
Compiling Arithmetic Expressions

Gert Smolka, Saarland University

December 5, 2017

We specify and verify a compiler from arithmetic expressions to programs for

a stack machine. This popular case study provides a perfect start for a course

on the theory of programming languages. We base everything on constructive

type theory and provide an accompanying Coq development.

1 Expressions

We consider an inductive type Exp of simple arithmetic expressions:

e : Exp ::= n | e1 + e2 | e1 − e2 (n : N)

We fix a semantics for expressions with a recursive function

E : Exp→ N

defined as follows:

E n = n
E (e1 + e2) = E e1 +E e2

E (e1 − e2) = E e1 −E e2

2 Machine Language

We also define a machine language with the following commands:

c : Com ::= n | add | sub (n : N)

We fix a semantics for the machine language with a tail-recursive function

R : L (Com)→ L (N)→ L (N)

1



executing programs (i.e., lists of commands) on stacks of numbers:

R nil B = B
R (n :: A) B = R A (n :: B)

R (add :: A) (n1 :: n2 :: B) = R A (n1 +n2 :: B)

R (sub :: A) (n1 :: n2 :: B) = R A (n1 −n2 :: B)

R _ _ = nil otherwise

The function R may be understood as a machine that executes a program on a stack

of numbers. If there are not enough arguments on the stack for an operation, the

machine returns the empty stack.

Exercise 1 Write a more informative version of R returning a stack option where �
models the case that the machine has crashed since there were not enough argu-

ments on the stack. Prove that R A (n :: B) = bCc implies C ≠ nil.

3 Compiler

We define a recursive function

γ : Exp→ L (Com)

compiling expressions to machine programs:

γn = [n]
γ(e1 + e2) = γe2++γe1++[add]

γ(e1 − e2) = γe2++γe1++[sub]

We now would like to show the correctness of the compiler:

R (γe) nil = [Ee] (1)

The equation says that the machine applied to the compilation of an expression

and the empty value stack yields a singleton stack consisting of the value of the

expression.

4 Correctness Proof

We will show equation (1) by induction on e. As is, the induction does not go

through since recursive calls of R employ more general programs and more general

value stacks. The induction goes through if we generalise equation (1) to more

general programs and general value stacks.

2



Theorem 2 R (γe++A) B = R A (Ee :: B).

Proof By induction on e. The case for addition proceeds as follows:

R (γ(e1 + e2)++A) B
= R (γe2++γe1++[add]++A) B definition γ

= R (γe1++[add]++A) (Ee2 :: B) inductive hypothesis

= R ([add]++A) (Ee1 :: Ee2 :: B) inductive hypothesis

= R A ((Ee1 + Ee2) :: B) definition R

= R A (E(e1 + e2) :: B) definition E

The equational reasoning implicitly employs certain standard laws for ++ (associa-

tivity and computational laws). �

Corollary 3 R (γe) nil = [Ee].

Proof Follows with Theorem 2 with A = B = nil. �

Exercise 4 Compare the paper proof of the correctness theorem with the proof

generated by the proof script in the accompanying Coq development.

Exercise 5 (Decompilation) Write a decompilation function δ : L (Com) → O(Exp)
such that δ(γe) = bec. Prove the correctness of your function.

5 Discussion

The semantics of the expressions and programs considered here is particularly sim-

ple since evaluation of expressions and execution of programs can be accounted for

by structural recursion.

The use of recursive functions for semantic purposes in Coq’s type theory is

rather limited because of the confinement to structural recursion. This already

shows if one consider a tail-recursive interpreter for expressions. Since such an

interpretation function is not structurally recursive, one is forced to model it as a

functional inductive predicate.

We represented expressions as abstract syntactic objects using an inductive type.

Inductive types are the canonical representation of abstract syntactic objects. A

concrete syntax for expressions would represent expressions as strings. While con-

crete syntax is important for the practical realisation of programming systems, it

has no semantic relevance.

Compilation of expressions appears as first example in Chlipala’s textbook [1],

where it is also used to get the reader acquainted with Coq.

3



References

[1] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic In-

troduction to the Coq Proof Assistant. The MIT Press, 2013.

4


	Expressions
	Machine Language
	Compiler
	Correctness Proof
	Discussion

