

Assignment 6 Semantics, WS 2013/14

Prof. Dr. Gert Smolka, Steven Schäfer www.ps.uni-saarland.de/courses/sem-ws13/

Read in the lecture notes: Chapter 2.5 - 2.8

Exercise 6.1 Let *R* be a relation on *X*.

- a) Show that for normal *x* we have *SN R x*.
- b) Prove that $SN R \leftrightarrow SN R^+$, where R^+ is the transitive closure of R.
- c) Use this to show the strong induction principle for *SN*.
- d) Show the preimage lemma.
- e) Prove that if *SN R x*, then there is no infinite path from *x*.

Exercise 6.2 Show that > is a terminating relation on \mathbb{N} .

Exercise 6.3 A relation R is called "classical" if we can decide whether x is reducible or normal according to R.

- a) Show that for classical relations, $SN R \rightarrow WN R$.
- b) Now show that the requirement is necessary. Assuming $SN R \rightarrow WN R$ for every relation R, derive the law of excluded middle.

Exercise 6.4 Let ρ be a reduction operator satisfying the triangle property for *R*. Prove the following.

- a) diamond R
- b) reflexive $R \rightarrow sound R \rho$
- c) $Rxy \rightarrow R(\rho x)(\rho y)$
- d) $Rxy \rightarrow R(\rho^n x)(\rho^n y)$
- e) cofinal R ρ

Exercise 6.5 Let ρ be a reduction operator that is sound for *R*. Prove the following.

- a) normal $R x \rightarrow \rho x = x$
- b) cofinal $R \rho \rightarrow (x \Downarrow^R y \leftrightarrow \exists n. y = \rho^n x \land normal R y)$

Exercise 6.6 Show Newman's Lemma: For terminating relations R, local confluence implies confluence.

Exercise 6.7 Find a property of predicates which is not stable under infinite intersection.

Exercise 6.8 Find a relation *R* along with a sound and cofinal reduction strategy ρ such that $\rho x = x$ does not imply *normal R x*.