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We study confluence and normalization in abstract reduction systems and

apply the results to combinatory logic and an abstract version of the lambda

beta calculus. For both systems we obtain the Church-Rosser property and a

complete normalization strategy. For an abstract weak call-by-value lambda

calculus we obtain uniform confluence, which ensures that for a given term

all maximal reduction chains have the same length. The development is based

on constructive type theory with inductive predicates and is realized in Coq.

1 Introduction

The Church-Rosser theorem formulates a key property of lambda-calculus and other

rewriting systems. It turns out that the Church-Rosser property can be analysed in

the abstract by considering relations on an abstract type. One speaks of abstract

reduction systems since one-step reduction turns out to be the primary relation.

Abstract reduction systems can be seen as directed graphs, a view providing for

strong intuitions and graphical proof sketches.

The study of reduction systems profits much from inductively defined predi-

cates, with strong normalization and (parallel) reduction as prominent examples.

2 Relations

We assume a type X and call predicates X → X → Prop relations. The letters R
and S will range over relations. Inclusion and equivalence of relations are defined
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as follows:

R ⊆ S := ∀xy. Rxy → Sxy
R � S := R ⊆ S ∧ S ⊆ R

Reflexivity, symmetry, transitivity, and functionality of relations are defined as fol-

lows:

reflexive R := ∀x. Rxx
symmetric R := ∀xy. Rxy → Ryx
transitive R := ∀xyz. Rxy → Ryz → Rxz

functional R := ∀xyz. Rxy → Rxz → y = z

An equivalence relation is a relation that is reflexive, symmetric, and transitive. We

define the inverse and the symmetric closure of relations:

R− := λxy. Ryx

R↔ := λxy. Rxy ∨ Ryx

Fact 1 Let R be reflexive. Then R− and R↔ are reflexive.

Fact 2 Let R be transitive. Then R− and R↔ are transtive.

Composition, powers, and union of relations are defined as follows:

R ◦ S := λxz. ∃y. Rxy ∧ Syz
R0 := λxy. x=y

Rn+1 := R ◦ Rn

R ∪ S := λxy. Rxy ∨ Sxy

Fact 3 The following statements are equivalent: R is symmetric; R− is symmetric;

R− ⊆ R; R � R−; R � R↔.

Fact 4

a) R reflexive iff R0 ⊆ R.

b) R transitive iff R ◦ R ⊆ R.

c) R↔ � R ∪ R−.

d) Rm+n � Rm ◦ Rn.

We say that R is a least relation satisfying a property p if pR and R ⊆ S for every

relation S with pS. Note that least relations satisfying a property are unique up to

equivalence.

Exercise 5 Prove Rm+n � Rm ◦ Rn.

Exercise 6 Prove that Rn is functional if R is functional.
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3 Reflexive Transitive Closure

We define reflexive transitive closure of a relation R as an inductive predicate

R∗ : X → X → Prop:

R∗yy

Rxx′ R∗x′y

R∗xy

Fact 7 (Expansion) R ⊆ R∗.

Fact 8 (Transitivity) R∗ is transitive.

Proof Let R∗xy and R∗yz. We show R∗xz by induction on R∗xy .

1. Let x = y . Then the assumption R∗yz is the claim.

2. Let Rxx′ and R∗x′y . We have R∗x′z by the inductive hypothesis. The claim

follows with the second rule defining star. �

Fact 9 (Monotonicity) If R ⊆ S, then R∗ ⊆ S∗.

Proof Let R ⊆ S and R∗xy . We show S∗xy by induction R∗xy .

1. Let x = y . The claim is S∗xx and follows by the first rule defining star.

2. Let Rxx′ and R∗x′y . The Sxx′ by the assumption and S∗x′y by the inductive

hypothesis. The claim follows with the second rule defining star. �

We write R∗∗ for (R∗)∗.

Fact 10 R∗∗ ⊆ R∗.

Proof Let R∗∗xy . We show R∗xy by induction on the outer star of R∗∗xy .

1. Let x = y . The claim is R∗xx and follows by the first rule defining star.

2. Let R∗xx′ and R∗∗x′y . We have R∗x′y by the inductive hypothesis. The claim

follows by transitivity of R∗. �

Fact 11 (Idempotence) R∗∗ � R∗.

Proof Follows with Facts 7 and 10. �

We formulate the induction principle for R∗ explicitly.

Fact 12 (Star induction) Let R∗xy . Then px if py and ∀ab. Rab → pb → pa.

Proof Let py and ∀ab. Rab → pb → pa. We prove px by induction on R∗xy .
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1. Let x = y . The claim follows with the first assumption.

2. Let Rxx′ and R∗x′y . We have px′ by the inductive hypothesis. The claim

follows with the second assumption. �

Fact 13 (Closure) R∗ is a least reflexive and transitive relation containing R.

Fact 14 (Power characterization) R∗xy ↔ ∃n.Rnxy .

Fact 15 R−∗ � R∗−.

Fact 16 R∗↔ ⊆ R↔∗.

Exercise 17 Prove all facts stated above in Coq. Coq generates and uses a subop-

timal induction lemma for R∗xy that doesn’t treat y as a parameter. Thus the

inductive hypotheses come with an unnecessary premise.

Discussion

We have defined R∗ as an inductive predicate. In the literature, the reflexive tran-

sitive closure is usually defined using the power characterization stated by Fact 14

(e.g., [5, 1]). The power characterization relies on recursion and induction for num-

bers and requires no knowledge of inductive predicates. We are using an inductive

definition because we like its simplicity. It captures the notion of reflexive transi-

tive closure without the notion of numbers. Although Coq generates a suboptimal

induction lemma for the inductive definition of R∗, the inductive definition is still

more convenient to use than a power-based definition. The reader may use the ex-

amples of this section to refamiliarise himself with inductive definitions and their

realization in Coq.

Exercise 18 Find a counterexample for R∗↔ � R↔∗.

Exercise 19 Prove (R∗ ∪ S∗)∗ � (R ∪ S)∗ using monotonicity and idempotence of

star. No induction is needed.

Exercise 20 Given R, define an inductive predicate R̂ : N→ X → X → Prop:

R̂nxx

Rxy R̂nyz

R̂(n+ 1)xz

Prove R̂n � Rn. Remark: In Coq, working with R̂ rather than Rn provides for more

direct inductive proofs.
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Exercise 21 Given R, define an inductive predicate R# : X → X → Prop:

Rxy

R#xy R#xx

R#xy R#yz

R#xz

Prove R# � R∗.

Exercise 22 (Impredicative Characterization)

Prove R∗xy ↔ ∀S. S0 ⊆ S → R ◦ S ⊆ S → Sxy .

Note that the equivalence characterises R∗ as the intersection of a all reflexive rela-

tions that are closed under left-composition with R.

4 Equivalence Closure

Fact 23 (Preservation of Symmetry) If R is symmetric, then R∗ is symmetric.

Proof Let R be symmetric and R∗xy . We show R∗yx by induction on R∗xy .

1. Let x = y . The claim is R∗xx and follows by the assumption.

2. Let Rxx′ and R∗x′y . We have R∗x′x by the assumption and expansion, and

R∗yx′ by the inductive hypothesis. The claim follows by transitivity. �

We define R+ := R ◦R∗ and R≡ := R↔∗. We call R+ the transitive closure and R≡

the equivalence closure of R.

Fact 24 R ⊆ R+ ⊆ R∗ ⊆ R≡.

Fact 25 (Transitive Closure) R+ is a least transitive relation containing R.

Fact 26 (Equivalence Closure) R≡ is a least equivalence relation containing R.

5 Confluence and Church-Rosser Property

We define joinability, confluence, semi-confluence, the diamond property, and the

Church-Rosser property as follows:

joinable Rxy := ∃z. Rxz ∧ Ryz
diamond R := ∀xyz. Rxy → Rxz → joinable Ryz

confluent R := diamond R∗

semi-confluent R := ∀xyz. Rxy → R∗xz → joinable R∗yz

Church-Rosser R := ∀xy. R≡xy → joinable R∗xy
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Fact 27 The following statements are equivalent:

1. R is Church-Rosser.

2. R is confluent.

3. R is semi-confluent.

Proof The directions 1 =⇒ 2 =⇒ 3 are straightforward. We show 3 =⇒ 1.

Let R be semi-confluent and R↔∗xy . We show joinable R∗xy by induction on

R↔∗xy . If x = y , the claim is trivial. Otherwise, let R↔xx′ and R↔∗x′y . We have

R∗x′z and R∗yz for some z by the inductive hypothesis. Case analysis on R↔xx′.
If Rxx′, the claim follows. Otherwise, we have Rx′x. By semi-confluence of R we

obtain some u such that R∗xu and R∗zu. Thus R∗yu by transitivity. The claim

follows. �

Fact 28 If R satisfies the diamond property, then R is semi-confluent.

Proof Assume R satisfies the diamond property and let R∗xy and Rxz. We show

joinable R∗yz by induction on R∗xy . If x = y , the claim is trivial. Otherwise, let

Rxx′ and R∗x′y . By the diamond property, we have Rx′u and Rzu for some u. By

the inductive hypothesis for R∗x′y , we have joinable R∗yu. The claim follows. �

Fact 29 (Sandwich) Let R ⊆ S ⊆ R∗. Then:

1. R is confluent iff S is confluent.

2. R is confluent if S satisfies the diamond property.

Proof We have R∗ ⊆ S∗ ⊆ R∗ by monotonicity and idempotence of star. Thus

R∗ � S∗. Thus Claim 1 follows. Claim 2 follows with Facts 28 and 27. �

A relation R is strongly confluent if

∀xyz. Rxy → Rxz → (R∗yz ∨ ∃u. R∗yu∧ Rzu)

Fact 30 Every relation satisfying the diamond property is strongly confluent.

Fact 31 Every strongly confluent relation is confluent.

Proof By Fact 27 it suffices to show that a strongly confluent relation is semi-

confluent. This follows with an induction similar to the one used for Fact 28. �

Exercise 32 Show that star preserves the diamond property. That is, if R satisfies

the diamond property, then R∗ satisfies the diamond property.

Exercise 33 Prove that the following statements are equivalent:
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1. diamond R.

2. ∀xyzn. Rxy → Rnxz → ∃u. Rnyu∧ Rzu.

3. ∀xyzmn. Rmxy → Rnxz → ∃u. Rnyu∧ Rmzu.

Exercise 34 Prove that the following statements are equivalent:

1. ∀xyz. Rxy → Sxz → ∃u. Syu∧ Rzu.

2. ∀xyzn. Rxy → Snxz → ∃u. Snyu∧ Rzu.

3. ∀xyzmn. Rmxy → Snxz → ∃u. Snyu∧ Rmzu.

Exercise 35 Prove that a relation R is Church-Rosser if and only if R≡ � R∗ ◦ R∗−.

6 Normal Forms

We define reducibility, normality, and normal forms:

reducible Rx := ∃y. Rxy x is R-reducible

normal Rx := ¬reducible Rx x is R-normal

R⇓xy := R∗xy ∧ normal Ry y is R-normal form of x

Fact 36 Let x be R-normal. Then:

1. If R∗xy , then x = y .

2. If Rnxy , then n = 0 and x = y .

Fact 37 Let R be confluent. Then:

1. R⇓ is functional. That is, no x has more than one R-normal form.

2. R⇓xy iff R≡xy and y is R-normal.

3. If x and y are R-normal, then x = y iff R≡xy .

4. If x and y are R-normal, then ¬R≡xy iff x ≠ y .

We say that R is classical if every x is either R-reducible or R-normal.

7 Triangle Method

We now introduce the triangle method, which provides for elegant confluence

proofs for lambda calculus and combinatory logic. The triangle method also pro-

vides a reduction strategy that finds a normal form whenever there is one.

We start with a definition. A function ρ : X → X is a triangle operator for R if

Ry(ρx) whenever Rxy .
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Fact 38 Let ρ be a triangle operator for R. Then:

1. R satisfies the diamond property.

2. If x is reducible, then R2x(ρx).

3. If R is reflexive, then Rx(ρx).

Fact 39 Let ρ be a triangle operator for R. Then:

1. If Rxy , then R(ρx)(ρy).

2. If Rxy , then R(ρnx)(ρny).

3. If R∗xy , then R∗y(ρnx) for some n.

A function ρ : X → X is a normalizer for R if it satisfies the following properties:

1. R∗x(ρx).

2. If x ⇓R y , then ρnx = y for some n.

Fact 40 Let ρ be a normalizer for R. Then y is an R-normal form of x if and only

if y is R-normal and y = ρnx for some n.

Theorem 41 (Triangle) Let R ⊆ S ⊆ R∗, S be reflexive, and ρ be a triangle operator

for S. Then R is confluent and ρ is a normalizer for R.

Proof Confluence of R follows with Facts 29 and 38. We have R∗ � S∗ by the

assumption R ⊆ S ⊆ R∗ and monotonicity and idempotence of ∗. That ρ is a

normalizer for R now follows with the reflexivity of S and Fact 39. �

Exercise 42 We call x R-quasi-normal if x = y whenever Rxy . We call y an R-

quasi normal form of x if R∗xy and y is quasi-normal in R. Prove the following

claims:

a) Let y and z be R-quasi normal forms of x. Then y = z if R is confluent.

b) If y is an R-normal form of x, then y is an R∗-quasi-normal form of x.

c) Let ρ be a triangle operator for R and y be an R-quasi-normal form of x. Then

ρy = y and y = ρnx for some n.

8 Confluence of Combinatory Logic SK

Figure 1 shows the definition of the combinatory logic SK. We show that the reduc-

tion relation � is confluent and give a normalizer for �. The proof is based on the

triangle method and sandwiches a relation known as parallel reduction. The defini-

tions of parallel reduction� and the triangle operator ρ appear in Figure 2. A term

is called a redex if it has the form Ks or Sstu.
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s, t ::= x|K|S|st (x : N)

Kst � s Sstu � su(tu)
s � s′

st � s′t
t � t′

st � st′

Figure 1: Definition of SK

s � s′

Kst� s′
s � s′ t� t′ u� u′

Sstu� s′u′(t′u′) s � s

s � s′ t� t′

st� s′t′

ρ(Kst) := ρs

ρ(Sstu) := (ρs)(ρu)((ρt)(ρu))

ρ(st) := (ρs)(ρt) if st not a redex

ρ(s) := s if s not an application

Figure 2: Parallel reduction and triangle operator for SK

Informally, we may understand a parallel reduction s � t as a two phase process:

First one chooses a collection of redexes in s and then one reduces these redexes

one after the other following an innermost strategy. For this to work it is essential

that a redex is not destroyed if its constituents are reduced. This is clearly the case

of SK.

The notion of parallel reduction is elegantly captured by its inductive definition

in Figure 2. Defining parallel reduction formally following the informal explanation

and not using an inductive definition is not an easy exercise. The inductive def-

inition of parallel reduction and its use for confluence proofs is due to Tait and

Martin-Löf.

Fact 43 (Triangle) ρ is a triangle operator for�.

Proof Let s � t. We prove t � ρs by induction on s following the case analysis

in the definition of ρ. If s is not an application, then s = t and the claim is trivial.

If s is an application but not a redex, then s � t is obtained with a non-redex rule

for�. Hence the claim is either trivial or follows with the inductive hypothesis. We

consider the case s = Ks1s2. The case s = Ss1s2s3 is similar.

Let s = Ks1s2. We show t � ρs1. If t is obtained with the rule for K, then

s1 � t and the claim follows with the inductive hypothesis. If t is obtained with

the reflexivity rule, we have t = Ks1s2 and the claim follows with the inductive
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s, t ::= n | st | λs (n : N)

(λs)t � βst
s � s′

st � s′t
t � t′

st � st′
s � s′

λs � λs′

Figure 3: Definition of abstract λβ

hypothesis. If t is obtained with the compatibility rule for applications, we have t =
Ks′1s

′
2 and s1 � s′1 and s2 � s′2. The claim follows with the inductive hypothesis. �

Fact 44 (Compatibility) Let s �∗ s′ and t �∗ t′. Then st �∗ s′t′.

Proof By induction on t �∗ t′ with nested induction on s �∗ s′. �

Fact 45 (Sandwich) � ⊆� ⊆ �∗.

Proof The first inclusion follows by induction on �. The second inclusion follows

by induction on� using compatibility (Fact 44). �

Theorem 46 (SK) � is confluent and ρ is a normalizer for �.

Proof Follows with Theorem 41 and Facts 43 and 45. �

9 Confluence of Abstract λβ

Figure 3 defines an abstract version of the lambda beta calculus we call abstract λβ.

The definition assumes a function β that given two terms yields a term. We will

need one assumption about β to show confluence of abstract λβ. The proof will

be based on the triangle method and will exhibit a normalizer for abstract λβ. The

definitions of parallel reduction� and the triangle operator ρ appear in Figure 4.

Fact 47 (Compatibility) Let s �∗ s′. Then λs �∗ λs′.

Proof By induction on s �∗ s′. �

Fact 48 (Compatibility) Let s �∗ s′ and t �∗ t′. Then st �∗ s′t′.

Proof By induction on t �∗ t′ with nested induction on s �∗ s′. �

Fact 49 (Reflexivity) s � s.

Proof By induction on s. �
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s � s′ t� t′

(λs)t� βs′t′ x� x

s � s′ t� t′

st� s′t′
s � s′

λs � λs′

ρ((λs)t) := β(ρs)(ρt)

ρ(st) := (ρs)(ρt) if s not an abstraction

ρ(λs) := λ(ρs)

ρ(x) := x

Figure 4: Parallel reduction and triangle operator for abstract λβ

Fact 50 (Sandwich) � ⊆� ⊆ �∗.

Proof The first inclusion follows by induction on � using Fact 49. The second

inclusion follows by induction on� using compatibility (Facts 48 and 47). �

We say that β is compatible if βst� βs′t′ whenever s � s′ and t� t′.

Fact 51 (Triangle) Let β be compatible. Then ρ is a triangle operator for�.

Proof Let s � t. We prove t � ρs by induction on s � t. The case for the

β-rule follows with the compatibility of β. No other case needs the compatibility

assumption. The cases for variables and abstractions are straightforward. The final

case is for the compatibility rule for applications. If s = xs′ or s = s1s2s3, the

claim follows with the inductive hypotheses. Otherwise, s = (λs1)s2, t = (λs′1)s′2,

s1 � s′1, and s2 � s′2. We need to show (λs′1)s
′
2 � β(ρs1)(ρs2), which follows with

the induction hypotheses s′1 � ρs1 and s′2 � ρs2. �

Theorem 52 (Abstract λβ) Let β be compatible. Then � is confluent and ρ is a

normalizer for �.

Proof Follows with Theorem 41 and Facts 51 and 50. �

Exercise 53 Give an example that shows that parallel reduction is not transitive.

10 Equivalence in Abstract λβ

Recall the definition R≡ := R↔∗. We now show that �≡ for abstract λβ agrees with

an inductive predicate ≡ defined as follows:

(λs)t ≡ βst
s ≡ s′ t ≡ t′

st ≡ s′t′
s ≡ s′

λs ≡ λs′ s ≡ s
s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u
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We can see s ≡ t as the least compatible equivalence relation on terms satisfying

the abstract β-law.

Fact 54 (Compatibility)

1. If s �≡ s′ and t �≡ t′, then st �≡ s′t′.
2. If s �≡ s′, then λs �≡ λs′.

Proof Both claims follow by star induction. The proofs are similar to the proofs of

Facts 48 and 47. �

Fact 55 � ⊆ ≡.

Proof By induction on �. �

Fact 56 (Coincidence) �≡ � ≡.

Proof Let s �↔∗ t. We prove s ≡ t by star induction on s �↔∗ t. If s = t, the claim

is trivial. Otherwise, we have s �↔ s′ and s′ ≡ t by the inductive hypothesis. By

Fact 55 we have either s ≡ s′ or s′ ≡ s. The claim follows.

Let s ≡ t. We prove s �↔∗ t by induction on s ≡ t. The cases for the β-rule and

the reflexivity rule are straightforward. The case for the transitivity rule follows

with Fact 8, and the case for the symmetry rule follows with Fact 23. The cases for

the compatibility rules follow with Fact 54. �

11 Uniform Confluence

We define uniform confluence of relations as follows:

uniformly confluent R := ∀xyz. Rxy → Rxz → y=z ∨ ∃u. Ryu∧ Rzu

Fact 57 Every functional relation is uniformly confluent.

Fact 58 Every relation satisfying the diamond property is uniformly confluent.

Fact 59 Every uniformly confluent relation is strongly confluent.

Fact 60 The following statements are equivalent:

1. R uniformly confluent.

2. ∀xyzn. Rxy → Rnxz → ∃ukl. Rkyu∧ Rlzu∧ 1+ k = n+ l∧ k ≤ n∧ l ≤ 1.

3. ∀xyzmn. Rmxy → Rnxz → ∃ukl. Rkyu∧Rlzu∧m+k = n+l∧k ≤ n∧l ≤m.

Proof We prove 1 =⇒ 2 =⇒ 3 =⇒ 1. The implication 3 =⇒ 1 is straightforward.
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s, t ::= n|st|λs (n : N)

(λs)(λt) � βs(λt)
s � s′

st � s′t
t � t′

st � st′

Figure 5: Definition of abstract L

1. 1 =⇒ 2. Assume (1) and Rxy and Rnxz. We prove by induction on n that Rkyu
and Rlzu for some u, k ≤ n and l ≤ 1 such that 1 + k = n + l. If n = 0, then

x = z and the claim follows with u = y and l = 1. Otherwise, we have Rxx′ and

Rn−1x′z. Case analysis using (1).

a) y = x′. The claim follows with u = z, k = n− 1, and l = 0.

b) Rxv and Rx′v for some v . By the inductive hypothesis, we obtain u, k′ ≤
n − 1 and l′ ≤ 1 such that Rk′vu, Rlzu, and 1 + k′ = n − 1 + l. The claim

follows with k = 1+ k′.
2. 2 =⇒ 3. Assume (2) and Rmxy and Rnxz. We prove by induction on m that

Rkyu and Rlzu for some u, k ≤ n and l ≤ 1 such that m+ k = n+ l. If m = 0,

then x = y and the claim follows with u = z, k = n, and l = 0. Otherwise, we

have Rxx′ and Rm−1x′y . By (2) we obtain v , l′ ≤ 1, and k′ ≤ n such that Rk′x′v ,

Rl′zv , and 1 + k′ = n + l′. By the inductive hypothesis for Rm−1x′y we obtain

u, k ≤ k′, and l′′ ≤m− 1 such that Rkyu, Rl′′vu, and m− 1+ k = k′ + l′′. The

claim follows with l = l′ + l′′. �

Fact 61 (Uniform normalization) Let R be uniformly confluent, Rmxy , Rnxz,

and z be R-normal. Then m ≤ n and Rn−myz.

Proof Follows with Facts 60 and 36. �

12 Uniform Confluence of Abstract L

Figure 5 defines an abstract version of the weak call-by-value λ-calculus we call

abstract L. We show that the reduction relation � is uniformly confluent. This result

holds without any assumption on the function β. Intuitively, uniform confluence

holds for L since in L can only reduce outermost redexes.

Fact 62 (Uniform confluence) Let s � t1 and s � t2. Then either t1 = t2 or t1 � u
and t2 � u for some u.

Proof By induction on s � t1.
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1. Let s = (λs1)(λs2). Then t1 = t2 since abstractions are irreducible.

2. Let s = s1s2, s1 � s′1, and t1 = s′1s2. Case analysis on s � t2.

a) s1 � s′′1 and t2 = s′′1 s2. The claim follows with the inductive hypothesis for

s1 � s′1.

b) s2 � s′2, and t2 = s1s′2. The claim follows with u = s′1s′2.

3. Analogous to (2). �

Exercise 63 Define a normalizer for one-step reduction in abstract L.

13 Strong Normalization

We define two inductive predicates WN Rx (weakly normalizing) and SN Rx
(strongly normalizing):

normal Rx

WN Rx

Rxy WN Ry

WN Rx

∀y. Rxy → SN Ry

SN Rx

We say that R is terminating if SN Rx for every x.

Fact 64 SN Rx if x is R-normal.

Fact 65 (Unfolding) SN Rx ↔ ∀y. Rxy → SN Ry .

Fact 66 (SN induction) Let SN Rx. Then px if

∀a. SN Ra→ (∀b. Rab → pb)→ pa.

Fact 67 (Well-founded induction) Let R be terminating. Then px if

∀a. (∀b. Rab → pb)→ pa.

Fact 68 WN Rx iff x has an R-normal form.

Fact 69 Let R be classical and SN Rx. Then WN Rx.

Proof By induction on SN Rx. �

Fact 70 Let SN Rx and R∗xy . Then SN Ry .

Proof By induction on R∗xy . �

Fact 71 Let SN Rx. Then SN R+x.
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Proof By induction on SN Rx. By unfolding of SN R+x we assume R+xy and prove

SN R+y . We have Rxx′ and R∗x′y for some x′, and SN R+x′ by the inductive

hypothesis. Case analysis on R∗x′y .

1. x′ = y . The claim is trivial since we have SN R+x′.

2. R+x′y . The claim follows by unfolding of SN R+x′. �

Fact 72 (Homomorphism) Let R be a relation on X and S be a relation on A. Let

f : X → A be a function such that S(fx)(fy) whenever Rxy . Then SN Rx if

SN S(fx).

Proof Let p := λa.∀x. fx=a→ SN Rx. We prove SN Sa→ pa for all a by induction

on SN Sa. We assume IH : ∀b. Sab → pb and prove pa. We assume fx = a and

prove SN Rx. By unfolding, we assume Rxy and prove SN Ry . We have Sa(fy) by

the assumption. By IH, we have p(fy). The claim SN Ry follows. �

Fact 73 (Uniform confluence)

Let R be uniformly confluent and WN Rx. Then SN Rx.

Proof We have Rnxy and normal Ry by Fact 68. We prove SN Rx by induction

on n. For n = 0, we have x = y and the claim follows by Fact 64. Otherwise, we

have Rxx′ and Rn−1x′y for some x′. By unfolding of the claim, we assume Rxx′′

and prove SN Rx′′. By the inductive hypothesis, it suffices to show that Rn−1x′′y ,

which follows by uniform normalization (Fact 61). �

Exercise 74 Give a relation on {0,1} such that 0 is weakly normalizing but not

strongly normalizing.

Exercise 75 Let SN Rx. Prove ¬Rxx.

Exercise 76 (Anti-monotonicity) Let R ⊆ S and SN Sx. Prove SN Rx using Fact 72.

Exercise 77 Show SN Rx if SN R+x.

14 Divergence

The dual notion for strong normalization is divergence. A point diverges if there in

an infinite path of R-steps issuing from the point. If we assume excluded middle,

every point is either strongly normalizing or diverging.

We define divergence with progressive sets. A set is a unary predicate on X. A

set p is progressive if for every x in p there is some y in p such that Rxy . A point

diverges if there exists a progressing set containing it. Formally:

progressive Rp := ∀x. px → ∃y. Rxy ∧ py progressive set

diverges Rx := ∃p. px ∧ progressive Rp diverging point

15



Fact 78 (Disjointness) There is no x such that both SN Rx and diverges Rx.

Proof We assume SN Rx and show ¬diverges Rx. By induction on SN Rx, we

assume IH : ∀a. Rxa → ¬diverges Ra and prove ¬diverges Rx. We assume

diverges Rx and prove falsity. The assumption gives us a progressive set p such

that Rxy and y is in p. Thus Rxy and y diverges, which contradicts IH. �

Fact 79 (Exhaustiveness) Assume excluded middle. Then, for every x, either

SN Rx or diverges Rx.

Proof Assume ¬SN Rx. By excluded middle, it suffices to show that x diverges.

Let p := λz.¬SN Rz. It suffices to show that p is progressive. We assume pa und

show that there is some b such that Rab and pb. We have ¬∀b. Rab → SN Rb by

unfolding. The claim follows by excluded middle. �

Exercise 80 Let x : X. Show that∀R. SN Rx∨diverges Rx implies excluded middle.

15 Local Confluence

We define local confluence of relations as follows:

locally confluent R := ∀xyz. Rxy → Rxz → ∃u. R∗yu∧ R∗zu

Example 81 There are locally confluent relations that are not confluent. For in-

stance, R12, R21, R10 and R23.

Fact 82 (Newman’s Lemma) Let R be terminating and locally confluent. Then R is

confluent.

Proof Let px := ∀yz. R∗xy → R∗xz → ∃u. R∗yu∧R∗zu. It suffices to prove px
for all x. By well-founded induction we assume IH : ∀b. Rxb → pb and prove px.

By the definition of p we assume R∗xy and R∗xz and prove that R∗yu and R∗zu
for some u. If x = y or x = z, the claim is trivial. Otherwise we have Rxx1, R∗x1y ,

Rxx2, and R∗x2z. By local confluence we have R∗x1v and R∗x2v for some v . By

IH we have some w such that R∗vw and R∗zw. By transitivity of R∗ and IH we

have R∗yu and R∗wu for some u. The claim follows by transitivity of R∗. �

16 Historical Remarks

The study of abstract reduction systems originated with Newman [7]. The notions of

confluence, semi-confluence, diamond property, uniform confluence, and local con-

fluence all appear in Newman [7] (see Theorems 1–3). The modern, relational view
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of abstract reduction systems is due to Huet [5]. Baader and Nipkow’s textbook [1]

on term rewriting starts with a chapter on abstract reduction systems.

Newman’s lemma appears as Theorem 3 in [7]. The constructive proof based on

well-founded induction is due to Huet [5]. Newman’s original proof is not construc-

tive and does not employ well-founded induction. Newman’s lemma was one of the

first proofs done with Coq [2].

Newman’s lemma is an example of a result where the constructive proof is

shorter and clearer than the classical proof. Newman defined termination as the

absence of infinite path. That well-founded induction is valid for relations disallow-

ing infinite paths was first observed by Emmy Noether. This fact can only be shown

with excluded middle.

The inductive definition of strong normalization seems to originate with Co-

quand and Huet’s [2] definition of noetherian relations and Huet’s [5] use of well-

founded induction (noetherian induction) for the proof of Newman’s lemma. New-

man [7], Huet [5], and Baader and Nipkow [1] define strong normalization as the

absence of infinite paths, thus foregoing a constructive proof of well-founded in-

duction.

The notion of parallel reduction goes back to Curry and Feys [3]. The inductive

definition of parallel reduction and its use for confluence proofs is due to Tait (1965)

and Martin-Löf (1971) (see Hindley and Seldin [4], Appendix A2). Triangle operators

originated with Takahashi’s [10] confluence proof for λβ.

The name uniform confluence is from [9, 8]. Niehren [8] observes that the weak

call-by-value λ-calculus is uniformly confluent. Dal Lago and Martini [6] prove

Fact 60 for the weak call-by-value λ-calculus.

There is much interesting material not covered in these notes, including strong

normalization proofs for typed lambda calculi and confluence and termination tech-

niques for first order rewriting systems [1].
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