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These notes are written for readers familiar with constructive type theory

and the proof assistant Coq. We expect that the reader has seen in Coq a

formalization of propositional logic with natural deduction.

1 Introduction

Untyped lambda calculus is a basic logical system everyone should know. It pro-

vides syntactic descriptions of computable functions and can express all com-

putable functions. Untyped lambda calculus is a minimal system with only three

primitives: variables, application, and functional abstraction. Untyped lambda cal-

culus was invented by Alonzo Church in the 1930s.

Untyped lambda calculus covers basic aspects of programming languages and

logical languages with bound variables. There are various refinements of untyped

lambda calculus, many of them involving types.

Untyped lambda calculus models a class of functions operating on functions.

There are no other objects but functions. Functions take functions as arguments

and return functions as results. No other objects are needed since data objects like

numbers and pairs can be represented as functions in the untyped lambda calculus.

Untyped lambda calculus is a model of computation that appeared before Tur-

ing machines. Turing himself showed that computability formalized by Turing ma-

chines agrees with computability formalized by untyped lambda calculus.

Coq encompasses a typed version of the lambda calculus. Familiarity with Coq

is very helpful in understanding the untyped lambda calculus. We assume that the

reader is familiar with Coq.

Untyped lambda calculus is the basic theoretical model for the study of syn-

tactic expressions with bound variables and substitution. Expressions with bound
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variables and substitution are part of every programming language and are used

informally in all of mathematics; for instance, {n ∈ N | n2 < 100n } is an expres-

sion describing a set using a bound variable n. As it turns out, the formalization

of syntactic expressions with bound variables and substitution takes considerable

effort.

A textbook introducing untyped lambda calculus is Hindley and Seldin [6]. An

advanced presentation of untyped lambda calculus is Barendregt [1].

We start with a informal presentation of the untyped lambda calculus and dis-

cuss important ideas and results. Formal definitions and proofs will appear latter.

2 Terms

Untyped lambda calculus comes with syntactic objects called terms. Terms can be

described with the following grammar:

s, t ::= x | st | λx.s (x ∈ N)

We speak of variables, applications, and abstractions. An abstraction λx.s de-

scribes a function taking an argument x. Technically, x is a bound variable provid-

ing a reference to the argument of the function described. For instance, the term

λx.x describes the identity function that simply returns its argument.

Bound variables may be understood as local variables that are only visible within

the abstraction in which they are introduced. We speak of the scope of a bound

variable and say that λ is a variable binder. A variable x is called free in a term s
if it appears in s at a position that is not in the scope of a binder λx. A term is

open if some variable occurs free in it, and closed if no variable occurs free in it.

For instance, λx.x is a closed term and λx.(fx)y is an open term with two free

variables f and y .

Closed terms are also called combinators. Combinators are self-contained de-

scriptions of functions. Open terms are partial descriptions of functions. Partial

terms can be refined into closed terms by replacing their free variables with closed

terms.

We adopt common notational conventions for terms:

stu � (st)u

λxy.s � λx.λy.s

λx.st � λx.(st)
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Here is a list of prominent combinators for future reference:

I := λx.x ω := λx.xx

K := λxy.x Ω := ωω

S := λfgx.fx(gx) B := λfgx.f (gx)

C := λfxy.fyx

The combinator B can be seen as a composition operator. We may write s ◦ t for the

term Bst.
Technically, the functions of the lambda calculus take only one argument. Since

the result of a function is again a function, we can write arbitrarily long application

chains st1 . . . tn. Informally, it is often convenient to speak of functions with several

arguments. For instance, we may speak of the combinator S as a function with three

arguments.

We assume that two terms are identical if their presentations are equal up to con-

sistent renaming of bound variables. We refer to this assumption as α-assumption.

For instance, λx.x and λy.y are assumed to be identical terms even if x and y
are different variables. Consistent renaming of bound variables is known as α-

renaming.

We distinguish between pre-terms and proper terms, where pre-terms are not

affected by the α-assumption. Pre-terms can be formalized with an inductive type

realizing the grammar given above, and proper terms may be understood as equiv-

alence classes of pre-terms. The equivalence relation relating pre-terms that are

equal up to α-renaming is known as α-equivalence. Given this language, two pre-

terms represent the same term if and only they are α-equivalent.

Exercise 1 Formalize pre-terms with an inductive type in Coq. Formalize the notion

of free variables of pre-terms with an inductive predicate free x s.

3 De Bruijn Representation of Terms

De Bruijn [5] came up with a simple inductive representation of terms avoiding

bound variables and α-renaming. De Bruijn terms are obtained with the following

inductive definition:

s, t ::= n | st | λs (n ∈ N)

With De Bruijn’s term representation binders do not introduce bound variables.

Reference to a binder is established with an index n saying how many binders

must be skipped on the path to the binder. Here are examples of De Bruijn terms
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representing closed terms:

λfxy. fxy � λ λ λ 2 1 0

λf . f (λx. fx(λy. fxy)) � λ 0 (λ 1 0 (λ 2 1 0))

Here is an example of a De Bruijn term with free variables:

(λxy.fyx)x � (λ λ (f+2) 0 1) x

An index n that is below d binders refers to one of the binders if n < d, and to the

free variable x = n− d if n ≥ d.

Exercise 2 Represent in Coq pre-terms and De Bruijn terms with inductive types.

Write a function from pre-terms to De Bruijn terms such that two pre-terms are

α-equivalent if and only if they are mapped to the same De Bruijn term.

4 Beta Redexes and Substitution

A β-redex is a term of the form (λx.s)t. A β-redex (λx.s)t may be simplified

(λx.s)t � sxt

to the term sxt , where sxt is obtained from the term s by substituting the term t for

the variable x. The simplification of β-redexes captures the idea that λx.s describes

a function and that (λx.s)t describes the application of the function to a term t.
We need to clarify the notion of substitution before we say more about the sim-

plification of terms. We say that sxt is obtained from s by substituting t for x, or

by substituting x with s. The following examples clarify what we mean by this. We

assume that f , x, y , g, and z are distinct variables.

(fxy)xy = fyy

(fxyx)xz = fzyz

((λx.x)x)xz = (λx.x)z

(λxy.fxy)fg = λxy.gxy

(λxy.fxy)fgz = λxy.gzxy

(λxy.fxy)fgx = (λzy.fzy)fgx = λzy.gxzy

Note that only free occurrences of x are affected by a substitution sxt . Also note the

last example, which shows that for a substitution sxt we may have to rename bound

variables of s to avoid capturing of free variables of t. Capturing cannot occur if t
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xyu = x if x ≠ y

yyu = u

styu = syu t
y
u

(λx.s)yu = λx.syu if x ≠ y and x not free in u

(λy.s)yu = λy.s

λx.s = λy. sxy if y not free in s

syu = s if y not free in s

sxx = s

Figure 1: Substitution laws

is closed. If a free occurrence of x in s is in the scope of a bound variable z and z
occurs free in t, the bound variable z has to be renamed in s.

We postpone a formal definition of substitution based on De Bruijn terms. As it

comes to our informal view of terms, we can say that sxt is a total operation taking

three arguments and satisfying the substitution laws shown in Figure 1. The last

two substitution laws follow by induction on s from the other laws.

Fact 3 (Free Variables) If z is free sxt , then z is free in either s or in t.

5 Beta Equivalence

We capture the idea that (λx.s)t and sxt describe the same object with a equivalence

relation s ≡ t on terms called β-equivalence. We define β-equivalence as an induc-

tive predicate with the rules shown in Figure 2. From the inductive definition it is

clear that β-equivalence is the least equivalence relation on terms (last three rules)

that respects the β-law (first rule) and the term structure (second and third rule).

Informally, we can say that β-equivalence is the abstract equality that results from

assuming the β-law, where assuming the β-law means that we can rewrite every

subterm with the β-law in either direction (known as contraction and expansion).
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(λx.s)t ≡ sxt

s ≡ s′ t ≡ t′

st ≡ s′t′
s ≡ s′

λx.s ≡ λx.s′

s ≡ s
s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

Figure 2: Inductive definition of β-equivalence

Example 4 We have SKK ≡ I. This can be verified with the following derivation.

SKK = (λfgx.fx(gx))KK
≡ λx.Kx(Kx)
= λx.(λxy.x)x(Kx)
≡ λx.(λy.x)(Kx)
≡ λx.x
= I

Closed terms are descriptions of functions such that β-equivalent closed terms

describe the same function. It turns out that equivalences between open terms are

also interesting since all there substitution instances are valid β-equivalence.

Fact 5 (Substitutivity) If s ≡ t, then sxu ≡ txu.

Proof Let s ≡ t. Then sxu ≡ (λx.s)u ≡ (λx.t)u ≡ txu. �

The proof tells us that substitutivity is a straightforward consequence of the

β-law. We may say that the β-law internalizes substitution.

Recall that we assume that terms satisfy the α-law. There is the possibility to

work with pre-terms and to formalize α-equivalence with an inductive predicate.

In such a set-up substitution may be defined as a partial operation on pre-terms.

Church’s original formalization of the λ-calculus is based on pre-terms and an ex-

plicit notion of α-equivalence. This style of formalization is also used in the text-

book [6]. In contrast, Barendregt [1] and many others choose to work with an infor-

mal notion of terms satisfying the α-law (as we have done so far).

Exercise 6 Prove the following equivalences.

1. SKK ≡ I
2. BCC ≡ λfxy.fxy

Exercise 7 Let s ≡ t and u ≡ v . Prove sxu ≡ txv .

6



(λx.s)t � sxt

s � s′

st � s′t
t � t′

st � st′
s � s′

λx.s � λx.s′

Figure 3: Inductive definition of β-reduction

Exercise 8 We have (λx.s)x ≡ s. Explain which substitution law is needed to obtain

the equivalence.

6 Beta Reduction

The simplification of a β-redex (λx.s)t to sxt is known as β-reduction. Figure 3 de-

fines an inductive predicate s � t that formally defines β-reduction. The statement

s � t says that t is obtained from s by simplifying a single β-redex appearing as a

subterm of s.
We write s �n t if t can be obtained from s with n β-reductions, and s �∗ t if

s �n t for some n ≥ 0. Formally, s �∗ t is the reflexive and transitive closure of

s � t. We have SKK �2 λx.Kx(Kx) �2 I.

Fact 9 If s � t, then s �∗ t and s ≡ t. Moreover, if s �∗ t, then s ≡ t.

Fact 10 s ≡ t is the least equivalence relation containing s � t.

A rigorous proof of Fact 10 requires work. We will study a proof latter.

Fact 11 (Free Variables) If s � t and x is free in t, then x is free in s.

Fact 12 (Substitutivity) If s � t, then sxu � txu. Moreover, if s �∗ t, then sxu �∗ txu.

β-reduction is a computational notion. We may consider the process that given

a term β-reduces the term as long as this is possible. If the term contains several

β-redexes, the process may choose which β-redex it reduces next. There are terms

on which β-reduction always terminates:

SKK � (λgx.Kxg)K � (λgx.(λy.x)g)K � (λg.I)K � I

There are also terms on which β-reduction never terminates:

ωω �ωω � · · ·

Finally, there are terms on which β-reduction may terminate or may not terminate:

KI(ωω) � (λy.I)(ωω) � I
KI(ωω) � KI(ωω) � · · ·
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(λx.s)t ⇒ sxt

s ⇒ s′

λx.s ⇒ λx.s′

neutral s s ⇒ s′

st ⇒ s′t
neutral s normal s t ⇒ t′

st ⇒ st′

Figure 4: Inductive definition of leftmost-outermost reduction

A term is normal if it contains no β-redex. Note that the combinators I, K, S,

and ω are normal, and that the combinator Ω is not normal.

Fact 13 A term is normal if and only if it cannot be β-reduced.

Exercise 14 Formalize normality of De Bruijn terms and show that it is decidable.

7 Evaluation

Given two terms s and t, we say that s evaluates to t and write s ⇓ t if s �∗ t and

t is normal. If s evaluates to t, we say that t is a normal form of s. Note that the

combinator Ω has no normal form. A main result about the lambda calculus says

that every term has at most one normal form.

An interpreter for the lambda calculus is an algorithm that given a term com-

putes a normal form of the term whenever there is one. From the term KIΩ we

learn that the naive strategy that reduces some beta redex as long as there is one

does not suffice for an interpreter (since KIΩ � KIΩ but also KIΩ � I). It is known

that the strategy that always reduces the leftmost outermost β-redex finds a normal

form whenever there is one.

In Coq we have β-redexes and β-reduction for typed terms. The typing ensures

that β-reduction always terminates. Thus every term has a normal form in Coq.

We say that a term is weakly normalizing if it has a normal form. A term is

strongly normalizing if there is no infinite β-reduction chain issuing from it. The

term KIΩ is weakly normalizing but not strongly normalizing. If a term is strongly

normalizing, a naive reduction strategy suffices for evaluation. We say that a term

is normalizing if it is weakly normalizing.

Figure 4 shows the formal definition of leftmost-outermost reduction. A term is

neutral if it is either a variable or an application.

We state formally that leftmost-outermost reduction is a deterministic and com-

plete reduction strategy.

Fact 15 If s ⇒ t, then s � t.
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Fact 16 If s is not normal, then there exists exactly one term t such that s ⇒ t.

Theorem 17 (Curry 1958) s ⇓ u if and only if s ⇒∗ u and u is normal.

8 Church-Rosser Theorem

There is a fundamental theorem relating β-equivalence with β-reduction.

Theorem 18 (Church-Rosser 1936)

If s ≡ t, then s �∗ u and t �∗ u for some term u.

The proof of the theorem is not straightforward and the original proof by Church

and Rosser is very informal. We will see a formal proof of the theorem latter.

There are many important consequences of the Church-Rosser theorem. The con-

sequences have straightforward proofs given the theorem.

Corollary 19

1. A term has at most one normal form.

2. If s ≡ t and t is normal, then s �∗ t and s ⇓ t.
3. If s and t are normal, then s ≡ t iff s = t.
4. Different normal forms are not equivalent.

The facts stated by the corollary are of great importance for computational cor-

rectness proofs. If we want to argue that a term s evaluates to a term t or that

two terms are equivalent as it comes to evaluation, we can use equational reasoning

based on β-equivalence. This is easier than arguing about β-reduction directly.

Exercise 20 Prove Corollary 19.

Exercise 21 (Capture is deadly) Suppose (λy.yx)xy = λy.yy (i.e., substitution is

capturing for the given instance). Show that under this assumption every combi-

nator is equivalent to I. Hint: Exploit substitutivity of β-equivalence. The Church-

Rosser theorem is not needed.

9 Fixed Point Combinators

A fixed point of a function f is an argument x such that fx = x. It turns out that

every function of the untyped λ-calculus has a fixed point. This important fact has

a straightforward proof.

A fixed point combinator is a combinator R such that

Rs ≡ s(Rs)
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for every term s. We can see a fixed point combinator as a function that yields a

fixed point for every function of the lambda calculus.

Fact 22 R is a fixed point combinator if and only if Rx ≡ x(Rx) for some variable x.

Proof Follows with substitutivity. �

Two well-known fixed point combinators are T and Y :1

A := λxf . f (xxf)

T := AA

Y := λf . (λx.f (xx))(λx.f (xx))

Fact 23 T is a fixed point combinator such that Tf �2 f(Tf).

Fact 24 Y is a fixed point combinator.

Proof We have

Yf � (λx.f (xx))(λx.f (xx))

Yf �2 f((λx.f (xx))(λx.f (xx))

Thus Yf ≡ f(Yf). �

Exercise 25 Let X be a set of numbers with two different elements a and b. Give a

function from X to X that has no fixed point.

Exercise 26

1. Give a term B such that B ≡ xB.

2. Give a term C such that C ≡ λxy.xCy .

3. Give a term D such that Dxyz ≡ xyzD.

Exercise 27 Prove that there is no normal fixed point combinator.

Exercise 28 (Span) The span of a term is the minimal number of variables needed

to write a term. It turns out that β-reduction can increase the span of a term. To

show this, find a combinator M such that M �∗ λx1 . . . xn.M(x1 . . . xn) for every

n ≥ 1. Hint: It suffices to find a combinator M such that M �∗ λxy.M(xy)

1T is attributed to Turing (1937) and Y to Curry and Rosembloom; see [6]. T is usually written as Θ.
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10 Recursive Functions

We assume that the reader is familiar with the notion of a recursive function, which

is realized in most programming languages. We will now see that the notion of a

recursive function can be elegantly formalized in the untyped λ-calculus.

A declaration of a recursive function may look like this:

f := s

The arguments the recursive function f is taking may be expressed on the right

hand side with the term s (e.g, we may have s = λxy.s′). What makes the decla-

ration recursive is the fact that the name f has at least one free occurrence in the

term s. What the declaration is asking for is a term t such that

t ≡ sft

or, equivalently,

t ≡ (λf .s)t

Thus the declaration asks for a fixed point of the function λf .s. Such a fixed point

can be obtained with any fixed point combinator R. Given a fixed point combinator

R, the function f declared by

f := s

can be given explicitly as the term R(λf .s).
This is all we need to say about recursive functions in the untyped lambda cal-

culus. The next section contains several concrete examples for recursive functions

in the untyped lambda calculus.

Exercise 29 Given distinct variables f ,x1, . . . , xn and a term s, find a term t such

that tx1 . . . xn ≡ sft . Informally, we may say that t solves the possibly recursive

equation fx1 . . . xn = s for f .

11 Scott Representation of Inductive Data Types

Consider the inductive data type for natural numbers in Coq:

nat := O : nat | S : nat→ nat

The type provides us with two constructors O and S and a match for numbers. We

may represent the match for numbers with the function

Mnaf := match n | O ⇒ a | S n′ ⇒ fn′
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The function represents the two rules of the match with the arguments a and f . We

call these arguments continuations.

In untyped lambda calculus, we now represent a number n as the function Mn.

This gives us the following representation for numbers:

0̂ := λaf .a

Ŝn := λaf .f n̂

We speak of Scott numerals since this representation was invented by Dana Scott.

Successor and predecessor functions for Scott numerals may be written as follows:

succ := λx. λaf .fx

pred := λx. x 0̂ I

Verification of the correctness of succ and pred is straightforward:

succ n̂ ≡ Ŝn

pred 0̂ ≡ 0̂

pred Ŝn ≡ n̂

We now come to addition of Scott numerals. We start with a recursive addition

function:

add m n := match m | 0⇒ n | Sm′ ⇒ S(add m′ n)

Except for the recursion, the translation of the function to λ-calculus is straightfor-

ward:

add x y := xy (λz. succ(add z y))

As discussed in the previous section, the recursive function add can be expressed

with a fixed point combinator R.

Add := λfxy. xy(λz. succ(fzy))

add := RAdd

Note that the encoding has an additional argument f for the recursive reference.

It is not difficult to verify the correctness of the encoding. First we prove that

add satisfies the Dedekind equations:

add 0̂ y ≡ y

add Ŝn y ≡ succ (add n̂ y)
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No induction is needed for the proof of the equivalences. Here is the proof of the

second equivalence:

add Ŝn y ≡ Add add Ŝn y fixed point property of R

�3 Ŝn y (λz. succ (add z y))

�2 (λz. succ (add z y)) n̂ definition of Ŝn

� succ (add n̂ y)

The correctness of add

add m̂ n̂ ≡ Æm+n
now follows by natural induction on m using the Dedekind equivalences for add

and the correctness equivalence for succ.

We now see that we can follow common functional programming techniques

in the untyped λ-calculus and that the correctness of recursive functions can be

established with standard techniques based on β-equivalence.

It is not difficult to write and verify functions in the untyped λ-calculus providing

multiplication, subtraction, and primitive recursion for Scott numerals.

Moreover, Scott’s encoding works for inductive data types in general, not just

numbers. Here are the encodings for booleans, pairs, and lists:

true := λab.a bool := true : bool | false : bool

false := λab.b

pair x y := λf .fxy Pair := pair : X → Y → Pair

nil := λaf .a list := nil : list | cons : X → list→ list

cons x y := λaf .fxy

Exercise 30 Define a recursive function computing factorials and prove its correct-

ness.

Exercise 31 Define recursive functions that append and reverse lists in the lambda

calculus and prove their correctness.

Exercise 32 (Mutual Recursion) Given terms s and t, find terms u and v such that

u ≡ suv and v ≡ tuv . Hint: Use T and pairs.
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12 Declarations

We define a language on top of the untyped lambda calculus that offers declarations

for possibly recursive functions:

D ::= fx1 . . . xn := s declaration

P ::= s | D;P program

Note that a program is a sequence of declarations followed by a term. A program is

a description of a term that can be obtained from the programm with the following

compilation function C (R is some fixed point combinator).

C s := s

C (fx1 . . . xn := s; P) := (C P)fλx1... xn.s if f not free in s

C (fx1 . . . xn := s; P) := (C P)fR(λfx1... xn.s) if f free in s

Note that the compilation function C defines the meaning of programs and declara-

tions. We may speak of a definitional compiler.

13 Church Numerals and Primitive Recursion

Church encoded the natural numbers as iterator functions. This way operations

like addition and multiplication can be expressed as non-recursive functions. Even

a primitive recursion combinator can be expressed without recursion.

Following Church, we encode a number n as a normal combinator that iterates a

given function n-times:

n := λfa.fna

f 0s := s

fn+1s := f(fns)

We call the term n the Church numeral for n. Here are the first four Church

numerals.

0 = λfa.a

1 = λfa.fa

2 = λfa.f (fa)

3 = λfa.f (f(fa))

Note that the Church numerals are normal combinators. This ensures that numerals

for different numbers are not β-equivalent.
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Sometimes it is helpful to think of a numeral n as an operator λf .fn that applied

to a function f yields the function fn.

Exercise 33 Write a function in Coq mapping numbers to Church numerals repre-

sented as pre-terms. Prove that the function is injective and yield normal pre-terms.

13.1 Successor Function

We express the successor function as the following normal combinator.

succ := λxfa.f (xfa)

The proof of the correctness statement

succ n ≡ n+ 1

is straightforward:

succ n ≡ λfa. f (nfa) ≡ λfa. f (fna) = λfa. fn+1a = n+ 1

Exercise 34 Prove succf g ≡ g ◦ fg.

13.2 Addition, Multiplication, Exponentiation

The so-called Dedekind equations fully characterize addition and multiplication of

natural numbers based on the constructors 0 and S.

0+n = n 0 ·m = 0

Sm+n = S(m+n) Sm ·n = n+m ·n

From the equations we see that m + n can be obtained by iterating S m-times on

n, and that m · n can be obtained by iterating +n m-times on 0. This leads to the

following combinators for addition and multiplication:

add := λx.x succ mul := λxy.x (addy)0

We first show that the combinators satisfy the Dedekind equations:

add 0 n ≡ n mul 0 n ≡ 0

add Sm n ≡ succ (add m n) mul Sm n ≡ add n(mul m n)

Then we show by natural induction on m that the combinators provide addition

and multiplication for Church numerals:

add m n ≡ m+n mul m n ≡ m ·n

Since the right hand sides of the equivalences are normal, the Church-Rosse theo-

rem gives us the following correctness properties for evaluation:

add m n ⇓ m+n mul m n ⇓ m ·n
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Exercise 35 Find a combinator providing exponentiation for Church numerals.

Prove that your combinator exp satisfies exp m n ≡ mn. Do the proof in detail.

Exercise 36 Prove the following equivalences:

a) succm n ≡m+n
b) m+n ≡ λf . mf ◦nf
c) m ·n ≡m ◦n
d) mn ≡ n (B m) 1

13.3 Predecessor

At first, writing a predecessor function for Church numerals seems difficult. The

trick is to iterate on pairs.2 We start from the pair (0,0) and iterate n-times to

obtain the pair (n,n− 1).

(0,0)� (1,0)� (2,1)� · · · � (n,n− 1)

To do so, we need to represent pairs as functions.

13.4 Pairs

We encode pairs as follows.

pair := λxyf .fxy

fst := λp.p(λxy.x)

snd := λp.p(λxy.y)

The following equivalences are easy to prove:

fst (pairxy) ≡ x
snd (pairxy) ≡ y

13.5 Primitive Recursion

Primitive recursion is a definition scheme for functions on the natural numbers

introduced by Peano in 1889 as a compagnon to natural induction. We will define a

primitive recursion combinator prec satisfying the equivalences

prec x f 0 ≡ x

prec x f Sn ≡ f n(prec x f n)

2It is reported that Kleene, then a student of Church, came up with the idea during dental treatment.
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As with predecessor, we realize primitive recursion with iteration on pairs:

(0, x)� (1, f 0x)� (2, f 1 (t 0x))� · · ·

This leads to the following definition.

a := λx. pair 0 x

step := λfp. pair (succ (fst p)) (f (fst p) (snd p)

prec := λxfn. snd (n (step f) (ax))

Showing the first correctness equivalence for prec is easy. For the second correct-

ness equivalence we need the following lemma.

Sn (step f) (ax) ≡ pair Sn (f n (snd (n (step f) (ax))))

The lemma follows by induction on n.

Exercise 37 Prove the correctness of prec.

Exercise 38 The predecessor operation can be expressed with primitive recursion.

pred := prec 0 (λxy.x)

Show the correctness of pred by proving the following equivalences.

pred 0 ≡ 0

pred Sn ≡ n

14 Eta Law

We may take the view that a closed term s describes the same function as the term

λx.sx. We can formalize this view by defining an equivalence relation on terms that

realizes the η-law

λx.sx ≡ s if x is not free in s

in addition to the β-law. We speak of βη-equivalence and write s ≡βη t. We can

also have η-reduction

λx.sx � s if x is not free in s

in addition β-reduction. We speak of βη-reduction and write s �βη t. The Church-

Rosser theorem remains true for untyped λ-calculus with βη-equivalence and βη-

reduction.
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Coq’s convertibility relation accommodates both β and η. In fact, in Coq two

terms are definitionally equal if they are βη-equivalent. While β-reduction is explicit

in Coq, η-equivalence is implicit (in the same way α-equivalence is implicit). Coq’s

type discipline ensures that β-reduction always terminates. In particular, Coq’s type

discipline does not admit self-application of functions as in ω = λx.xx.

Adding the η-law has the consequence that 1 ≡ I since 1 = λfa.fa �η λf .f = I.
Thus 1 is not βη-normal. However, all other Church numerals are βη-normal and

different from the the βη-normal form of 1 (which is I). Thus the Church numerals

for two different numbers are not βη-equivalent.

It turns out that βη-equivalence is the coarsest equivalence we can have in un-

typed λ-calculus. This result is a consequence of Böhm’s theorem.

Theorem 39 (Böhm 1968) Let s and t be different βη-normal combinators. Then

there exist combinators u1, . . . , un such that

su1 . . . unxy ≡βη x
tu1 . . . unxy ≡βη y

for all variables x and y .

Corollary 40 Let ≈ be a nontrivial equivalence relation on terms sucht that s ≈ t
whenever s ≡βη t. Then ≈ and ≡βη agree on βη-normal terms.

Exercise 41 Prove BCC ≡ I under βη-equivalence.

Exercise 42 Prove that the η-law follows from λx.fx ≡ f provided f ≠ x.

Exercise 43 Find combinators u1, . . . , un that separate 0 and 1 as described by

Böhm’s theorem. Do the same for 0 and 2.

Exercise 44 Prove by induction on n that mn ≡ n m under βη-equivalence. Use

the equivalence m ·n ≡m ◦n from Exercise 36.

15 Church Numerals in Coq

We will now represent Church numerals and their operations in Coq and prove

the correctness of the operations. This will deepen our understanding of Church

numerals and raise some interesting issues about Coq.

Since Coq is typed, we must represent Church numerals as typed functions. We

represent Church numerals as members of the type

Definition Nat : Prop := ∀ X : Prop, (X→ X)→ X→ X.
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It is crucial that the variable X ranges over propositions rather than general types.

This will be explained later.

We define a function N that maps a number n to the numeral n.

Definition zero : Nat := fun X f x⇒ x.
Definition succ : Nat→ Nat := fun n X f x⇒ f (n X f x).
Definition N : nat→ Nat := fun n⇒ nat_iter n succ zero.

Use the command Compute N 7 to see the Church numeral for 7. Following the

Dedekind equations, we express addition, multiplication, and exponentiation as fol-

lows.

Definition add : Nat→ Nat→ Nat := fun m⇒m Nat succ.
Definition mul : Nat→ Nat→ Nat := fun m n⇒m Nat (add n) (N 0).
Definition exp : Nat→ Nat→ Nat := fun m n⇒ n Nat (mul m) (N 1).

We can now prove the following correctness statements.

• succ (N n) = N (S n)

• add (N m) (N n) = N (m + n).

• mul (N m) (N n) = N (m * n).

• exp (N m) (N n) = N (pow m n).

All proofs are straightforward and are based on the characteristic equations for the

operations, which hold by conversion. The proofs for addition and multiplication

are by induction on m, and the proof for exponentiation is by induction on n, as

one would expect from the definitions. The correctness proof for addition looks as

follows.

Lemma add_correct m n :
add (N m) (N n) = N (m + n).

Proof.
induction m; simpl.
− reflexivity.
− change (add (N (S m)) (N n)) with (succ (add (N m) (N n))).

now rewrite IHm.
Qed.

Exercise 45 (Primitive Recursion) Find a function

prec : ∀X : Prop. X → (Nat→ X → X)→ Nat→ X

such that

prec x f (N0) = x

prec x f (N(Sn)) = f (Nn) (prec x f (Nn))
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15.1 Predicativity of Coq’s Universe Type

We now explain why the definition

Definition Nat : Type := ∀ X : Type, (X→ X)→ X→ X.

does not work. The reason is that Type is a predicative universe. This means that

the functions of a type A := ∀X : Type. s can only be applied to types that are

smaller than A. In particular, if f is a function of type A, then f cannot be applied

to A. As a consequence, the definition

Definition add : Nat→ Nat→ Nat := fun m⇒m Nat succ.

will not type check since m:Nat is applied to Nat.

In contrast, Prop is an impredicative universe where a size restriction on types

does not exist. The universe Type can not be made impredicative since this would

result in an inconsistent system where False is provable. This is a basic fact of logic

that cannot be massaged away.

Since Nat is a proposition, it follows that we express numerals and operations

on numerals as proofs. So our representation of Church numerals shows that Coq’s

proof language has considerable computational power. Since numerals are proofs,

we cannot show in Coq that the embedding function N : nat → Nat is injective

(because of the elim restriction). Nevertheless, we can observe from the outside

that N yields different numerals for different numbers.

15.2 Church Exponentiation

Since Coq has η-conversion, we can prove the equation mn = mn and use it to

obtain an exponentiation function. We speak of Church exponentiation. For the

proof to go through, we need suitable equations for multiplication and addition.

The following works.

Definition add : Nat→ Nat→ Nat := fun m n X f x⇒m X f (n X f x).
Definition mul : Nat→ Nat→ Nat := fun m n X f⇒m X (n X f).
Definition exp : Nat→ Nat→ Nat := fun m n X⇒ n (X→ X) (m X).
Lemma add_correct m n : N (m + n) = add (N m) (N n).
Lemma mul_correct m n : N (m * n) =mul (N m) (N n).
Lemma exp_correct m n : N (pow m n) = exp (N m) (N n).

Interestingly, the above encodings of addition, multiplication, and exponentiation

will type check if Nat is defined with Type rather than Prop since they do not re-

quire an application of a numeral to the type Nat. However, once we encode the

predecessor operation, the typing problem will reoccur and cannot be avoided.
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16 SK-Terms and Weak Reduction

SK-terms are defined inductively:

1. Variables are SK-terms.

2. S and K are SK-terms.

3. st is an SK-term if s and t are SK-terms.

Theorem 46 Every term is equivalent to an SK-term.

The proof of the theorem is based on an abstraction operator that for a vari-

able x and an SK-term s yields an SK-term xs such that xs ≡ λx.s. The abstraction

operator is defined by structural recursion on SK-terms:

xx := SKK
xs := Ks if x not free in s
xst := S xs xt otherwise

Fact 47 Let s be an SK-term. Then:

1. xs �∗ λx.s.
2. y free in xs if and only if y ≠ x and y free in s.

Proof By induction on s. �

Next we define a translation operator [s] translating every term into an equiva-

lent SK-term. The definition is by structural recursion on terms.

[x] := x

[st] := [s][t]

[λx.s] := x[s]

Fact 48 [s] is an SK-term such that [s] �∗ s.

Proof By induction on s using Fact 47. �

Weak reduction is a restricted form of β-reduction that reduces only redexes of

the form Sstu and Kst. Weak reduction is arranged so that it reduces SK-terms to

SK-terms. We define weak reduction s �w t with an inductive predicate defined on

all terms:

Kst �w s Sstu �w su(tu)
s �w s′

st �w s′t
t �w t′

st �w st′

Here are facts about weak reduction.
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s, t ::= x|K|S|st (x : N)

Kst � s Sstu � su(tu)
s � s′

st � s′t
t � t′

st � st′

Kst ≡ s Sstu ≡ su(tu)
s ≡ s′ t ≡ t′

st ≡ s′t′ s ≡ s
s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

Figure 5: Definition of SK

• Weak reduction does not involve substitution.

• Weak reduction does not happen below lambda (i.e., inside abstractions).

• Weak reduction applies only to β-redexes of the form Kst or Sstu.

• SK-terms are closed under weak reduction.

• If s �w t, then s �2 t or s �3 t.

Fact 49 Let s and t be SK-terms. Then:

1. (xs)t �∗w sxt .

2. (xs)yt = x(syt ) provided x ≠ y and x is not free in t.

Proof By induction on s. �

The system consisting of SK-terms and weak reduction is known as combinatory

logic (see [6] for a full development). In combinatory logic, S and K are accommo-

dated as constants since their representation as λ-terms is not relevant. We will

refer to this system as SK. A formal definition of SK is shown in Figure 5. SK satis-

fies the Church-Rosser property.

Similar to the λ-calculus, SK is a Turing-complete programming language. There

is a fixed point combinator and inductive data types can be expressed following

Scott’s encoding. Programming is tedious in SK since abstractions must be trans-

lated away. On the other hand, SK has a straightforward formal definition.

Given the translation from terms to SK-terms, we may ask whether weak reduc-

tion can fully simulate β-reduction. This is not the case since weak reduction can

not simulate deep β-reductions (i.e., β-reductions that happen within abstractions).

See Exercise 57.

We may see SK as a subsystem of lambda calculus. This view becomes more nat-

ural if we generalize the lambda calculus to the so-called multivariate λ-calculus [9]

where an abstraction may bind n ≥ 1 arguments and can only β-reduce with that

many arguments.
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Exercise 50 Prove that every closed term is equivalent to a term that can be written

with at most three bound variables.

Exercise 51 Which condition must a term s satisfy so that λx.s ≡ Ks?

Exercise 52 Prove Facts 47, 48, and 49.

Exercise 53 Give the following SK-terms: [I], [ω], [Ω], [λx. S(K(xx))].

Exercise 54 (Divergence) Prove [Ω] �nw [Ω] for some n > 0.

Exercise 55 (Fixed point combinator) Prove [T]s �∗w s([T]s).

Exercise 56 (Church numerals in SK) We define some SK-terms (overwriting defi-

nitions done before in λ-calculus):

I := SKK 0 := KI succ := S(K(SB))I

B := S(KS)K n+ 1 := SB n

Prove the following:

a) Bstu �∗w s(tu)
b) succ s �∗w SBs
c) nst �∗w snt

Exercise 57 Weak reduction cannot simulate deep β-reduction. For instance,

λx.Ix � I, but not [λx.Ix] �∗w [I]. Determine [λx.Ix] and [I] and prove the

claim.

Exercise 58 (Shallow λ-calculus) Show that the shallow lambda calculus does not

satisfy the Church Rosser property. Shallow means that an occurrence of a β-redex

can only be reduced if it is not below a binder. Formally, shallow equivalence and

shallow reduction may be defined by omitting the compatibility rules for abstrac-

tions in Figure 2 and Figure 3. Hint: Consider K(II) and note that shallow reduction

may bury redexes. Note that weak reduction does not suffer from this problem.

Exercise 59 (Idempotent translation) Hindley and Seldin [6] give a translation [s]∗

from terms to SK-terms satisfying the following properties:

1. Soundness: [s]∗ is an SK-term.

2. Idempotence: [s]∗ = s if s is an SK-term.

3. η-property: [λx.sx]∗ = [s]∗ if x is not free in s.

4. β-property: [λx.s]∗t �∗w ([s]∗)xt .

Give the translation and prove the properties.
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17 Weak Call-By-Value Lambda Calculus

We have seen three variants of the untyped λ-calculus so far: λβ (λ-calculus with

β-reduction), λβη (λ-calculus with β-and η-reduction), and SK (SK-terms with weak

reduction). We see λβ as a subsystem of λβη, and SK as a subsystem of λβ. We now

introduce a further subsystem of λβ we call L. Using phrases from the literature, we

may characterise L as a weak call-by-value λ-calculus.

L is obtained from the λ-calculus by imposing three restrictions on β-reduction:

1. A β-redex st can only be reduced if t is an abstraction. We speak of call-by-value

β-reduction.

2. An occurrence of a β-redex can only be reduced if it does not appear within an

abstraction. We speak of shallow β-reduction.

3. A β-redex can only be reduced if it is closed.

Thus II is reducible in L, but λx.II and Ix are not reducible in L. Moreover, the term

KΩ does not have a normal form in L.

The restricted form of reduction employed by L agrees with what is realized

in call-by-value functional programming languages such as ML. The call-by-value

requirement ensures that a β-redex st can only be reduced after the argument term

t has been fully evaluated.

As it comes to programming, L retains most of the nice properties of λβ. More-

over, L enjoys a strengthened Church-Rosser theorem ensuring that every normal-

izing term is strongly normalizing. In fact, all reductions of a term to its normal

form do have the same length.

The requirement that only closed β-redexes be reduced allows for a much sim-

plified substitution operation not taking care of free variables.

Figure 6 shows the formal definition of L using De Bruijn terms. For technical

simplicity, the requirement that only closed β-redexes are reduced is not enforced.

However, the definition of L uses a simplified substitution operation that is only

correct if there are no free variables (see Exercise 71). If s �L t and s is closed, then

s � t in λβ and λη.

Fact 60 If s �L t, then s ≡L t.

Fact 61 (Uniform Confluence) Suppose s �L t1 and s �L t2. Then either t1 = t2 or

there exists a term u such that t1 �L u and t1 �L u.

Proof Observe that redexes cannot be nested and that reduction of redexes is de-

terministic. The claim now follows by induction on s �L t1. �

Uniform confluence implies the Church-Rosser property.
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s, t ::= n|st|λs (n : N)

nku := if n = k then u else n

(st)ku := sku tku
(λs)ku := λ(sk+1

u )

(λs)(λt) �L s0
λt

s �L s′

st �L s′t

t �L t′

st �L st′

(λs)(λt) ≡L s0
λt

s ≡L s′ t ≡L t′

st ≡L s′t′ s ≡L s

s ≡L t

t ≡L s

s ≡L t t ≡L u

s ≡L u

Figure 6: Definition of L

Fact 62 (Church-Rosser Property)

If s ≡L t, then s �∗L u and t �∗L u for some term u.

Uniform confluence gives L another useful property the other three systems

(λβη, λβ, SK) do not have.

Fact 63 (Uniform Normalisation) Let s �mL u und s �nL v . If u is irreducible, then

either m = n and u = v or n <m and v �m−nL u.

Fact 64 (Fixed Point Combinator) Ts �2
L s(Ts) provided s is an abstraction.

We call closed abstractions procedures and take the view that L computes with

procedures.

In order that we can program with recursive functions in L, it is essential that

recursive functions can be expressed as abstractions. Note that Ts is not even nor-

malizing. The problem can be solved by putting an η-expansion into the definition

of A (see §9). We define a function ρ from terms to abstractions:

D := λzfx. f (zzf)x

ρs := λx. s(DDs)x

We refer to ρ as recursion operator.

Fact 65 If s is a procedure, then ρs is a procedure.

Fact 66 (Recursive procedures) (ρs)t �3
L s(ρs)t provided s and t are procedures.
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Proof We have (ρs)t �L s(DDs)t and DDs �2
L ρs. The claim follows. �

Exercise 67 (Primitive Recursion) We represent numbers using Scott’s encoding:

0 := λaf .a

Sn := λaf .f n

a) Give a procedure succ and prove succ n ≡L n+ 1.

b) Give a procedure add and prove add m n ≡L m+n .

c) Give a procedure prec and prove, for procedures s and t,

prec 0 s t ≡L s
prec n+ 1 s t ≡L s n (prec n s t)

Exercise 68 (Church Numerals in L) Find a function N from numbers to terms and

procedures succ and add such that:

a) Nn is a procedure.

b) Nn is a strongly normalizing term in λβ.

c) (Nn)st �∗L snt provided s and t are procedures.

d) succ (Nn) �∗L N(n+ 1).

e) add (Nm)(Nn) �∗L N(m+n).
Verify the properties.

Exercise 69 Show that none of the systems λβη, λβ, and SK satisfies uniform nor-

malisation.

Exercise 70 Show that L-reduction is not substitutive.

Exercise 71 (Disagreement of L-Reduction) An L-reduction (λs)(λt) �L s0
λt is a β-

reduction in λβ if (λs)(λt) is closed. If (λs)(λt) is open, (λs)(λt) �L s0
λt is defined

but (λs)(λt) � s0
λt may not hold. Consider, for instance, the following β-reduction

in λβ:

(λy. x(λz.y))(λy.x) � x(λzy.x)

In De Bruijn notation, we have

(λ(x+1)(λ1))(λ(x + 1)) � x(λλ(x+2))

However, with L-reduction we have something different:

(λ(x+1)(λ1))(λ(x + 1)) �L (x+1)(λλ(x + 1))

Exercise 72 (Span) We define the span of a De Bruijn term as the largest index

occurring in the term. Show that L-reduction does not increase the span of a term.

Compare the situation with reduction in λβ, see Exercise 28.
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18 Summary: Untyped Lambda Calculus as Programming

Language

We have seen that the untyped lambda calculus provides us with an idealized func-

tional programming language with recursive functions and inductive data types.

The combination of inductive datatypes and recursive functions gives us a Turing-

complete language (i.e., all computable functions can be expressed).

What is spectacular about the untyped λ-calculus is its simplicity and elegance,

both as it comes to programming and program verification. There are only three

syntactic constructs and only one semantic principle (the β-law). Values of induc-

tive data types are expressed as normal combinators. We can reason about the

correctness of procedures just based on β-equivalence.

19 Historical Remarks

Church and his coworkers had tremendous difficulties in coming up with a rigor-

ous formulation of the λ-calculus, as witnessed, for instance, by Church’s presen-

tation [2] from 1941. Much early work on the λ-calculus was done by Curry and

Feys [3]. Both Church [2] and Curry and Feys [3] work with pre-terms and treat α-

equivalence explicitly. Barendregt [1] pioneered the informal and abstract view of

terms based on the α-assumption. Barendregt [1] (Appendix C) also suggests that

a term should be understood as a De Bruijn term. Hindley and Seldin [6] do not

follow Barendregt’s lead and works with pre-terms and explicit α-equivalence.

According to Barendregt [1], the precise nature of variables and the difference

between free and bound variables was first clarified by Frege and Peirce. The idea

to express bound variables with S and K was first formulated by Schönfinkel [10].

Much information about SK and related systems of combinatory logic can be

found in Hindley and Seldin [6].

Interest in the weak call-by-value calculus is more recent. Dal Lago and Martini [7]

show that the weak call-by-value calculus and Turing machine can simulate each

other with polynomial overhead.

Scott’s encoding of inductive data types appeared first for numbers [4, 11]. Mo-

gensen [8] used Scott’s encoding for terms and constructed a self-interpreter. Dal

Lago and Martini [7] use Scott’s encoding for the weak call-by-value calculus.
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