

Assignment 8 Semantics, WS 2013/14

Prof. Dr. Gert Smolka, Steven Schäfer www.ps.uni-saarland.de/courses/sem-ws13/

Read in the lecture notes: Chapter 2 & 3

Exercise 8.1 Abstraction in CL.

- a) Show that for all x, s, the abstraction x s is normal.
- b) Soundness of abstraction: $({}^{x}s)t \equiv s_{t}^{x}$.

Exercise 8.2 In λ -calculus we have $WN \ s \to WN(sx)$ for all terms s and variables x. Show that this is not the case in CL (on paper).

Exercise 8.3

I := SKKB := S(KS)K $\omega := SII$ $A := B(SI)\omega$ T := AA

Show the following equivalences.

a) $Is \equiv s$ b) $Bstu \equiv s(tu)$ c) $\omega s \equiv ss$ d) $Ast \equiv t(sst)$ e) $Ts \equiv s(Ts)$

Exercise 8.4 We define the Church numerals in CL as follows:

zero := KI succ := SB add := SI(Ksucc) N n := succⁿ zero

Show the correctness of this definition.

- a) Prove that N n is normal for all n.
- b) add zero $s \equiv s$
- c) $add(succ s)t \equiv succ(add st)$
- d) $add(N n)(N m) \equiv N(n + m)$
- e) $add(N n)(N m) \geq^* N(n + m)$
- f) Show that *N* is injective.

Exercise 8.5 (Recursive abstraction) Define a function μ : $nat \rightarrow term \rightarrow term$ such that $\mu \propto s \equiv s^{\chi}_{\mu \propto s}$.