

scripts, which are obtained with commands called tactics. A tactic either re-

solves a trivial proof goal or reduces a proof goal to one or several subgoals.

Proof scripts are constructed in interaction with Coq, where Coq applies the

proof rules and maintains the open subgoals.

Proof scripts are programs that construct proofs. To understand a proof,

one steps with the Coq interpreter through the script constructing the proof and

looks at the proof goals obtained with the tactics. Eventually, we will learn that

Coq represents proofs as terms. You may type the command Print L to see the

term serving as the proof of a lemma L.
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1.13 Tactics Summary

destruct x Do case analysis on x

induction x Do induction on x

rewrite [<-] s Rewrite claim with an equation obtained from s

f_equal Reduce claim st = su to t = u

simpl [x | t] Simplify [applications of x in | subterm t in] claim

unfold x Unfold definition of x in claim

cbv Reduce claim to normal form

intros x Move universal quantification from claim to assumptions

revert x Move universal quantification for x from assumptions to claim

reflexivity Establish the goal by computation and reflexivity of =
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2 Case Study: Compiler Correctness

By now we know enough to prove the correctness of a simple compiler translat-

ing arithmetic expressions into programs for a stack machine.

Our presentation is inspired by the introductory Coq example of

Adam Chlipala’s book Certified Programming with Dependent Types (see

http://adam.chlipala.net/cpdt). Read Chlipala’s presentation for a more de-

tailled presentation.

Abstract Syntax

We consider expressions that are obtained from natural numbers and binary

operations. We consider two binary operators, addition and multiplication. We

define the abstract syntax of expressions as follows.

Inductive binop : Type :=

| Plus : binop

| Times : binop.

Inductive exp : Type :=

| Const : nat −> exp

| Binop : binop −> exp −> exp −> exp.

Evaluation

We fix the semantics of the syntactic objects with two evaluation functions map-

ping operators to functions and expressions to numbers.

Definition evalBinop (b : binop) : nat −> nat −> nat :=

match b with

| Plus => plus

| Times => mult

end.

Fixpoint evalExp (e : exp) : nat :=

match e with

| Const n => n

| Binop b e1 e2 => (evalBinop b) (evalExp e1) (evalExp e2)

end.

We test our definitions with the expression (2+ 3) · 4.
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Definition test : exp := Binop Times (Binop Plus (Const 2) (Const 3)) (Const 4).

Compute evalExp test.

% 20

Stack Machine

Our stack machine has two instructions.

Inductive instr : Type :=

| iConst : nat −> instr

| iBinop : binop −> instr.

An instruction iConst n puts the number n on the stack. An instruction iBinop o

takes two numbers from the stack, applies the operation designated by the op-

erator o, and pushes the result on the stack. We define the semantics of in-

structions with a function runInstr maping an instruction and a stack to a stack

option.1

Definition stack := list nat.

Definition runInstr (i : instr) (s : stack) : option stack :=

match i with

| iConst n => Some (n :: s)

| iBinop b =>

match s with

| arg1 :: arg2 :: s’ => Some ((evalBinop b) arg1 arg2 :: s’)

| _ => None

end

end.

The function runInstr returns None if an operator is applied to a stack that

doesn’t have at least two elements.

A program is a list of instructions.

Definition prog := list instr.

The execution of programs is defined as follows.

1 We assume that the library list has been loaded with the command Require Import List. The

library provides the “::” infix notation for cons and the lemmas app_assoc and app_nil_r we will

use in the following.
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Fixpoint runProg (p : prog) (s : stack) : option stack :=

match p with

| nil => Some s

| i :: p’ =>

match runInstr i s with

| None => None

| Some s’ => runProg p’ s’

end

end.

Compiler

The compiler translates expressions into programs.

Fixpoint compile (e : exp) : prog :=

match e with

| Const n => iConst n :: nil

| Binop b e1 e2 => compile e2 ++ compile e1 ++ iBinop b :: nil

end.

We test the compiler and the stack machine as follows.

Compute compile test.

% iConst 4 :: iConst 3 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil

Compute runProg (compile test) nil.

% Some (20 :: nil)

Correctness

We now prove the correctness of the compiler. We formulate the correctness of

the compiler with an equation for all expressions e and all stacks s.

runProg (compile e) s = Some (evalExp e :: s)

An attempt to prove this equation by induction on e fails since the inductive

hypothesis is not general enough. Thus we prove a more general equation.

Lemma compile_correct’ e p s:

runProg (compile e ++ p) s = runProg p (evalExp e :: s).

Proof. revert p s. induction e ; intros p s.

simpl. reflexivity.

simpl. rewrite <− app_assoc. rewrite IHe2.

rewrite <− app_assoc. rewrite IHe1. simpl. reflexivity. Qed.
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Look carefully at the proof. First we use revert to obtain an inductive hypoth-

esis that quantifies over p and s. The induction introduces subgoals for the

constructors Const and Binop. The goal for Binop b e1 e2 comes with inductive

assumptions for e1 and e2. This is our first example of a binary recursion and a

corresponding binary induction.

Now the proof of the main result is straightforward.

Theorem compile_correct e s :

runProg (compile e) s = Some (evalExp e :: s).

Proof. rewrite <− (app_nil_r (compile e)).

rewrite compile_correct’. simpl. reflexivity. Qed.

Exercise 2.0.1 Extend the above development with an operator for subtraction.

Exercise 2.0.2 Write a decompilation function that recovers an expression from

the program it compiles to and prove the correctness of your function.

Exercise 2.0.3 Write a function optimize : exp → exp that simplifies an expres-

sion with the rules 0 + e → e, 0 · e → 0, and 1 · e → e. Prove the correctness of

your optimizer (i.e., evalExp(optimize e) = optimize e).

Exercise 2.0.4 Extend the expressions with variables. Use the code you have so

far and prefix it with

Section Compilation.

Variable var : Type.

Variable state : var −> nat.

Evaluate variables to the values given by state. Extend the machine with an in-

struction for variables and adapt the compiler and the correctness proof. Ob-

serve that the extension to variables is straightforward. Close the section with

End Compilation.
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3 Propositions and Proofs

In Coq, statements of properties are called propositions. So far we have only seen

propositions that are equations. We now move to more complex propositions

involving implication, universal quantification, and other logical operations.

3.1 Implication and Universal Quantification

Here is a proposition stating that equality is symmetric.

Goal forall (X : Type) (x y : X), x=y −> y=x.

Proof. intros X x y A. rewrite A. reflexivity. Qed

The command Goal is like the command Lemma but leaves it to Coq to choose

a name for the proof to be constructed. The tactic intros strips off the universal

quantification (forall) and the implication (→) by representing the assumptions

made by these operations as assumptions of the goal.

X : Type

x : X

y : X

A : x = y

y = x

The rest of the proof is straightforward since we have the assumption A : x = y ,

which gives us a proof A of the equation x = y . Note that the effect of the intros

tactic can be undone with the revert tactic we have seen before.

Here is a proposition stating the modus ponens law for implication.

Goal forall X Y : Prop, X −> (X −> Y) −> Y.

Proof. intros X Y x A. exact (A x). Qed.

The proof first strips off the universal quantification and the outer implications.1

This brings us to the goal

1 Implication adds missing parentheses to the right, i.e., X → (X → Y) → Y elaborates to X →

((X → Y)→ Y).
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X : Prop

Y : Prop

x : X

A : X → Y

Y

The proof now finishes by applying the proof A of the implication X → Y to the

proof x of X, which yiels a proof of Y (i.e., the claim). This is done with the tactic

exact.

Next we show the transitivity of implication.

Goal forall X Y Z : Prop, (X −> Y) −> (Y −> Z) −> X −> Z.

Proof. intros X Y Z A B x. exact (B (A x)). Qed.

Here is a theorem involving a nested universal quantification and two predi-

cates p and q.

Goal forall p q : nat −> Prop,

p 7 −> (forall x, p x −> q x) −> q 7.

Proof. intros p q A B. exact (B 7 A). Qed.

Think of p and q as two properties of numbers. Technically, p and q are func-

tions that yield propositions. Functions that eventually yield propositions are

called predicates. The proof introduces all internal assumptions and then ap-

plies the proof of the quantification to 7 (for x) and to the assumed proof of p 7.

The tactic apply applies proofs of implications in a backward manner.

Goal forall X Y Z : Prop, (X −> Y) −> (Y −> Z) −> X −> Z.

Proof. intros X Y Z A B x. apply B. apply A. exact x. Qed.

The tactic apply also works for universally quantified implications.

Goal forall p q : nat −> Prop, p 7 −> (forall x, p x −> q x) −> q 7.

Proof. intros p q A B. apply B. exact A. Qed.

Here is a theorem involving a nested quantification over a predicate.

Goal forall (X : Type) (x y : X),

( forall p : X −> Prop, p x −> p y) −> x=y.

Proof. intros X x y A. apply (A (fun z => x=z)). reflexivity. Qed.
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3.2 Falsity and Negation

Run the proof with Coq to understand. The introductions lead to the the goal

X : Type

x : X

y : X

A : ∀p : X → Prop. px → py

x = y

Applying the proof A to the predicate λz.x=z gives us a proof of the implication

x=x → x=y .2 We backward apply this proof to the claim, thus arriving at the

trivial claim x=x, which we solve with reflexivity.

Exercise 3.1.1 Prove that equality is transitive.

Exercise 3.1.2 Prove the following goals.

Goal forall X Y,

( forall Z, (X −> Y −> Z) −> Z) −> X.

Goal forall (X : Type) (x y : X),

x=y −> forall p : X −> Prop, p x −> p y.

Exercise 3.1.3 Prove the following goals. Hint: Use the induction tactic.

Goal forall (p : bool −> Prop) (x : bool),

p true −> p false −> p x.

Goal forall (p : nat −> Prop) (x : nat),

p O −> (forall n, p n −> p (S n)) −> p x.

Goal forall (X : Type) (p : list X −> Prop) (xs : list X),

p nil −> (forall x xs, p xs −> p (cons x xs)) −> p xs.

Exercise 3.1.4 Prove the following goal.

Goal forall x y y’, x + y = x + y’ −> y = y’.

3.2 Falsity and Negation

Coq comes with a proposition False that cannot be proved without assumptions.

Given inconsistent assumptions, a proof of False may however be possible. There

is a basic logic principle called explosion, which says that from a proof of False

one can optain a proof of every proposition. Coq provides the explosion principle

through the tactic contradiction.

2 Note that λz. x=z is mathematical notation for the function that given z yields the equation

x=z. The Coq notation for the function λz. x=z is fun z => x=z (see Section 1.1).
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Goal False −> 2=3.

Proof. intros A. contradiction A. Qed.

The logical notation for False is ⊥. With ⊥ Coq defines negation as ¬s := s → ⊥.

So we can prove ¬s by assuming a proof of s and constructing a proof of ⊥.

Goal forall X : Prop, X −> ~~X.

Proof. intros X x A. exact (A x). Qed.

The proof script works since Coq automatically unfolds negations. The double

negation ¬¬X unfolds into (X → ⊥)→ ⊥. Here is another example.

Goal forall (X : Prop),

(X −> ~X) −> (~X −> X) −> False.

Proof. intros X A B. apply A.

apply B. intros x. exact (A x x).

apply B. intros x. exact (A x x). Qed.

Exercise 3.2.1 Prove the following goals.

Goal forall X : Prop, ~~~X −> ~X.

Goal forall X Y : Prop, (X −> Y) −> ~Y −> ~X.

3.3 Assumption and Auto

Here are two automation tactics.

• assumption Solves every goal whose claim appears as an assumption.

• auto Tries to solve the current goal by applying assumptions with the tactic

apply. It subsumes reflexivity and assumption.

Run the following examples to get an better idea of the tactics. If you want to

know more, consult the Coq documentation.

Goal forall p q : nat −> Prop, p 7 −> (forall x, p x −> q x) −> q 7.

Proof. auto. Qed.

Goal forall (X : Type) (p : list X −> Prop) (xs : list X),

p nil −> (forall x xs, p xs −> p (cons x xs)) −> p xs.

Proof. induction xs ; auto. Qed.
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3.4 Discriminate and Injection

The tactics discriminate and injection provide basic proof rules for inductive

types.

• discriminate t Solves current goal if t is a proof of an equation contradicting

constructor disjointness.

• discriminate Solves current goal if an assumption assumes a proof of an

equation contradicting constructor disjointness.

• injection t Weakens the claim of the current goal by equational premises

that follow by constructor injectivity from the equation proved by t.

Goal 3<>5.

Proof. intros A. discriminate A. Qed.

Goal forall n, S n <> n.

Proof. induction n ; intros A.

discriminate A.

injection A. assumption. Qed.

Exercise 3.4.1 Prove the following goal.

Goal forall x y, andb x y = true −> x = true.

3.5 Conjunction, Disjunction, and Equivalence

The tactics for conjunctions are destruct and split.

Goal forall X Y : Prop, X /\ Y −> Y /\ X.

Proof. intros X Y A. destruct A as [x y]. split. exact y. exact x. Qed.

The tactics for disjunctions are destruct, left, and right.

Goal forall X Y : Prop, X \/ Y −> Y \/ X.

Proof. intros X Y A. destruct A as [x|y]. right. exact x. left . exact y. Qed.

Run the proof scripts with Coq to understand. We can prove a conjunction s ∧ t

if and only if we can prove both s and t, and we can prove a disjunction s ∨ t if

and only if we can prove either s or t.

We obtain shorter proofs if we destructure the proofs of conjunctions and

disjunctions with the intros tactic.

Goal forall X Y : Prop, X /\ Y −> Y /\ X.

Proof. intros X Y [x y]. split . exact y. exact x. Qed.
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Goal forall X Y : Prop, X \/ Y −> Y \/ X.

Proof. intros X Y [x|y]. right. exact x. left . exact y. Qed.

We can also nest destructuring patterns:

Goal forall X Y Z : Prop,

X \/ (Y /\ Z) −> (X \/ Y) /\ (X \/ Z).

Proof. intros X Y Z [x|[y z ]].

split ; left ; exact x.

split ; right. exact y. exact z. Qed.

Coq defines equivalence as s ↔ t := (s → t) ∧ (t → s). Thus an equivalence

s ↔ t is provable if and only if the implications s → t and t → s are both provable.

Coq automatically unfolds equivalences.

Goal forall X Y : Prop, X /\ Y <−> Y /\ X.

Proof. intros X Y. split.

intros [x y]. split . exact y. exact x.

intros [y x]. split . exact x. exact y. Qed.

Goal forall X Y : Prop, ~(X \/ Y) <−> ~X /\ ~Y.

Proof. intros X Y. split.

intros A. split .

intros x. apply A. left. exact x.

intros y. apply A. right. exact y.

intros [A B] [x|y]. exact (A x). exact (B y). Qed.

Exercise 3.5.1 Prove the following goals.

Goal forall X Y : Prop,

X /\ (X \/ Y) <−> X.

Goal False <−> forall Z : Prop, Z.

Goal forall X : Prop,

~X <−> forall Z : Prop, X −> Z.

Goal forall X Y : Prop,

X /\ Y <−> forall Z :Prop, (X −> Y −> Z) −> Z.

Goal forall X Y : Prop,

X \/ Y <−> forall Z : Prop, (X −> Z) −> (Y −> Z) −> Z.
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3.6 Tauto

The automation tactic tauto solves every goal that can be solved with the tactics

Mintros and reflexivity, the definitions of negation and equivalence, and the in-

troduction and elimination rules for falsity, truth, implication, conjunction, and

disjunction.

Goal forall X : Prop, ~ (X <−> ~X).

Proof. tauto. Qed.

3.7 Existential Quantification

The tactics for existential quantifications are destruct and exists.

Goal forall (X : Type) (p q : X −> Prop),

(exists x, p x /\ q x) −> exists x, p x.

Proof. intros X p q A. destruct A as [x B]. destruct B as [C _].

exists x. exact C. Qed.

Russell’s law is a simple fact about nonexistence that has amazing conse-

quences.3 One such consequence is the undecidability of the halting problem.

We state Russell’s law as follows:

Definition Russell : Prop := forall (X : Type) (p : X −> X −> Prop),

~ exists x, forall y, p x y <−> ~ p y y.

If X is the type of all Turing machines and pxy says that x halts on the string

representation of y , Russell’s law says that there is no Turing machine x such

that x halts on a Turing machines y if and only if y that do not halt on its string

representation.

The proof of Russell’s law is not difficult.

Lemma circuit (X : Prop) : ~ (X <−> ~X).

Proof. intros [A B]. apply A ;

apply B ; intros x ; exact (A x x). Qed.

Goal Russell.

Proof. intros X p [x A]. exact (circuit (p x x) (A x)). Qed.

Exercise 3.7.1 Prove the De Morgan Law for existential quantification.

Goal forall (X : Type) (p : X −> Prop),

~(exists x, p x) <−> forall x, ~ p x.

3 Because of its amazing consequences Russell’s law is often called Russell’s paradox.
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Exercise 3.7.2 Prove the exchange rule for existential quantifications.

Goal forall (X Y : Type) (p : X −> Y −> Prop),

(exists x, exists y, p x y) <−> exists y, exists x, p x y.

Exercise 3.7.3 Prove the following goal. It shows that existential quantification

can be expressed with implication and universal quantification.

Goal forall (X : Type) (p : X −> Prop),

(exists x, p x) <−> forall Z : Prop, (forall x, p x −> Z) −> Z.

3.8 Introduction and Elimination Rules

Figure 3.1 summarizes the basic proof rules associated with the logical opera-

tions. Each rule says that the proposition appearing below the rule can be proved

by proving the propositions appearing above the rule. The rules are written with

the following notations:

• s ⇒ t says that t can be proved by assuming there is a proof of s.

• x : s ⇒ t says that t can be proved by assuming that x is a member of s.

• sxt stands for the proposition obtained from s by replacing x with t.

The rules appearing on the left are called introduction rules, and the rules ap-

pearing on the right are called elimination rules. Note that disjunction is special

since it has two introduction rules, and that falsity is special in that is has no

introduction rule. The introduction rule for a logical operation O tells us how we

can prove propositions obtained with O, and the elimination rule tells us how we

can make use of a proof of a proposition obtained with O.

Coq realizes the introduction and elimination rules with the following tactics.

introduction elimination

→ intros exact, apply

forall intros exact, apply

False contradiction

∧ split destruct

∨ left, right destruct

exists exists destruct

= reflexivity rewrite

There are no proof rules for negation and equivalence since these logical op-

erations are defined on top of the basic logical operations.

¬s := s → ⊥

s ↔ t := (s → t)∧ (t → s)
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s ⇒ t

s → t

s → t s

t

x : s ⇒ t

∀x : s. t

∀x : s. t u : s

txu

⊥

u

s t

s ∧ t

s ∧ t s, t ⇒ u

u

s

s ∨ t

t

s ∨ t

s ∨ t s ⇒ u t ⇒ u

u

u : s txu

∃x : s. t

∃x : s. t x : s , t ⇒ u

u

s = s

s = t uxt

uxs

Figure 3.1: Introduction and elimination rules

The proof rules in Figure 3.1 where first formulated and studied by Gerhard

Gentzen in 1935. They are known as intuitionistic natural deduction rules.

3.9 Propositions as Types Principle

We describe the meaning of the logical operations by relating them to proofs:

• A proof of s → t is a function that for every proof of s yields a proof of t.

• A proof of ∀x : s.t is a function that for every x : s yields a proof of t.

• There is no proof of ⊥.

• A proof of s ∧ t consists of a proof of s and a proof of t.

• A proof of s ∨ t is either a proof of s or a proof of t.

• A proof of ∃x : s.t consists of a value u : s and a proof of txu.

• A proof of s = t only exists if s and t are equal.
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This proof-theoretic semantics explains why we can apply proofs of implications

and universal quantifications as first done in Section 3.1. It also validates the

introduction and elimination rules shown Figure 3.1. Finally, the proof-theoretic

semantics motivates a fundamental design principle underlying Coq known as

propositions as types principle. Following this principle, propositions are types

inhabiting the universe Prop, and the proofs of a proposition are the members

of the proposition. This explains why we write x : X to say that x is a proof

of X. Implications and universal quantifications are obtained as function types,

so their proofs are in fact functions as required by the proof-theoretic semantics.

The remaining propositions are obtained as inductive types, as we will see in the

next chapter.

Consider the following commands.

Lemma modus_ponens : forall X Y : Prop, X −> (X −> Y) −> Y.

Proof. intros X Y x A. exact (A x). Qed.

The commands bind the identifier modus_ponens to a function whose type is the

proposition stated as lemma.

Print modus_ponens.

% modus_ponens =

% fun (X Y : Prop) (x : X) (A : X -> Y) => A x

% : forall X Y : Prop, X -> (X -> Y) -> Y

So we learn that a lemma is actually a proof of the proposition stated by the

lemma. If the proposition is a universal quantification or an implication, the

lemma is a function that can be applied to arguments. Thus applications of

lemmas is functional application.

We may use the exact tactic with more complex proofs.

Goal forall X Y : Prop, X −> (X −> Y) −> Y.

Proof. exact (fun X Y x A => A x). Qed

The missing types in the proof term are automatically inferred by Coq.

Exercise 3.9.1 Give proofs of the following propositions as terms. Check your

results with Goal prop. Proof. exact proof . Qed.

a) ∀X Y Z. (X → Y)→ (Y → Z)→ X → Z

b) ∀X Y. ((X → X)→ Y)→ Y

3.10 Excluded Middle

In Mathematics, one assumes that every proposition is either false or true. Con-

sequently, if X is a proposition, the proposition X ∨ ¬X must be true. The
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assumption that X ∨¬X is true for every proposition X is known as principle of

excluded middle, XM for short.

XM is not validated by the proof-theoretic semantics. In fact, we cannot prove

the proposition

Definition XM : Prop := forall X : Prop, X \/ ~X

in Coq. Neither can we prove the proposition ¬XM in Coq.

Since we cannot prove ¬XM in Coq, it is consistent to assume a proof of XM .

Given the assumption that XM has a proof, we can prove propositions like X∨¬X

and ¬¬X → X.

A logic based on proof-theoretic semantics not assuming a proof of XM is

called intuitionistic, while a logic that can prove XM without assumptions is

called classical. An intuitionistic logic that cannot prove ¬XM is more general

than a classical logic since one may or may not assume a proof of XM .

Intuitionistic logics have the important property that every function definable

in the logic is computable. This property does not hold for classical logic.

Exercise 3.10.1 Prove that the following propositions are equivalent. There are

short proofs if you use tauto.

Definition XM : Prop := forall X : Prop, X \/ ~X. (* excluded middle *)

Definition DN : Prop := forall X : Prop, ~~X −> X. (* double negation *)

Definition CP : Prop := forall X Y : Prop, (~Y −> ~X) −> X −> Y. (* contraposition *)

Definition Peirce : Prop := forall X Y : Prop, ((X −> Y) −> X) −> X. (* Peirce’s Law *)
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Following the propositions as types principle, Coq provides for the definition

of inductive propositions. Inductive propositions are defined in the same way

inductive types are defined. We will see inductive definitions realizing a new

form of argument dependency.

4.1 Logical Operations as Inductive Predicates

Coq defines the propositions True and False inductively.

Inductive True : Prop :=

| I : True.

Inductive False : Prop := .

The definitions introduce the propositions together with their proofs. Since False

is defined without a proof constructor, it has no proof. Thus, given a proof of

False, we can obtain a proof of every proposition.

Goal forall X : Prop, False −> X.

Proof. intros X A. destruct A. Qed.

Here is a definition of an inductive predicate And that gives us a family of

inductive propositions that behave like conjunctions.

Inductive And (X Y : Prop) : Prop :=

| AndI : X −> Y −> And X Y.

Goal forall X Y, And X Y <−> X /\ Y.

Proof. split.

intros [x y]. split ; assumption.

intros [x y]. constructor ; assumption. Qed.

We refer to the members of an inductive proposition (e.g., And True True ) as

proofs and to the value constructors of inductive predicates (e.g., AndI ) as proof

constructors.

Exercise 4.1.1 Rewrite the above proof using the tactics exact and apply in place

of assumption and constructor .
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Exercise 4.1.2 Define a family of inductive propositions that behave like dis-

junctions and prove that your disjunctions are equivalent to Coq’s predefined

disjunctions.

Exercise 4.1.3 Define a family of inductive propositions that behave like exis-

tential quantifications. Arrange your definition such that you obtain an inductive

predicate Ex for which you can prove

Goal forall (X : Type) (p : X −> Prop), Ex X p <−> exists x, p x.

Finally, we define an inductive predicate that behaves like equality.

Inductive Eq (X : Type) : X −> X −> Prop :=

| EqI : forall x, Eq X x x.

Goal forall (X : Type) (x y : X),

Eq X x y <−> x=y.

Proof. split ; intros A.

destruct A. reflexivity.

rewrite A. constructor. Qed.

Exercise 4.1.4 Prove the following goal.

Goal forall (X : Type) (x y : X) (p : X −> Prop),

Eq X x y −> p x −> p y.

Exercise 4.1.5 Prove that True has exactly one proof.

Goal forall x y : True, x=y.

Exercise 4.1.6 Prove that there is a proposition that has exactly one proof.

Goal exists X : Prop, X /\ forall x y : X, x=y.

Exercise 4.1.7 With universal quantification one can write a proposition True′

that is equivalent to the inductive proposition True.

Definition True’ : Prop := forall X : Prop, X −> X.

Goal True <−> True’.

Prove the Goal. Remark: True and True′ are equivalent but not equal. For in-

stance, one can prove that True has exactly one proof, but this is impossible for

the propositionTrue′.

38 2012/2/5



4.2 Induction on Proofs of Inductive Propositions

4.2 Induction on Proofs of Inductive Propositions

We define an inductive predicate even that expresses evenness of numbers.

Inductive even : nat −> Prop :=

| evenO : even 0

| evenS : forall n, even n −> even (S (S n)).

We may express this definition informally with two inference rules.

even 0

even n

even (S(S 0))

We prove a few properties of evenness.

Goal even 4.

Proof. constructor. constructor. constructor. Qed.

Goal forall n, even n −> even (4+n).

Proof. simpl. intros. repeat constructor. assumption. Qed.

Goal ~even 1.

Proof. intros A. inversion A. Qed.

Goal forall n, even (S (S n)) −> even n.

Proof. intros n A. inversion A. assumption. Qed.

Note the use of the tactic inversion. This tactic subsumes the features of the

tactics destruct, discriminate, and injection. It exploits the fact that every proof

of an inductive proposition must be obtained with a proof constructor of the

underlying inductive predicate.

Since the proof constructor evenS is recursive, some properties of evenness

can only be shown with induction. We use induction on the proofs of inductive

propositions obtained with the inductive predicate even (or shorter: induction

on even).

Goal forall n, even n −> even (S n) −> False.

Proof. intros n A B. induction A.

now inversion B.

inversion B. auto. Qed.

Note the use of the tactical now and the automation tactic auto.

• The tactical now says that the tactic given as its argument must solve the

current goal. The use of now makes proof scripts more readable. You may

have noticed that we print all-or-nothing tactics in red (i.e., tactics that fail if

they do not solve the current goal, (e.g., reflexivity and assumption)).
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• The automation tactic auto tries to solve the current goal by applying the

implications (possibly universally quantified) appearing as assumptions.

Exercise 4.2.1 Prove the following goals.

Goal forall n, even n −> even (pred (pred n)).

Goal forall m n, even m −> even n −> even (m+n).

Goal forall m n, even (m+n) −> even m −> even n.

Goal forall n, even n −> n = 0 \/ exists n’ n = S (S n’).

Exercise 4.2.2 Prove the following goals.

Goal forall n, even n −> ~ even (S n).

Goal forall n, even n \/ even (S n).

Goal forall n, ~even n −> even (S n).

Goal forall n, ~even (S n) −> even n.

Hint: Use the proof of the second goal to prove the third and fourth goal. There

seem to be no direct proofs.

Exercise 4.2.3 One can define evenness with a boolean function.

Fixpoint evenb (n : nat) : bool :=

match n with

| 0 => true

| 1 => false

| S (S n’) => evenb n’

end.

Prove that the boolean and the inductive definition agree. The proof goes

through if you generalize the claim as follows.

Goal forall n,

(evenb n = true <−> even n) /\

(evenb (S n) = true <−> even (S n)).

Exercise 4.2.4 Define an inductive predicate odd : nat → Prop and prove the

equivalence odd n ↔ even(S n) for all n : nat.

Exercise 4.2.5 There are many possible definitions of an inductive proposition

that is equivalent to False. Here is one with a recursive proof constructor.

Inductive XFalse : Prop :=

| XFalseI : XFalse −> XFalse.

Prove the following goal.

Goal XFalse −> False.
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4.3 Parameters and Proper Arguments

If we look at the definition

Inductive Eq (X : Type) : X −> X −> Prop :=

| EqI : forall x, Eq X x x.

of the inductive predicate Eq, we notice that the arguments of Eq come in two

forms: As parameters (the first argument X of Eq), and as proper arguments

(the second and third argument of Eq). The distinction between parameters and

proper arguments of inductive predicates (and type constructors in general) is

of great importance. For the inductive predicates defined so far we have the

following:

• And has 2 parameters and no proper agument.

• Eq has 1 parameter and 2 proper aguments.

• even has no parameter and 1 proper agument.

The important thing to know about proper arguments is that the tactics destruct

and induction for case analysis and induction only work as expected if the proper

arguments of the accompanying inductive propositions are distinct variables. So

induction A where A : even n is fine, but destruct A where A : even 1 is not. We

can use the tactic remember to unfold terms that appear as proper arguments:

Goal ~ even 1.

Proof. intros A. remember 1 as n.

destruct A. discriminate. discriminate. Qed.

Goal ~ Eq bool true false.

Proof. intros A. remember true as x. remember false as y.

destruct A. congruence. Qed.

Note the use of the tactic congruence, which combines the abilities of

discriminate and injection with basic equational reasoning. Both goals have

shorter proofs if we use the powerful inversion tactic (“intros A. inversion A.”

does it for both goals).

An argument of an inductive predicate can be introduced as a parameter if in

principle it could be introduced before the inductive definition. For the equal-

ity predicate, we can give another inductive definition that has only one proper

argument:

Inductive EQ (X : Type)(x : X) : X −> Prop :=

| EQI : EQ X x x.

It is preferable to have as few proper arguments as possible since this will ease

proofs (explained in Section 4.6). Note that the predicates even and EQ cannot
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be defined without a proper argument. Proper arguments provide a form of

dependency that is not available with parameters. The predicate Eq was the first

inductive type constructor with a proper argument we have seen.

Exercise 4.3.1 Give two proofs of each of the the following goal, one with

inversion, and one without inversion.

Goal forall n, even (S (S n)) −> even n.

Goal forall n, even (S n) −> exists n’, n = S n’.

4.4 Natural Order

With the command

Locate "<=".

we find out that Coq realizes the order “≤” on nat with the predicate le. With the

command

Print le.

we find out that Coq defines le inductively as follows.

Inductive le (x : nat) : nat −> Prop :=

| lex : le x x

| leS : forall y, le x y −> le x (S y).

With can depict this definition with 2 inference rules.

x ≤ x

x ≤ y

x ≤ Sy

Note that le has one parameter and one proper argument. We prove two proper-

ties of the predicate le.

Lemma le_transitive x y z :

le x y −> le y z −> le x z.

Proof. intros A B. induction B.

assumption. constructor. assumption. Qed.

Lemma le_Sleft x y : le (S x) (S y) −> le x y.

Proof. intros A. inversion A. now constructor.

apply le_transitive with (y := S x). repeat constructor. assumption. Qed.

Note the with clause appearing with the apply tactic. It says that apply should

instantiate the variable y of the lemma le_transitive as S x.
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Exercise 4.4.1 Prove the following claims. Do not use omega.

Lemma le_Sright x y : le x y −> le (S x) (S y).

Lemma le_O y : le 0 y.

Goal forall x, le x 0 −> x = 0.

Goal forall x, ~ le (S x) x.

Goal forall x y, le x y \/ le y x.

4.5 Omega

There is an automation tactic omega that can prove many properties of le auto-

matically. To use omega, we must first load the module Omega.

Require Import Omega.

Goal forall x y, x <= y \/ y <= x.

Proof. intros x y. omega. Qed.

We can use omega to prove that le agrees with the boolean definition of the

natural order appearing in Section 1.3.

Goal forall x y, leb x y = true <−> le x y.

Proof. induction x.

split ; intros A. omega. reflexivity.

destruct y ; simpl ; split ; intros A.

discriminate. exfalso. omega.

apply IHx in A. omega. apply IHx. omega. Qed.

The proof is worth studying.

• The tactic exfalso is used to prepare the appplication of omega. It replaces

the claim by False. The tactic exfalso realizes the explosion principle and is

useful when the assumptions of a goal are inconsistent (i.e., true = fase).

• The tactic apply can be used with equivalences. Moreover, apply can apply an

implication to an assumption of a goal if the assumption is specified with the

keyword in.

The module Omega also strengthens the automation tactic firstorder . This pro-

vides us with a shorter proof of the above goal.

Goal forall x y, leb x y = true <−> le x y.

Proof. induction x ; destruct y ; firstorder. discriminate. Qed.
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4.6 Induction Principles

Performing an induction with the tactic induction is a complex affair comprising

three main steps:

1. Move assumptions of the goal to the claim so that the induction principle of

the relevant type constructor becomes applicable (can be done with revert).

2. Apply the induction principle.

3. For each subgoal obtained, do introduction steps so that the claim of the

subgoal corresponds to the initial claim.

Performing a case analysis with destruct is like performing an induction with

induction except that the destructuring principle of the type constructor is ap-

plied in place of the induction principle. The destructuring principle can be

obtained from the induction principle by omitting the inductive hypotheses, and

vice versa the induction principle can be obtained from the destructuring princi-

ple by adding the inductive hypotheses.

Induction and destructuring principles are valid proof principles that can be

expressed as propositions. Let us start with the induction principle for the type

constructor nat:

forall p : nat −> Prop,

p O −>

( forall n : nat, p n −> p (S n)) −>

forall n : nat, p n

First look at the last line: The principle tells us how to prove claims of the form

∀n : nat.pn where pn can represent any proposition. We then have a premise

for every constructor, which provides for the case analysis. The idea is that n

must be obtained with one of the constructors and hence it suffices to show p for

each constructor. For the recursive constructor S we get an inductive hypothesis

pn since n is smaller than Sn. The premises for the constructors are easily

obtained from the types of the constructors:

O : nat

S : nat −> nat

For the inductive predicate even we obtain the following induction principle.

forall p : nat −> Prop,

p O −>

( forall n, even n −> p n −> p (S (S n))) −>

forall n, even n −> p n

This time the conclusion quantifies over the proper argument of the inductive

predicate even. The premises again are derived from the types of the construc-

tors:
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evenO : even O

evenS : forall n, even n −> even (S (S n))

Next we look at the induction principle for the inductive predicate le.

forall (x : nat) (p : nat −> Prop),

p x −>

( forall y, le x y −> py −> p (S y)) −>

forall y, le x y −> p y

Once more the conclusion quantifies over the proper argument of the inductive

predicate. Since x is a parameter it is quantified at the outside of the induction

principle. The premises for the constructors are derived from the types of the

constructors

lex : forall x, le x x

leS : forall x y, le x y −> le x (S y)

and acknowledge that fact that the parameter x is quantified outside.

The reasons for two rules we have stated before now become apparent:

1. In the conclusion of the induction principle the proper arguments appear as

pairwise distinct variables. Hence the need for remember .

2. More proper arguments mean more quantifications in the conclusion of the

induction principle. Since every assumption containing a proper argument

variable must be moved to the claim, more proper arguments lead to more

complex induction hypotheses. Hence the advice to treat arguments of induc-

tive predicates as parameters rather than proper arguments whenever this is

possible.

For every defined inductive type constructor C Coq establishes the corre-

sponding induction principle under the name C_ind. You can display the in-

duction principle with the command Check C_ind. For instance:

Check le_ind.

% forall (x : nat) (P : nat -> Prop),

% P x ->

% (forall y : nat, le x y -> P y -> P (S y)) ->

% forall n : nat, le x n -> P n

With Print C_ind you can find out how Coq proves the induction principles (with

match and fix so that inductive proofs appear as recursive proofs with case anal-

ysis; we will not discuss this further).

We now prove the lemma le_transitive from Section 4.4 by simulating the

induction tactic as described with revert, apply, and intros.

Goal forall x y z, le x y −> le y z −> le x z.
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Proof. intros x y z A B.

revert z B. (* move assumptions to claim *)

apply (le_ind y (le x)). (* apply induction principle for le *)

assumption. (* prove subgoal for constructor lex *)

intros z B IHB. (* introduce previous assumptions and inductive hypothesis *)

constructor. assumption. Qed. (* prove subgoal for constructor leS *)

Step carefully through the proof and make sure you understand every detail.

Note that the predicate P of le_ind is instantiated with le x and that the parame-

ter x is instantiated with y .

Exercise 4.6.1 Give the induction principles for the following inductive predi-

cates defined in this chapter and check you results with Coq.

a) And

b) Eq

c) EQ

Exercise 4.6.2 Prove the following goal by applying the induction principle

even_ind. Do not use the induction tactic.

Goal forall n, even n −> even (S n) −> False.

Exercise 4.6.3 Consider the following definition.

Inductive le2 : nat −> nat −> Prop :=

| le2x : forall x, le2 x x

| le2S : forall x y, le2 x y −> le2 x (S y).

a) Give the induction principle for le2.

b) Prove the transitivity of le2.

4.7 Relational Semantics

In Chapter 2 we characterized the semantics of expressions with a recursive

function evalExp : exp → nat. One speaks of a denotational semantics. It is also

possible to characterize the semantics of expressions with an inductively defined

relation e ⇓ n. One then speaks of a relational semantics.

n ⇓ n

e1 ⇓ n1 e2 ⇓ n2

e1 ◦ e2 ⇓ n
n = (evalBinop ◦)n1n2
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Inductive relExp : exp −> nat −> Prop :=

| relExpC : forall n, relExp (Const n) n

| relExpB : forall b e1 e2 n1 n2,

relExp e1 n1 −> relExp e2 n2 −>

relExp (Binop b e1 e2) (evalBinop b n1 n2).

Goal forall e, relExp e (evalExp e).

Proof. induction e ; simpl ; constructor ; assumption. Qed.

Exercise 4.7.1 Prove the equivalence of the denotational and operational seman-

tics of expressions.

Goal forall e n, relExp e n <−> evalExp e = n.

Exercise 4.7.2 Give the induction principle for relExp. Explain why the premise

for the constructor relExpB contains two inductive hypotheses.

4.8 Reflexive Transitive Closure

Sets and relations can be represented in constructive type theory as follows:

1. A setA of members of a type X can be represented as a predicate p : X → Prop.

Then we have x ∈ X if and only if px is provable.

2. A binary relation R on the members of a type X can be represented as a

predicate p : X → X → Prop. Then we have Rxy if and only if pxy is provable.

A given set can be represented by different predicates. To acknowledge this fact,

one says that predicates are intentional representations of sets. One also says

that the set represented by a predicate is the extention of a predicate. Finally,

one says that sets are extentional since two sets that have the same elements

are identical. The same speak applies to relations and predicates.

We will now formalize the notion of a reflexive transitive closure of a relation

in constructive type theory. We will use the speak of set theory also we work

with intentional representations of relations.

Given a relation R : X → X → Prop, we can define its reflexive transitive

closure R∗ inductively as follows:

R∗xx

Rxy R∗yz

R∗xz

For the formal definition, we use Coq’s section device, which makes it possible

to keep the parameters X and R implicit.
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Section Star.

Variable X : Type.

Variable R : X −> X −> Prop.

Inductive star : X −> X −> Prop :=

| starR : forall x, star x x

| starT : forall x y z, R x y −> star y z −> star x z.

Within the section, star represents R∗. We prove that star is transitive.

Goal forall x y z, star x y −> star y z −> star x z.

Proof. intros x y z A B. induction A. assumption.

apply starT with (y:=y) ; auto. Qed.

Exercise 4.8.1 Prove the following goal. Do not use a lemma.

Goal forall x y z, star x y −> R y z −> star x z.

We now close the section.

End Star.

This discharges the assumptions X and R by making them parameters of the

defined objects. For instance:

Check star.

% star : forall X : Type, (X -> X -> Prop) -> X -> X -> Prop

We make X an implicit argument of star .

Implicit Arguments star [X].

We can now write star R for R∗.

Exercise 4.8.2 Give the induction principle for the inductive predicate star .

Exercise 4.8.3 Prove that taking the reflexive transitive closure preserves invari-

ants.

Definition invariant {X : Type} (p : X −> Prop) (R : X −> X −> Prop) : Prop :=

forall x y, R x y −> p x −> p y.

Goal forall (X : Type) (R : X −> X −> Prop) (p : X −> Prop),

invariant p R −> invariant p (star R).

Exercise 4.8.4 We can define a reflexive transitive closure predicate star1 with a

single proper argument.

Inductive star1 (x : X) : X −> Prop :=

| star1R : star1 x x

| star1T : forall y z, star1 x y −> R y z −> star1 x z.
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a) Give the induction principle for star1.

b) Prove that star1 is reflexive and transitive.

c) Prove ∀x y. star x y ↔ star1 x y

Exercise 4.8.5 You may have seen R∗ :=
⋃
n∈N R

n as a definition of the reflexive

transitive closure. Using the function iter , we can express this definition in Coq.

Definition comp {X : Type} (R S : X −> X −> Prop) (x z : X) : Prop :=

exists y, R x y /\ S y z.

Definition stari {X : Type} (R : X −> X −> Prop) (x y : X) :=

exists n, iter n (comp R) (fun x y => x=y) x y.

Prove the equivalence of the inductive and the iterative definition.

Goal forall (X : Type) (R : X −> X−> Prop) (x y : X),

star R x y <−> stari R x y.
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The small step-semantics of computational systems yields binary relations

known as reductions. In this chapter we consider two important properties

of such reductions known as confluence and termination. For informal expla-

nations and a full mathematical treatment see Baader and Nipkow’s textbook

(Chapter 2).

5.1 Basic Definitions

We think of a binary relation on a set X as a directed graph whose nodes are the

elements of X and that has an edge from x to y if (x,y) is a pair of the relation.

Section Relation.

Variable X : Type.

Definition rel : Type := X −> X −> Prop.

Definition reflexive (r : rel ) : Prop :=

forall x, r x x.

Definition symmetric (r : rel) : Prop :=

forall x y, r x y −> r y x.

Definition transitive (r : rel ) : Prop :=

forall x y z, r x y −> r y z −> r x z.

Definition functional (r : rel) : Prop :=

forall x y z, r x y −> r x z −> y=z.

Definition reducible (r : rel) (x : X) : Prop :=

exists y, r x y.

Definition normal (r : rel) (x : X) : Prop :=

~ reducible r x.

Definition total (r : rel ) : Prop :=

forall x, reducible r x.

The members of the type rel are binary predicates representing relations. The

relation represented by a predicate r : rel is the set of all pairs (x,y) such that

rxy is provable. Different predicates may represent the same relation. This

motivates the following definitions.
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Definition rle (r r’ : rel ) : Prop :=

forall x y, r x y −> r’ x y.

Definition req (r r’ : rel ) : Prop :=

rle r r’ /\ rle r’ r.

In general it is undecidable for a relation whether a node is reducible or normal

(take the big-step relations of Imp commands). We call this property reduction

decidability.

Definition reddec (r : rel) : Prop :=

forall x, reducible r x \/ normal r x.

Here are operators that yield the composition and the inverse of relations.

Definition comp (r s : rel) : rel :=

fun x z => exists y, r x y /\ s y z.

Definition inverse (r : rel) : rel :=

fun x y => r y x.

Exercise 5.1.1 Prove the following statements:

a) Composition preserves functionality of relations. That is, the composition of

two functional relations is always functional.

b) Composition preserves reflexivity of relations.

c) Composition preserves totality of relations.

d) Composition does not preserve symmetry of relations. That is, there are two

symmetric relations whose composition is not symmetric.

Exercise 5.1.2 Prove the following goals.

forall r, symmetric r <−> rle (inverse r) r.

forall r, transitive r <−> rle (comp r r) r.

Exercise 5.1.3 Consider the predefined predicate gt : nat → nat → Prop (“>”)

and prove the following.

a) gt is reduction decidable.

b) 0 is normal and every other number is reducible.

5.2 Star Operator

In the graph metaphor, the reflexive transitive closure r∗ of a relation r is the

reachability relation of the graph r . We call the operator mapping a relation to

its reflexive transitive closure star operator.
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Inductive star (r : rel ) : rel :=

| starR z : star r z z

| starS x y z : r x y −> star r y z −> star r x z.

The definition has the drawback that star has two proper arguments. If we re-

verse the order of the last two arguments we can give a definition with only

one proper argument. We don’t do this since we do not want to disagree with

the usual mathematical notation. We formulate and prove the most important

properties of the star operator.

Lemma star_reflexive r :

reflexive (star r ).

Proof. intros x. constructor. Qed.

Lemma star_transitive r :

transitive (star r ).

Proof. intros x y z A B. induction A ; eauto using star. Qed.

Lemma star_expansive r :

rle r (star r ).

Proof. hnf. eauto using star. Qed.

Lemma star_right r x y z :

star r x y −> r y z −> star r x z.

Proof. intros A B. induction A ; eauto using star. Qed.

Lemma star_least r s :

reflexive s −> transitive s −> rle r s −> rle (star r) s.

Proof. intros R T A x y B. induction B ; eauto. Qed.

Lemma star_monotone r r’ :

rle r r’ −> rle (star r) (star r ’).

Proof. intros A x y B. induction B ; eauto using star. Qed.

Lemma star_symmetry r :

symmetric r −> symmetric (star r).

Proof. intros A x y B.

induction B ; eauto using star, star_right. Qed.

Lemma star_idempotent r :

req (star (star r )) (star r ).

Proof. split.

apply star_least. apply star_reflexive. apply star_transitive. hnf. trivial .

apply star_expansive. Qed.

Exercise 5.2.1 Prove the following lemma.
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Lemma star_normal r x y :

normal r x −> star r x y −> x = y.

Exercise 5.2.2 We define operators taking the reflexive closure and the transi-

tive closure of a relation.

Definition ref (r : rel ) : rel :=

fun x y => x=y \/ r x y.

Inductive plus (r : rel) : rel :=

| plusO x y : r x y −> plus r x y

| plusS x x’ y : r x x’ −> plus r x’ y −> plus r x y.

a) Prove that ref r is reflexive.

b) Prove that plus r is transitive.

c) Prove req (star r) (ref (plus r)).

Exercise 5.2.3 Prove that the predicate le is equivalent to star (λxy.Sx=y).

5.3 Convertibility and Joinability

Two nodes are convertible if they are connected through edges ignoring the

direction of the edges.

Definition sym (r : rel) : rel :=

fun x y => r x y \/ r y x.

Definition convertible (r : rel) (x y : X) : Prop :=

star (sym r) x y.

Two nodes are joinable if they can reach a common node.

Definition joinable (r : rel ) (x y : X) : Prop :=

exists z, star r x z /\ star r y z.

Joinability implies convertibility.

Lemma star_convertible r :

rle (star r) (convertible r).

Proof. apply star_monotone ; cbv ; auto. Qed.

Lemma convertible_symmetric r :

symmetric (convertible r).

Proof. apply star_symmetry. firstorder. Qed.

Lemma joinable_convertible r :

rle (joinable r) (convertible r).
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Proof. intros x y J. destruct J as [z [A B]].

apply star_convertible in A.

apply star_convertible, convertible_symmetric in B.

eapply star_transitive ; eassumption. Qed.

For every relation r we have the following chain of extensions.

r � star r � joinable r � convertible r = star(sym r)

Reductions for which convertibility agrees with joinability are called Church-

Rosser.

Definition Church_Rosser (r : rel) : Prop :=

rle (convertible r) (joinable r).

Exercise 5.3.1 Show that convertibility is an equivalence relation.

Exercise 5.3.2 Prove the following lemma.

Lemma star_joinable r : rle (star r) (joinable r).

5.4 Confluence

Confluence is a property that is equivalent to Church-Rosser.

Definition confluent (r : rel) : Prop :=

forall x y z, star r x y −> star r x z −> joinable r y z.

Lemma Church_Rosser_confluent r :

Church_Rosser r −> confluent r.

Proof. intros A x y z B C. apply A.

apply star_transitive with (y:=x).

apply star_convertible, star_symmetry in B ; firstorder.

apply star_convertible in C ; assumption. Qed.

For the proof of the other direction, we define semi-confluence.

Definition semi_confluent (r : rel) : Prop :=

forall x y z, r x y −> star r x z −> joinable r y z.

Goal forall r, confluent r −> semi_confluent r.

Proof. firstorder using star_expansive. Qed.

Lemma semi_confluent_Church_Rosser r :

semi_confluent r −> Church_Rosser r.

The lemma has a nice graphical proof (see Baader-Nipkow). The formal proof

follows the graphical proof.
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Proof. intros A x y B.

induction B. now exists x ; split ; constructor.

destruct IHB as [u [B1 B2]].

destruct H. now exists u ; eauto using star.

assert (C : joinable r x u) by eauto.

destruct C as [v [C1 C2]].

exists v ; firstorder using star_transitive. Qed.

We now know that semi-confluence, confluence, and Church-Rosser are pairwise

equivalent properties.

Exercise 5.4.1 Prove that joinable r is reflexive and symmetric relation.

Exercise 5.4.2 Prove that a relation is confluent if and only if its joinability rela-

tion is transitive.

5.5 Strong Confluence

Strong confluence is a sufficient condition for confluence.

Definition strongly_confluent (r : rel) : Prop :=

forall x y z, r x y −> r x z −>

exists u, star r y u /\ ref r z u.

Lemma strong_confluence r :

strongly_confluent r −> semi_confluent r.

There is a nice graphical proof and the formal proof follows the graphical proof.

Proof. intros S x y z A B.

revert y A ; induction B as [x | x z’ z] ; intros y A.

now exists y ; eauto using star.

destruct (S x y z’ A H) as [u [S1 S2]].

destruct S2 ; subst.

now exists z ; firstorder using star, star_transitive.

assert (C : joinable r u z) by auto.

destruct C as [v [C1 C2]].

exists v ; firstorder using star_transitive. Qed.

Exercise 5.5.1 Give a finite relation that is confluent but not strongly confluent.

Exercise 5.5.2 Prove that functional relations are strongly confluent.

Exercise 5.5.3 The diamond property is defined as follows:

Definition diamond (r : rel) : Prop :=

forall x y z, r x y −> r x z −>

exists u, r y u /\ r z u.
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a) Prove that r is confluent if and only if star r satisfies the diamond property.

b) Prove that relations satisfying the diamond property are strongly confluent.

c) Prove that star preserves the diamond property.

5.6 Normal Forms and Normalization

A normal node y is a normal form of a node x if y is reachable from x.

Definition normal_form (r : rel) : rel :=

fun x y => star r x y /\ normal r y.

For confluent reductions, a node has at most one normal form.

Lemma confluent_functional_normal_form r :

confluent r −> functional (normal_form r).

Proof. intros A x y z [B1 B2] [C1 C2].

assert (D : joinable r y z) by eauto.

destruct D as [u [D1 D2]].

assert (y = u) by eauto using star_normal.

assert (z = u) by eauto using star_normal.

congruence. Qed.

A node is normalizing if it has a normal form. We employ an inductive definition.

Inductive normalizes (r : rel) : X −> Prop :=

| normalizesI1 x : normal r x −> normalizes r x

| normalizesI2 x y : r x y −> normalizes r y −> normalizes r x.

Lemma normalizes_normal_form r x :

normalizes r x <−> reducible (normal_form r) x.

Proof. split.

intros A. induction A.

exists x. now firstorder using star_reflexive.

destruct IHA as [z B]. exists z. now firstorder using star.

intros [y [A B]]. induction A ; eauto using normalizes. Qed.

A relation is normalizing if every node has a normal form.

Definition normalizing (r : rel) : Prop :=

forall x, normalizes r x.

Goal forall r,

normalizing r <−> total (normal_form r).

Proof. split ; intros A x ; apply normalizes_normal_form, A. Qed.

For a normalizing and confluent relation, two nodes are convertible if and only

if they have a common normal form.
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Lemma normalizing_confluent r x y :

normalizing r −> confluent r −>

(convertible r x y <−> exists z, normal_form r x z /\ normal_form r y z).

Proof. intros N C. split.

intros A.

assert (B: joinable r x y)

by (apply semi_confluent_Church_Rosser ;

firstorder using star_expansive).

destruct B as [u [B1 B2]].

assert (D : reducible (normal_form r) u)

by (apply normalizes_normal_form ; trivial).

destruct D as [v [D1 D2]]. exists v.

now firstorder using star_transitive.

intros [z [[A _] [B _ ]]].

apply joinable_convertible. firstorder. Qed.

Exercise 5.6.1 Consider the predicate gt : nat → nat → Prop representing the

natural order “>”.

• Prove that gt is normalizing.

• Prove that 0 is the only normal form of gt.

• Prove that gt is confluent.

5.7 Semantic Confluence

In practice, many reductions respect a semantic equality. In this case a normal-

izing reduction is confluent if different normal forms are semantically different.

Section Semantic_Confluence.

Variable X V : Type.

Variable eval : X −> V.

Two elements of the syntactic domain X are semantically equal if they evaluate

to the same value of the semantic domain V . A relation on X is sound if it

respects the semantic equality.

Definition sound (r : rel X) : Prop :=

forall x y, r x y −> eval x = eval y.

A relation on X is complete if different normal forms are semantically different.

Definition complete (r : rel X) : Prop :=

forall x y, normal r x −> normal r y −>

eval x = eval y −> x = y.

Reflexive transitive closure preserves soundness.
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Lemma star_sound (r : rel X) :

sound r −> sound (star r).

Proof. intros S x y A. induction A. reflexivity.

apply S in H. congruence. Qed.

We show that normalizing relations are confluent if they are sound and complete.

Lemma semantic_confluence (r : rel X) :

sound r −> complete r −>

normalizing r −> confluent r.

Proof. intros S C N x y z A B.

assert (Ny := N y). apply normalizes_normal_form in Ny.

destruct Ny as [u [Nu Ny]].

assert (Nz := N z). apply normalizes_normal_form in Nz.

destruct Nz as [v [Nv Nz]].

cut (u=v). now intros e ; subst v ; exists u ; auto.

apply C ; auto.

apply star_sound in S.

apply S in A. apply S in B. apply S in Nu. apply S in Nv.

congruence. Qed.

Exercise 5.7.1 We consider arithmetic expressions

e ::= 0 | Se | e+ e

where n is a natural number.

a) Define an abstract syntax as an inductive type exp.

b) Define a semantics eval : exp → nat.

c) Define an inductive predicate step : rel exp representing the rewrite rules

0+ e → e

Se1 + e2 → S(e1 + e2)

d) Prove that step is sound.

e) Prove that step is complete.

f) Prove that step is normalizing.

g) Prove that step is confluent.

5.8 Termination

Informally, a node in a graph terminates if there is no infinite path departing

from it. Formally, we define termination inductively: A node terminates if all its

successors terminate.
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Inductive terminates (r : rel) : X −> Prop :=

| terminatesI x : (forall y, r x y −> terminates r y) −> terminates r x.

A relation is terminating if all its nodes terminate.

Definition terminating (r : rel) : Prop :=

forall x, terminates r x.

For functional relations, normalization implies termination.

Lemma functional_normalizes_terminates r x :

functional r −> normalizes r x −> terminates r x.

Proof. intros F N. induction N as [x A|x y A B] ; constructor.

intros y B. exfalso. apply A. now exists y ; trivial.

intros y’ C. assert (y=y’) by (eapply F ; eauto). subst. trivial . Qed.

The induction coming with the inductive definition of termination is known as

well-founded induction.1 Well-founded induction allows us to prove a property

p for a terminating node x by assuming that p holds for all successors of x.

Here is the induction principle for terminates:

forall (r : rel ) (p : X −> Prop),

( forall x : X,

( forall y : X, r x y −> terminates r y) −>

( forall y : X, r x y −> p y) −>

p x) −>

forall x : X, terminates r x −> p x

Termination is also known as strong normalization. For reduction decidable

relations, termination in fact implies normalization.

Lemma reddec_terminates_normalizes r x :

reddec r −> terminates r x −> normalizes r x.

The proof is by well-founded induction.

Proof. intros D T. induction T as [x _ IH].

destruct (D x) ; firstorder using normalizes. Qed.

A beautiful application of well-founded induction is Newman’s lemma. New-

man’s lemma says that for terminating relations a relaxation of strong confluence

know as local confluence is equivalent to confluence.

Definition locally_confluent (r : rel) : Prop :=

forall x y z, r x y −> r x z −> joinable r y z.

Lemma Newman (r : rel) :

terminating r −> locally_confluent r −> confluent r.

1 In Mathematics, a well-founded relation is a relation whose inverse terminates. Well-founded

induction was first studied by Emmy Noether in the 1920’s.
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There is a straightforward graphical proof that translates into a formal proof.

Proof. intros T L x. specialize (T x).

induction T as [x _ IH]. intros y z A B.

destruct A as [x|x y’ y]. now exists z ; eauto using star.

destruct B as [x|x z’ z]. now exists y ; eauto using star.

assert (C : joinable r y’ z’) by eauto. (* loc confluenced used *)

destruct C as [u [C1 C2]].

assert (D : joinable r u z) by eauto. (* IH used *)

destruct D as [w [D1 D2]].

assert (E : joinable r y w).

now apply IH with (y:=y’) ; trivial ; eapply star_transitive ; eauto.

destruct E as [w’ [E1 E2]].

exists w’. intuition. eapply star_transitive ; eauto. Qed.

Exercise 5.8.1 Prove the following goals stating two variants of the principle of

well-founded induction.

Goal forall (r : rel ) (p : X −> Prop) (x : X),

terminates r x −>

( forall x, ( forall y, r x y −> p y) −> p x) −>

p x.

Goal forall (r : rel ) (p : X −> Prop) (x : X),

terminates r x −>

( forall x, terminates r x −> (forall y, r x y −> p y) −> p x) −>

p x.

Exercise 5.8.2 Prove that subrelations of terminating relations are terminating.

Goal forall r x s, terminates r x −> rle s r −> terminates s x.

Exercise 5.8.3 (Infinitely Branching Trees) We define infinitely branching trees

together with their direct subtree relation:

Inductive tree : Type :=

| treeL : tree

| treeN : (nat −> tree) −> tree.

Definition subtree : rel tree :=

fun s t => match s with

| treeL => False

| treeN f => exists n, f n = t

end.

a) Prove that subtree is terminating.

b) Prove that treeL is a normal form of every tree.

c) Prove that subtree is confluent.

2012/2/5 61



5 Confluence and Termination

5.9 More about Termination

Taking the transitive closure of a relations preserves termination.

Goal forall r x, terminates r x −> terminates (plus r) x.

Proof. intros r x A.

induction A as [x _ IHA].

constructor ; intros y B.

destruct B as [x y B | x x’ y B C] ; auto.

apply IHA in B. inversion B. auto. Qed.

We have already shown that every subrelation of a terminating relation ter-

minates. More generally, every relation that can be embedded into a terminating

relation terminates.

Lemma homomorphism X Y (r : rel X) (s : rel Y) (f : X −> Y) x :

( forall x y, r x y −> s (f x) (f y)) −>

terminates s (f x) −> terminates r x.

Proof. intros A B.

remember (f x) as u ; revert x Hequ ;

induction B as [v _ IH] ; intros x B ; subst.

constructor. eauto. Qed.

Note the combination of remember and revert preparing the induction;

remember is needed since f x appears as proper argument, and revert is needed

since otherwise the inductive hypothesis is too weak.

Exercise 5.9.1 The lexical product of two relations is defined as follows.

Definition lex (X Y : Type) (r : rel X) (s : rel Y) : rel (X * Y) :=

fun p q => let (x,y) := p in let (x’,y’) := q in

r x x’ \/ x=x’ /\ s y y’.

a) Prove that the lexical product of two terminating relations is terminating.

Lemma lex_terminates (X Y : Type) (r : rel X) (s : rel Y) x y :

terminates r x −> terminating s −> terminates (lex r s) (x,y).

b) Find an example that shows that the lemma is unprovable if the termination

of s is only required for y .

5.10 Complete Induction

It is not difficult to prove a lemma providing for proofs by complete induction.

Lemma complete_induction (p : nat −> Prop) (x : nat) :

( forall x, ( forall y, y<x −> p y) −> p x) −> p x.

62 2012/2/5



5.10 Complete Induction

Proof. intros A. apply A. induction x ; intros y B.

exfalso ; omega.

apply A. intros z C. apply IHx. omega. Qed.

With complete induction we can show that the relation “>” on nat terminates.

Lemma gt_terminates :

terminating gt.

Proof. intros x. apply complete_induction. clear x.

intros x A. constructor. exact A. Qed.

Exercise 5.10.1 Size induction generalizes complete induction to arbitrary types

by employing a size function. Prove the following lemma providing for proofs

by size induction.

Lemma size_induction (X : Type) (f : X −> nat) (p: X −>Prop) (x : X) :

( forall x, ( forall y, f y < f x −> p y) −> p x) −> p x.

Hint: Follow the proof script for complete induction. Before doing the induction

insert remember (f x) as n so that you can do induction on n.

Exercise 5.10.2 Prove the following lemma, which says that a relation terminates

if each step decreases the size of a node.

Lemma size_termination (X : Type) (r : rel X) (f : X −> nat) :

( forall x y, r x y −> f x > f y) −> terminating r.
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We now consider functional languages. ML and Haskell are popular functional

programming languages. The kernel language of Coq is also a functional lan-

guage. In contrast to Coq, programming languages admit recursive functions

that do not terminiate on some or all arguments.

6.1 Abstract Syntax

PCF is an idealized functional programming language with recursive functions

(i.e., procedures). It is designed such that it can describe all computable func-

tions taking arguments from nat to results from nat. In fact, PCF stands for

partial computable functions. The original version of PCF was designed by Gor-

don Plotkin in the 1970’s.

The types of PCF are obtained by closing the base type nat under function

types.

T ::= nat | T → T

The elements of a function type T1 → T2 are functions that when applied to an

argument of type T1 either terminate with a result in T2 or diverge (i.e., do not

terminate).

The terms of PCF are defined as follows, where x ranges over an alphabet of

variables (e.g., nat):

t ::= O | St | case t t t | x | λx :T .t | tt | fix t

Here is a term that describes a function nat → nat that doubles its argument.

fix (λf : nat → nat. λn : nat. case n O (λn′ : nat. S(S(f n′))))

This translates to the following Coq term.

fix f (n : nat) : nat := match n with O => O | S n’ => S (S (f n’)) end

An important aspect of PCF is that a term λx :T .t introduces a local variable x

whose scope is the term t. One says that a variable x is free in a term t if t has

a subterm x that is not in the scope of a term λx :T .t′. A term t is called closed
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if no variable is free in t, and open if at least one variable is free in t. Local

variables are also called bound variables.

In Coq, we represent PCF’s abstract syntax as follows.

Inductive var : Type :=

| varN : nat −> var.

Inductive ty : Type :=

| tyN : ty (* nat *)

| tyF : ty −> ty −> ty. (* function type *)

Inductive tm : Type :=

| tmO : tm (* zero *)

| tmS : tm −> tm (* successor *)

| tmC : tm −> tm −> tm −> tm (* case *)

| tmV : var −> tm (* variable *)

| tmL : var −> ty −> tm −> tm (* lambda *)

| tmA : tm −> tm −> tm (* application *)

| tmF : tm −> tm. (* fix *)

Exercise 6.1.1

a) Write a term t : tm representing a function that adds two numbers.

b) Define an inductive predicate free : var → tm → Prop such that free x t is prov-

able iff x is free in t.

c) Define a predicate closed : tm → Prop such that closed t is provable iff t is

closed.

Exercise 6.1.2 (Boolean Equality on Variables)

a) Define a function eq_var : var → var → bool and prove

Goal forall x y, eq_var x y = true <−> x = y.

b) Define a function freeb : var → tm → bool that checks whether a variable is

free in a term.

6.2 Evaluation

A closed term represents a program that may be evaluated. We will capture

evaluation of terms with a small step semantics. We will also define a typing

predicate that associates terms with types. The definitions of evaluation and

typing will not depend on each other. In fact, evaluation will be defined for all

terms, no matter whether they are closed or open or well-typed or ill-typed.

To define evaluation, we need a substitution operation. Given two terms s

and t and a variable x, we define txs as the term that is obtained from t by
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replacing every free subterm occurrence of x with s. The substitution operator

for PCF satisfies the equation

(λy :T .t)xs := if x = y then λy :T .t else λy :T .txs

There is no need to avoid variable capture since the term s that is substituted in

will be closed in all cases that matter (since evaluation only matters for closed

terms). The simple definition of the substitution operation greatly simplifies the

proofs involving substitution.

Terms of the form O, S O, S(S O), . . . are called numerals. We define a

value to be a term that is either a numeral or an abstraction λx :T .t.

The small-step semantics of PCF is defined with reduction rules and descent

rules. Here are the reduction rules.

case O t1 t2 → t1

case (S t) t1 t2 → t2 t if S t is a value

(λx :T .t)v → txv if v is a value

fix (λx :T .t) → txfix (λx :T .t)

Note that a β-redex (λx :T .t)s can only be reduced if the argument term s is a

value. This restriction is known as call by value.

The descent rules are as follows.

St → St′ if t → t′

case t t1 t2 → case t′ t1 t2 if t → t′

t1 t2 → t′1 t2 if t1 → t′1

(λx :T .t) t2 → (λx :T .t) t′2 if t2 → t′2

Note that the descent rules do not provide for reduction inside abstractions. This

is typical for programming languages and in contrast to Coq where reductions

are possible everywhere.

From the reduction and descent rules it is clear that PCF’s reduction relation

is functional.

Exercise 6.2.1 Find a PCF term whose evaluation does not terminate.

Exercise 6.2.2 (Small-Step Semantics)

a) Define a function subst : tm → var → tm → tm such that subst t x s yields the

term that is obtained from t by replacing every free occurrence of x with s.

Capture of free variables in s by variable binders in t is fine.

b) Define predicates nvalue : tm → Prop and value : tm → Prop saying which

terms are numeric values and values.
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c) Define the small-step semantics of PCF with an inductive predicate

step : tm → tm → Prop.

d) Prove ∀ t t′. value t → step t t′ → ⊥.

Exercise 6.2.3 (Big-Step Semantics)

a) Define the big-step semantics of PCF with an inductive predicate

sem : tm → tm → Prop.

b) Prove forall t t′, sem t t′ → value t′.

6.3 Primitive Recursion and T

The general recursion operator of PCF can be replaced by a primitive recursion

operator. In Coq, the primitive recursion operator can be defined as follows.

Fixpoint primrec (X : Type) (n : nat) (x : X) (f : nat −> X −> X) : X :=

match n with

| O => x

| S n’ => f n’ (primrec n’ x f)

end.

The primitive recursion operator can express the case operator of PCF. This ob-

servation leads to a language T whose types and terms are defined as follows.

T ::= nat | T → T

t ::= O | St | primrec t t t | x | λx :T .t | tt

It turns out that the evaluation of well-typed T programs always terminates (first

shown by William Tait in 1967). The language T was first proposed by Kurt Gödel

in 1958.

Exercise 6.3.1 Write a function in T that adds two numbers. Translate your

function to Coq and test it for some arguments. Note that T translates directly

to Coq with primrec as defined above.

Exercise 6.3.2 Define an abstract syntax and a small-step semantics for T in Coq.

Follow the development of PCF.

6.4 Typing Discipline and E

The type discipline for PCF should have the following properties:

1. Preservation If a term t of type T reduces to a term t′, then t′ has type T .

2. Progress A closed and well-typed term is either a value or reducible.
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To prepare the definition of the typing discipline for PCF, we first consider a

simpler functional language E without variables. The expressions of E denote

boolean values and numbers.

t ::= true | false | if t t t | O | S t | P t | Z t

The terms true and false are called boolean values. Terms of the form

O, S O, S(S O), . . . are called numerals. A value is either a boolean value

or a numeral. The reduction rules for E are as follows.

if true t1 t2 → t1

if false t1 t2 → t2

P O → O

P(S t) → t if S t is a value

Z O → true

Z(S t) → false if S t is a value

Here are the descent rules for E.

if t t1 t2 → if t′ t1 t2 if t → t′

St → St′ if t → t′

Pt → Pt′ if t → t′

Zt → Zt′ if t → t′

Plotkin’s original PCF was obtained from E by adding variables, λ-abstractions,

applications, and the recursion operator fix. In our PCF, the operator case re-

places the operators if , P , and Z. Moreover, case makes it possible to omit

boolean values.

E’s type discipline is given by two types

T ::= bool | nat

and one typing rule for each syntactic construct.

true : bool false : bool

t : bool t1 : T t2 : T

if t t1 t2

O : nat

t : nat

S t : nat

t : nat

P t : nat

t : nat

Z t : bool

The formalization of E in Coq is straightforward.
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Inductive tm : Type :=

| tmT : tm

| tmF : tm

| tmI : tm −> tm −> tm −> tm

| tmO : tm

| tmS : tm −> tm

| tmP : tm −> tm

| tmZ : tm −> tm.

Inductive nvalue : tm −> Prop :=

| nvalueO : nvalue tmO

| nvalueS t : nvalue t −> nvalue (tmS t).

Inductive value : tm −> Prop :=

| valueF : value tmT

| valueT : value tmF

| valueN t : nvalue t −> value t.

Inductive step : tm −> tm −> Prop :=

| stepIT t1 t2 : step (tmI tmT t1 t2) t1

| stepIF t1 t2 : step (tmI tmF t1 t2) t2

| stepPO : step (tmP tmO) tmO

| stepPS t : nvalue t −> step (tmP (tmS t)) t

| stepZO : step (tmZ tmO) tmT

| stepZS t : nvalue t −> step (tmZ (tmS t)) tmF

| stepDI t t’ t1 t2 : step t t’ −> step (tmI t t1 t2) (tmI t’ t1 t2)

| stepDS t t’ : step t t’ −> step (tmS t) (tmS t’)

| stepDP t t’ : step t t’ −> step (tmP t) (tmP t’)

| stepDZ t t’ : step t t’ −> step (tmZ t) (tmZ t’).

Inductive ty : Type :=

| Nat : ty

| Bool : ty.

Inductive type : tm −> ty −> Prop :=

| typeT : type tmT Bool

| typeF : type tmF Bool

| typeI t t1 t2 T : type t Bool −> type t1 T −> type t2 T −> type (tmI t t1 t2) T

| typeO : type tmO Nat

| typeS t : type t Nat −> type (tmS t) Nat

| typeP t : type t Nat −> type (tmP t) Nat

| typeZ t : type t Nat −> type (tmZ t) Bool.

Exercise 6.4.1

a) Normal terms that are not values are called stuck. Find a stuck term.

b) Find an example showing that the step relation does not preserve types from

right to left.
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Exercise 6.4.2 Suppose we add two new reduction rules:

P true → P false

P false → P true

Which of the following properties remain true in the presence of these rules?

a) Determinacy of step

b) Termination of step for well-typed terms

c) Progress

d) Preservation

Exercise 6.4.3 Suppose we add a new typing rule:

t1 : T

if true t1 t2 : T

Which of the following properties remain true in the presence of these rules?

a) Determinacy of step

b) Termination of step for well-typed terms

c) Progress

d) Preservation

Exercise 6.4.4 Prove the following lemmas.

Lemma value_normal t t’ :

value t −> step t t’ −> False.

Lemma preservation t T t’ :

type t T −> step t t’ −> type t’ T.

Lemma progress t T :

type t T −> value t \/ exists t’, step t t ’.

Lemma type_unique t T T’ :

type t T −> type t T’ −> T = T’.

Lemma step_deterministic t t1 t2 :

step t t1 −> step t t2 −> t1 = t2.

Exercise 6.4.5 Prove that step terminates.

Exercise 6.4.6 Write a function tycheck : tm → option ty and prove the following

lemma.

Lemma tycheck_correct t T :

type t T <−> tycheck t = Some T.

2012/2/5 71



6 PCF

6.5 Type-Indexed Syntax for E

In Coq it is possible to define an inductive constructor tm : ty → Type such that

the members of tm T are exactly the well-typed terms of type T of E.

Inductive tm : ty −> Type :=

| tmT : tm Bool

| tmF : tm Bool

| tmI T : tm Bool −> tm T −> tm T −> tm T

| tmO : tm Nat

| tmS : tm Nat −> tm Nat

| tmP : tm Nat −> tm Nat

| tmZ : tm Nat −> tm Bool.

Given this type-indexed syntax for E, we can define the small-steps semantics

of E such that type preservation is guaranteed by type checking.

Inductive value : forall T : ty, tm T −> Prop :=

| valueF : value tmT

| valueT : value tmF

| valueO : value tmO

| valueS t : value t −> value (tmS t).

Inductive step : forall T : ty, tm T −> tm T −> Prop :=

| stepIT T (t1 t2 : tm T) : step (tmI tmT t1 t2) t1

| stepIF T (t1 t2 : tm T) : step (tmI tmF t1 t2) t2

| stepPO : step (tmP tmO) tmO

| stepPS t : value t −> step (tmP (tmS t)) t

| stepZO : step (tmZ tmO) tmT

| stepZS t : value t −> step (tmZ (tmS t)) tmF

| stepDI t t’ T (t1 t2 : tm T) : step t t’ −> step (tmI t t1 t2) (tmI t’ t1 t2)

| stepDS t t’ : step t t’ −> step (tmS t) (tmS t’)

| stepDP t t’ : step t t’ −> step (tmP t) (tmP t’)

| stepDZ t t’ : step t t’ −> step (tmZ t) (tmZ t’).

When we attempt to prove properties of the type-indexed presentation of E, it

turn out that the tactic inversion does not work for members of types obtained

with value step. The problem can be circumvented by loading the right library

Require Import Program.Equality.

and using the tactic dependent destruction in place of inversion.

Lemma value_normal (T : ty) (t t’ : tm T) :

value t −> step t t’ −> False.

Proof. intros A B.

induction B ; dependent destruction A ; auto. Qed.

Exercise 6.5.1 Prove the following lemmas,
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Lemma step_deterministic (T : ty) (t t1 t2 : tm T) :

step t t1 −> step t t2 −> t1 = t2.

Lemma Progress (T : ty) (t : tm T) :

value t \/ exists t ’, step t t ’.

Exercise 6.5.2 (Challenge) Consider the function

Definition ty_den (T : ty) : Type :=

match T with Bool => bool | Nat => nat end.

Define a function tm_den : ∀T . tm T → ty_denT and prove that two terms are

convertible with respect to step if and only if their denotation under tm_den

agrees.

6.6 Simply Typed Lambda Calculus

We now shift our attention to functions. For this we consider a minimal system

known as simply typed lambda calculus (STLC):

T ::= X | T → T

t ::= x | λx :T .t | t t

Types are obtained by closing a single base type X under function types, and

terms are obtained by closing a set of variables (isomorphic to nat) under lambda

abstraction and application. The values of STLC are exactly the terms λx :T .t.

There is a singe reduction rule and two descent rules.

(λx :T .t)v → txv if v is a value

t1 t2 → t′1 t2 if t1 → t′1

(λx :T .t) t2 → (λx :T .t) t′2 if t2 → t′2

This yields a reduction relation that is call by value and weak (i.e., no reduction

below lambda. The novel part of STLC is the typing relation. To maintain the

typing assumptions for variables we use contexts Γ , which are partial functions

mapping variables to types. There are three typing rules:

Γ ⊢ x : T if Γx = T

Γ ⊢ λx :T .t : T → T ′ if ΓxT ⊢ t : T ′

Γ ⊢ t1t2 : T if Γ ⊢ t1 : T2 → T and Γ ⊢ t2 : T2

Exercise 6.6.1 Formalize STLC in Coq. For the abstract syntax and the small-

step semantics of follow the development of PCF. For contexts and the typing

relation follow the development in the SF text.
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λ-Calculus

Recall the simply typed λ-calculus.

S, T ::= X | T → T

s, t ::= x | λx :T .t | t t

Terms of the form λx :T .t are called λ-abstractions. Values are exactly the λ-

abstractions.

We can represent these in Coq as follows.

Inductive ty : Type :=

| tyX : ty

| tyA : ty −> ty −> ty.

Inductive tm : Type :=

| tmV : var −> tm

| tmA : tm −> tm −> tm

| tmL : var −> ty −> tm −> tm.

Inductive value : tm −> Prop :=

| v_abs : forall x T t, value (tmL x T t).

A variable x occurs free in a term t if it occurs in a position that is not bound

by a λ. This can be defined as an inductive proposition in Coq as follows:

Inductive free : var −> tm −> Prop :=

| freeV : forall x,

free x (tmV x)

| freeA1 : forall x t1 t2,

free x t1 −> free x (tmA t1 t2)

| freeA2 : forall x t1 t2,

free x t2 −> free x (tmA t1 t2)

| freeL : forall x y T11 t12,

y <> x

−> free x t12

−> free x (tmL y T11 t12).

We say a term is closed if no variable occurs free in it.
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In this chapter we will prove that a certain weak reduction relation terminates.

From this it will follow that the weak, call-by-value reduction relation terminates.

7.1 Partial Maps, Substitutions, and Contexts

We will define a notion of (simultaneous) substitution and an operation apply-

ing it to a term. Subsitutions will be partial functions from variables to terms.

Contexts will also be partial functions (in this case from variables to types).

In general, we can consider partial functions f from variables to some set A.

We use domf to refer to the set of variables on which f is defined. We call domf

the domain of f . The empty function 0 is such a partial function. Given any such

partial function f , a variable x and an element a ∈ A, let fxa denote the update

of f to send x to a and otherwise behave as f . Note that domfxa is domf ∪{x}.

Given any such partial function f and a variable x, let f−x denote the partial

function removing x from the domain of f . Note that domf−x is domf \ {x}.

We use θ to range over substitutions (partial functions from variables to

terms). We use Γ to range over contexts (partial functions from variables to

types).

In Coq we can represent partial functions using types of the form

var −> option A. A variable x is in the domain of a partial function f if f x

is of the form Some a. A variable x is not in the domain of f if f x is None.

Definition partial_map (A:Type) := var −> option A.

Definition sub : Type := partial_map tm.

Definition ctx : Type := partial_map ty.

Definition empty {A:Type} : partial_map A := (fun _ => None).

Definition update {A:Type} (Gamma : partial_map A) (x:var) (T : A) :=

fun x’ => if beq_var x x’ then Some T else Gamma x’.

Definition drop {A:Type} (Gamma : partial_map A) (x:var) :=

fun x’ => if beq_var x x’ then None else Gamma x’.

We can apply a substitution to a term as follows:

θx := s if x ∈ domθ and θx = s

θx := x if x ∉ domθ

θ(st) := (θs)(θt)

θ(λx :T .t) := λx :T .θ−xt

We use txs to denote 0xs t.
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Lemma 7.1.1 (Coincidence) If θx = θ′x for all x free in t, then θt = θ′t.

Proof By induction on t. �

Lemma 7.1.2 (Id) 0t = t.

Proof By induction on t. �

Lemma 7.1.3 If t is closed, then θt = t.

Proof By the Coincidence and Id lemmas. �

A substitution θ is closed if for every x ∈ domθ, θx is closed.

Lemma 7.1.4 If θ is closed, then (θ−xt)xs = θ
x
s t.

Proof By induction on t using the Coincidence and Id lemmas. �

7.2 Reduction

Earlier we considered a reduction relation that was call by value and weak (no

reduction below λ).

(λx :T .t)v → txv if v is a value

t1 t2 → t′1 t2 if t1 → t′1

(λx :T .t) t2 → (λx :T .t) t′2 if t2 → t′2

In this chapter we will prove this reduction relation terminates. In fact, we will

show a more general nondeterministic weak reduction relation defined as fol-

lows.

(λx :T .t)s ⇒ txs

t1 t2 ⇒ t′1 t2 if t1 ⇒ t′1

t1 t2 ⇒ t1 t
′
2 if t2 ⇒ t′2

7.3 Typing

The typing relation is defined as before.

Γ ⊢ x : T if Γx = T

Γ ⊢ λx :S.t : S → T if ΓxS ⊢ t : T

Γ ⊢ ts : T if Γ ⊢ t : S → T and Γ ⊢ s : S

In Coq we can write this as follows.
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Inductive type : ctx −> tm −> ty −> Prop :=

| typeV : forall Gamma x T,

Gamma x = Some T −>

type Gamma (tmV x) T

| typeL : forall Gamma x S T t,

type (update Gamma x S) t T −>

type Gamma (tmL x S t) (tyA S T)

| typeA : forall S T Gamma t s,

type Gamma t (tyA S T) −>

type Gamma s S −>

type Gamma (tmA t s) T.

We have the following results.

Lemma 7.3.1 (Invariance) Suppose Γx = Γ ′x for every x free in t. If Γ ⊢ t : T ,

then Γ ′ ⊢ t : T .

Proof By induction on Γ ⊢ t : T . �

Lemma 7.3.2 If x is free in t and Γ ⊢ t : T , then x ∈ domΓ .

Proof By induction on Γ ⊢ t : T . �

Lemma 7.3.3 If 0 ⊢ t : T , then Γ ⊢ t : T .

Proof Apply Invariance and Lemma 7.3.2. �

Lemma 7.3.4 (Substitution) Suppose Γ ⊢ t : T and for every x ∈ domΓ we have

x ∈ domθ and 0 ⊢ θx : Γx. Then 0 ⊢ θt : T .

Proof A generalization can be proven by induction on Γ ⊢ t : T . We leave this as

an exercise. �

Lemma 7.3.5 (Preservation) If 0 ⊢ t : T and t ⇒ t′, then 0 ⊢ t′ : T .

Proof By induction on t ⇒ t′ using the substitution lemma. �

7.4 The Logical Relation R

We say a term t terminates if it terminates relative to⇒. Our goal is to prove that

if 0 ⊢ t : T , then t terminates. We cannot directly prove this. Instead, we define

an apparently stronger property that will allow us to do the inductive proofs.

We define a relation RT t between types T and terms t by recursion on types.

• RXt holds if 0 ⊢ t : X and t terminates.
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• RS→T t holds if 0 ⊢ t : S → T , t terminates and for every s, if RSs, then RT (ts).

We can extend R to contexts and substitutions in the following obvious way. We

say RΓθ holds if domΓ = domθ and RΓxθx for every x ∈ domΓ .

The following lemmas are obvious.

Lemma 7.4.1 If RT t, then 0 ⊢ t : T .

Lemma 7.4.2 If RT t, then t terminates.

We can also easily obtain the following results.

Lemma 7.4.3 RΓθ implies θ is closed.

Proof Let x ∈ domθ such that θx = s. We know 0 ⊢ s : Γx. By Lemma 7.3.2 we

know s is closed, as desired. �

Lemma 7.4.4 If Γ ⊢ t : T and RΓθ, then 0 ⊢ θt : T .

Proof This follows from Substitution (Lemma 7.3.4). �

Lemma 7.4.5 If RΓθ and RT t, then RΓxT (θ
x
t ).

Proof Trivial. �

Lemma 7.4.6 If t ⇒ t′ and RT t, then RT t
′.

Proof Induction on T using preservation. �

We will need to prove that under certain conditions if every reduct of a term

t satisfies RT , then t satisfies RT . Let us define a notation for this concept. Let

ET t hold if RT t
′ holds for every t′ such that t ⇒ t′.

Lemma 7.4.7 Suppose for every u such that 0 ⊢ u : T and u is not a λ-

abstraction, if ETu, then RTu. If t is not a λ-abstraction, 0 ⊢ t : (S → T),

and ES→T t, then for every s, if RSs, then RT (ts).

Proof Since every s satisfying RSs is terminating (see Lemma 7.4.2), we can prove

this by induction on the termination of s. Lemma 7.4.6 is helpful. �

Lemma 7.4.8 Suppose 0 ⊢ t : T and t is not a λ-abstraction. If ET t, then RT t.

Proof By induction on the type T using Lemma 7.4.7. �

Lemma 7.4.9 Suppose 0xS ⊢ t : T and forall s, if RSs, then RT (t
x
s ). Then for all s,

if RSs, then RT ((λx : S.t)s).
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Proof Since every s satisfying RSs is terminating (see Lemma 7.4.2), we can prove

this by induction on the termination of s. Lemma 7.4.8 is helpful. �

Lemma 7.4.10 If Γ ⊢ t : T and RΓθ, then RT (θt).

Proof We prove this by induction on Γ ⊢ t : T . In the variable case, Γx = T and

so we know RT (θx) since RΓθ. For the application case, assume Γ ⊢ t : S → T ,

Γ ⊢ s : S and RΓθ. We wish to prove RT (θ(ts)). The inductive hypotheses imply

RS→T (θt) and RS(θs). By the definition of RS→T we conclude RT ((θt)(θs)) as

desired.

The most involved case is the λ case. Assume ΓxS ⊢ t : T and RΓθ. We wish

to prove RS→T (θ(λx : S.t)). We know 0 ⊢ θ(λx : S.t) : S → T by Lemma 7.4.4,

RΓθ and the fact that Γ ⊢ λx : S.t : S → T . Note that θ(λx : S.t) is λx : S.θ−xt.

We know this term terminates because λ-abstractions do not reduce. Finally,

we must prove RT ((λx : S.θ−xt)s) holds for every s such that RSs. First, note

that for every s such that RSs we know RΓxS (θ
x
s ) holds by Lemma 7.4.5 and so

RT (θ
x
s t) holds by the inductive hypothesis. Second, note that 0xS ⊢ θ−xt : T

since 0 ⊢ λx : S.θ−xt : S → T . The proof is completed by applying Lemma 7.4.9

with θ−xt. �

Lemma 7.4.11 If 0 ⊢ t : T , then t terminates.

Proof By Lemma 7.4.10 with 0 as the substitution we know RT t and so t termi-

nates by Lemma 7.4.2. �
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8 Calculus of Constructions

The calculus of constructions (CC) is a subsystem of the type theory underlying

Coq (calculus of inductive constructions). It my be seen as a radical generaliza-

tion of the simply typed lambda calculus giving first-class status to types (i.e.,

types can be arguments and results of functions). The original version of the

calculus of constructions was proposed in 1985 by Thierry Coquand and Gérard

Huet. The canonical reference for the calculus of constructions is Luo’s book.

8.1 Syntax

The terms of CC are obtained from variables (x,y, z) and universes (U ).

s, t ::= x | λx : s.t | s t | ∀x : s.t | U

Since types have first-class status in CC, they are represented as terms. Terms

starting with ∀ are called function types. Universes are types whose members

are function types and universes. There is a variable xn and a universe Un for

every natural number n.

Terms of the form λx : s.t and∀x : s.t bind the local variable x in their body t.

The term s acts as type of x. Free variables and closed terms are defined ac-

cordingly.

CC is based on an abstract representation of local variables. This means that

terms that a equal up to renaming of local variables are in fact equal. For in-

stance, λx : U0.x and λy : U0.y are different notations for the same term. Abstract

local variables can be formalized using a technique invented by de Bruijn (so-

called de Bruijn terms).

8.2 Substitution and Reduction

Substitution is defined such that the binders λ.and ∀ do not capture variables.

For instance, (λx :y.fxy)
y
x = λz :x.fzx. There is a single reduction rule, called

beta reduction, that can be applied everywhere in a term.

(λx : s.t)u → txu
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It can be shown that beta reduction is confluent (see Luo’s book for a proof). Two

terms are convertible if they reduce to the same term. We write s →∗ t to say

that s reduces to t and s ≈ t to say that s and t are convertible.

8.3 Typing

A context (Γ ) is a list of variable declarations x : t. The typing relation concerns

judgements Γ ⊢ s : t and is defined inductively by the following rules.

CE
0 ⊢ U0 : U1

CV
Γ ⊢ t : U

Γ , x : t ⊢ U0 :U1

x not declared in Γ

Var
Γ , x : t, Γ ′ ⊢ U0 :U1

Γ , x : t, Γ ′ ⊢ x : t

Lam
Γ , x : s ⊢ t : u

Γ ⊢ λx : s.t : ∀x : s.u

App
Γ ⊢ s : ∀x :u.v Γ ⊢ t : u

Γ ⊢ st : vxt

Fun
Γ ⊢ s : U Γ , x : s ⊢ t : U

Γ ⊢ ∀x : s.t : U

Uni
Γ ⊢ U0 :U1

Γ ⊢ Un :Un+1

Con
Γ ⊢ s : t Γ ⊢ t′ : U

Γ ⊢ s : t′
t ≈ t′

Sub
Γ ⊢ s : t

Γ ⊢ s : t′
t < t′

The subtyping relation used in the last rule is defined inductively by two rules.

m < n

Um < Un

t < t′

∀x : s.t < ∀x : s.t′

Judgements of the form
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8.3 Typing

• Γ ⊢ U0 : U1 may be read as Γ is well-formed.

• Γ ⊢ s : U may be read as s is well-typed in Γ .

Note that well-formed contexts declare a variable at most once and assign types

that are well-defined in the preceding context.

Here are the most important properties of the typing relation.

• Propagation If Γ ⊢ s : t, then Γ ⊢ t : U for some universe U .

• Type preservation Reduction preserves typings.

• Termination Reduction terminates on all well-typed terms.

• Decidability The typing relation is decidable.

Exercise 8.3.1 Suppose 0 ⊢ s : t and s is normal. Find out whether s can be a

variable or an application.
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