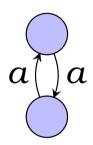
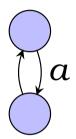
Verhaltensäquivalenzen für CCS

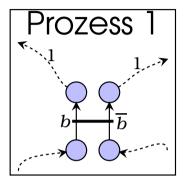
Theorie kommunizierender Systeme

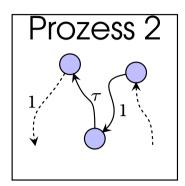

Holger Dell

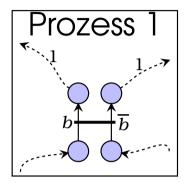
Betreuer: Tim Priesnitz

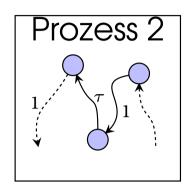
Lehrstuhl für Programmiersysteme - Prof. Gert Smolka



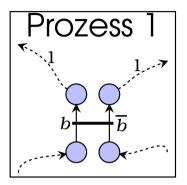


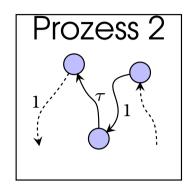


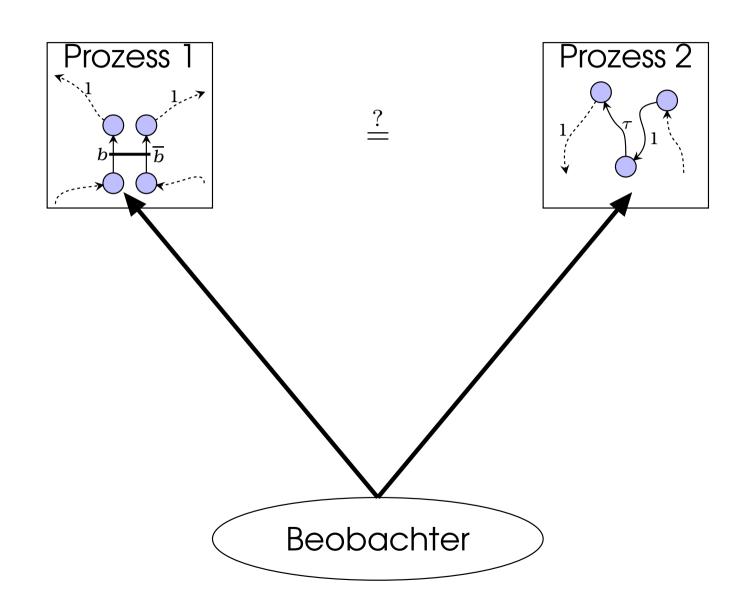

Inhalt

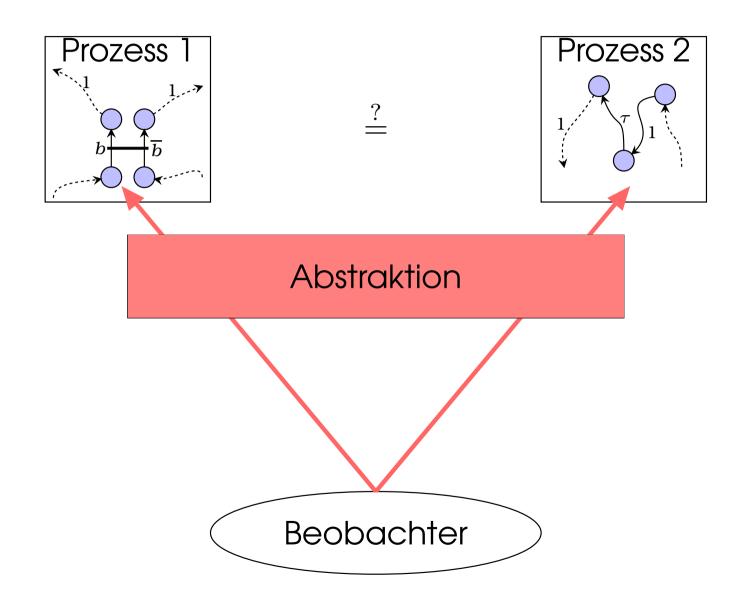

Gleichheitstheorie

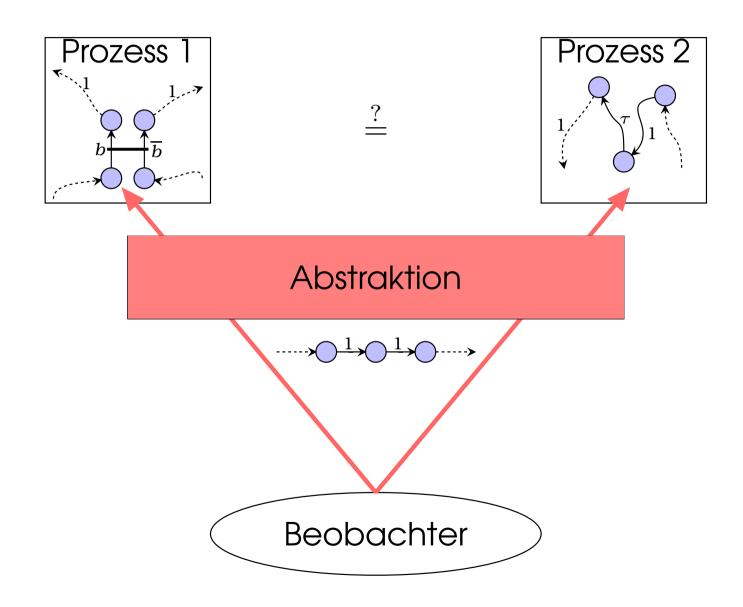
Beobachtungen starke Äquivalenz schwache Äquivalenz

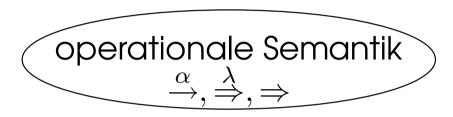


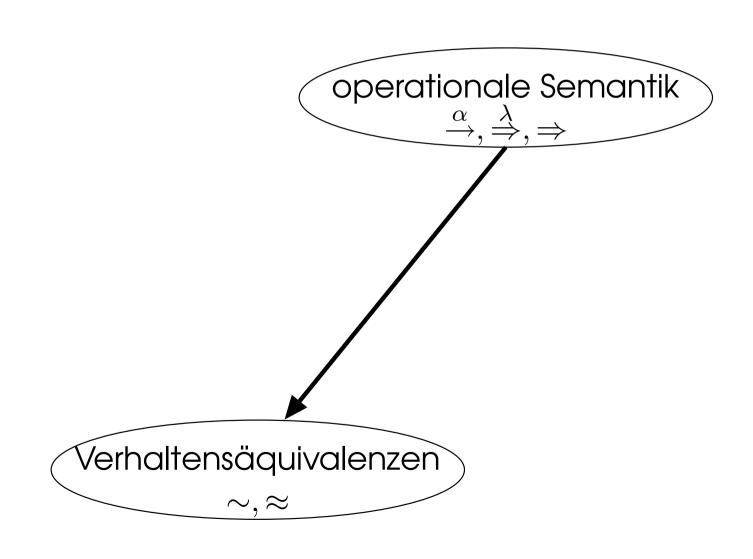


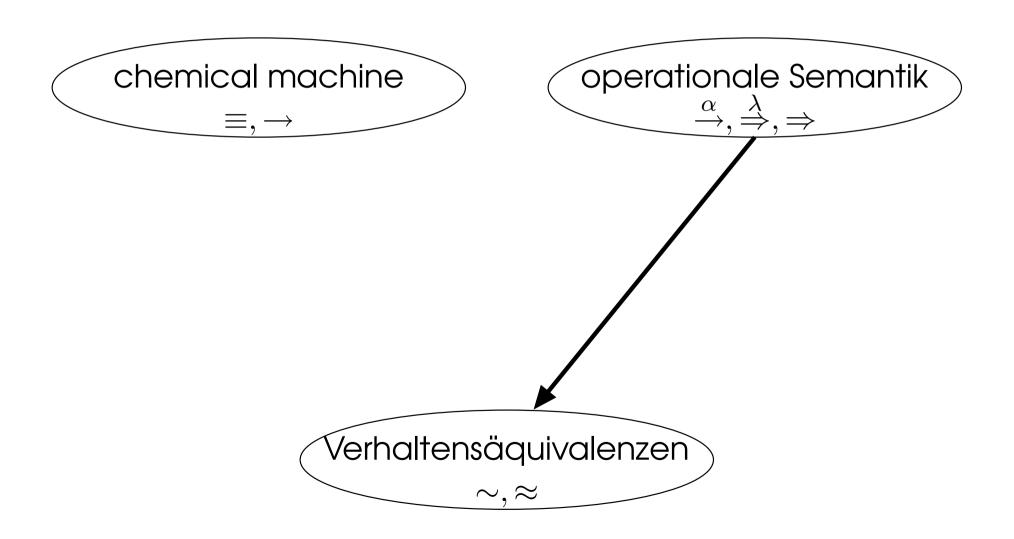

Beobachter

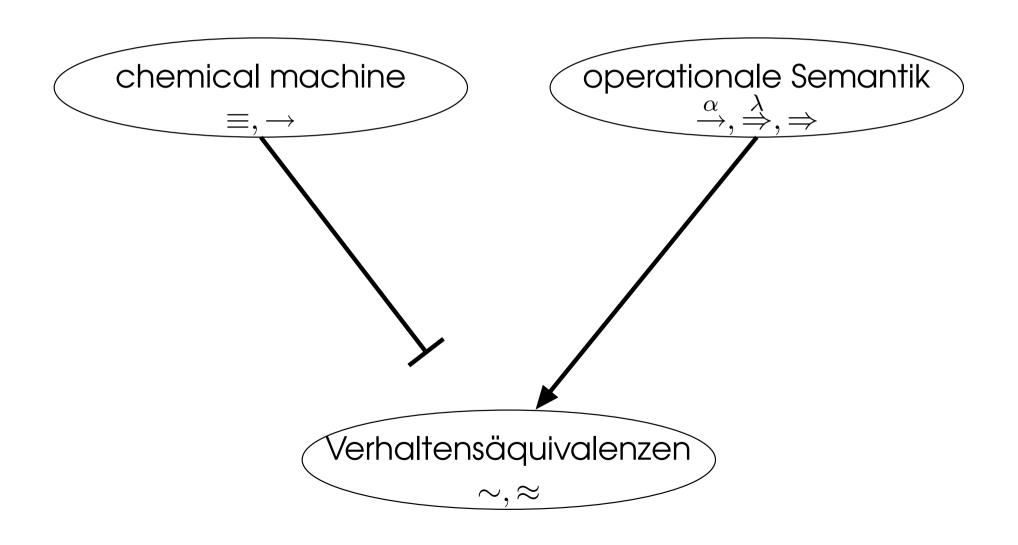


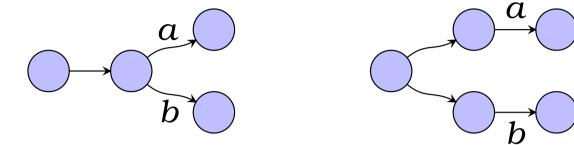


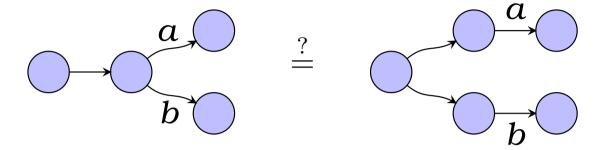

Beobachter

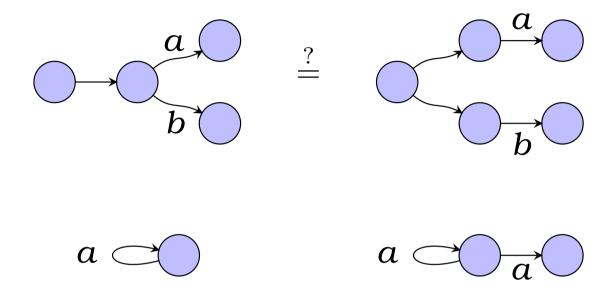


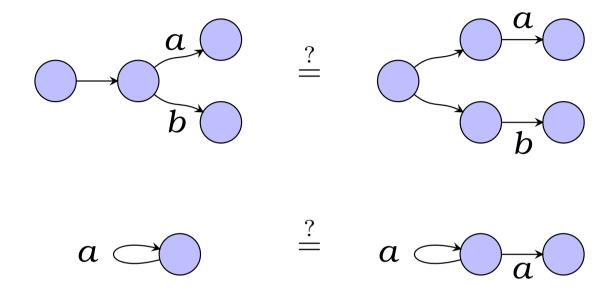


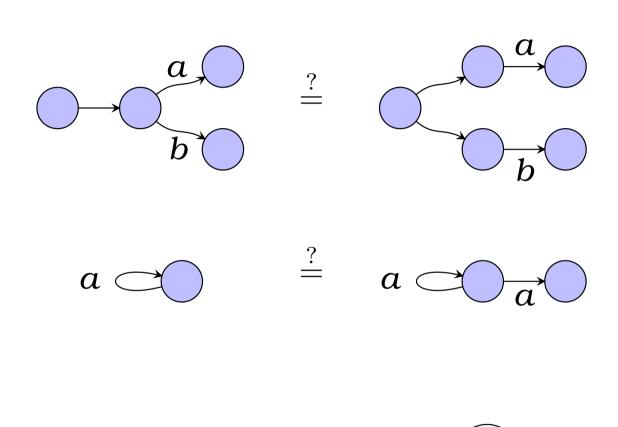


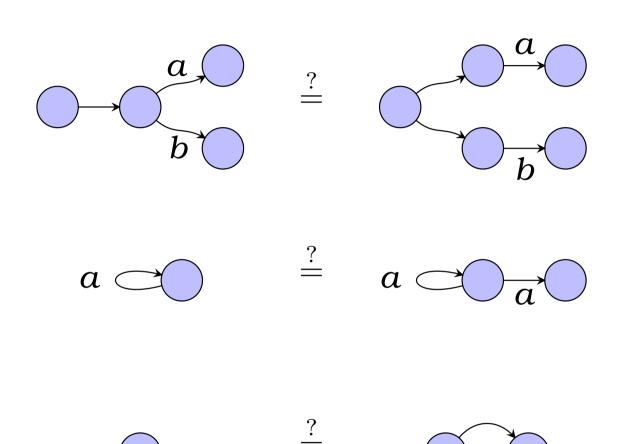










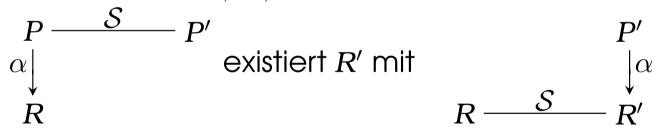


starke Äquivalenz ($P \sim P'$)
Definition

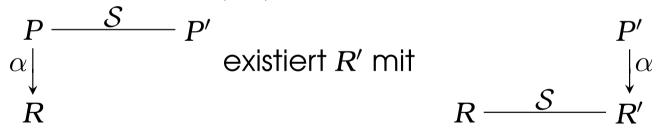
starke Äquivalenz ($P \sim P'$) Definition

ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS

starke Äquivalenz ($P \sim P'$) Definition

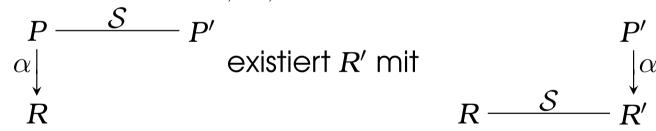

- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten.

- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten.
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.

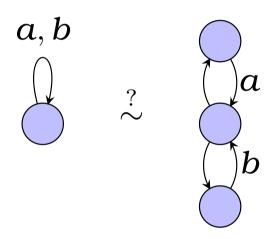

- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten.
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- $ightharpoonup P \sim P'$ definiert über Bisimulationen:

- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten.
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- $ightharpoonup P \sim P'$ definiert über Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt Simulation:

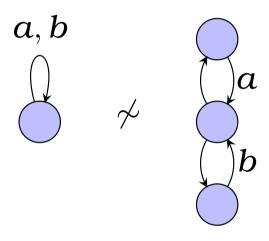
- ightharpoonup Übersetzen: CCS-Ausdrücke P, P' in LTS
 - CCS-Ausdrücke als Knoten.
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- $ightharpoonup P \sim P'$ definiert über Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt Simulation: für alle Knoten P, P', R und Aktionen α mit



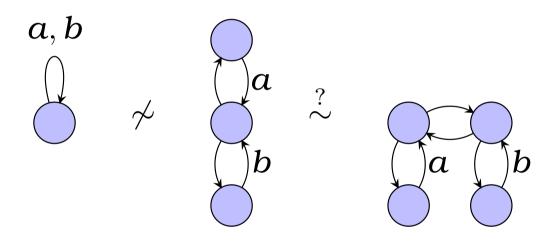
- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten.
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- $ightharpoonup P \sim P'$ definiert über Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt Simulation: für alle Knoten P, P', R und Aktionen α mit

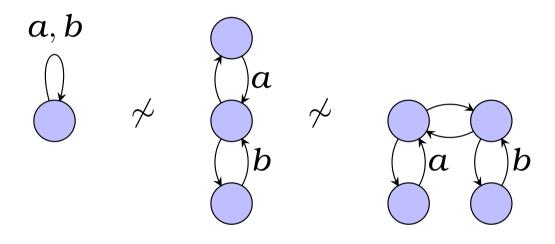

▶ Definition: S Bisimulation: S und S^{-1} Simulationen

- ightharpoonup Übersetzen: CCS-Ausdrücke P, P' in LTS
 - CCS-Ausdrücke als Knoten.
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- $ightharpoonup P \sim P'$ definiert über Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt Simulation: für alle Knoten P, P', R und Aktionen α mit

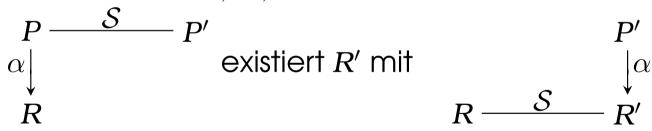


- ▶ Definition: S Bisimulation: S und S^{-1} Simulationen
- Definition: $P \sim P'$: es gibt eine Bisimulation $\mathcal S$ mit $P\mathcal SP'$

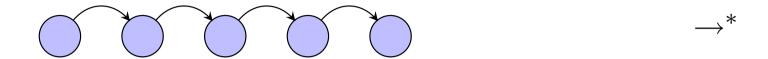

Beispiel: starke Äquivalenz (\sim) Lotterien

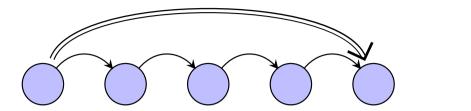

Beispiel: starke Äquivalenz (\sim) Lotterien

Beispiel: starke Äquivalenz (\sim) Lotterien

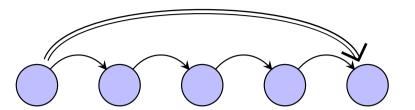


Beispiel: starke Äquivalenz (\sim) Lotterien

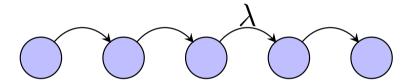


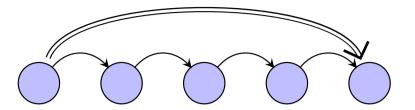

Review: starke Äquivalenz ($P \sim P'$)

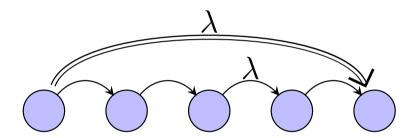
- ightharpoonup Übersetzen: CCS-Ausdrücke P, P' in LTS
 - CCS-Ausdrücke als Knoten
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- $ightharpoonup P \sim P'$ definiert über Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt Simulation: für alle Knoten P, P', R und Aktionen α mit

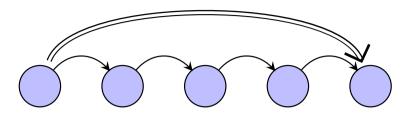


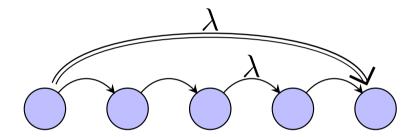
- ▶ Definition: S Bisimulation: S und S^{-1} Simulationen
- ▶ Definition: $P \sim P'$: es gibt eine Bisimulation S mit PSP'



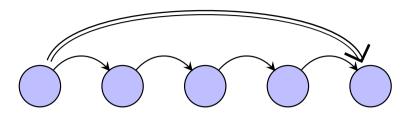

$$\Rightarrow$$
 := \rightarrow^*

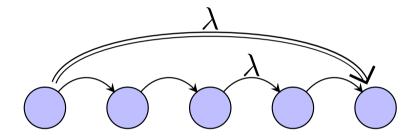

$$\Rightarrow$$
 := \rightarrow^*

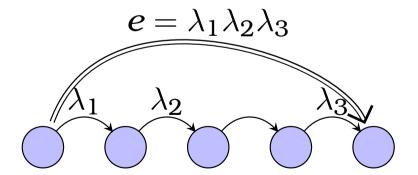

$$\Rightarrow \stackrel{\lambda}{\rightarrow} \Rightarrow$$


$$\Rightarrow$$
 := \rightarrow^*

$$\stackrel{\lambda}{\Rightarrow}$$
 := $\Rightarrow \stackrel{\lambda}{\rightarrow} \Rightarrow$


$$\Rightarrow$$
 := \rightarrow^*


$$\stackrel{\lambda}{\Rightarrow}$$
 := $\Rightarrow \stackrel{\lambda}{\rightarrow} \Rightarrow$


$$\stackrel{\lambda_1}{\Rightarrow} \stackrel{\lambda_2}{\Rightarrow} \stackrel{\lambda_3}{\Rightarrow} \dots$$

$$\Rightarrow$$
 := \rightarrow^*

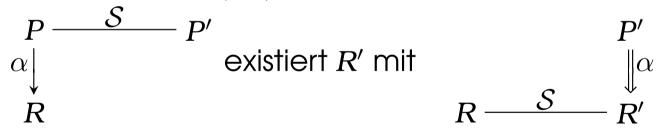
$$\stackrel{\lambda}{\Rightarrow}$$
 := $\Rightarrow \stackrel{\lambda}{\rightarrow} \Rightarrow$

$$\overset{e}{\Rightarrow} := \overset{\lambda_1}{\Rightarrow} \overset{\lambda_2}{\Rightarrow} \overset{\lambda_3}{\Rightarrow} \dots$$

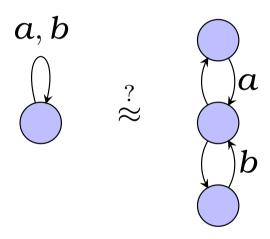
- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- ightharpoonup P pprox P' definiert über schwache Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt schwache Simulation: für alle Knoten P, P', R und Experimente e mit

- ▶ Definition: S schwache Bisimulation: S und S^{-1} schwache Simulationen
- ▶ Definition: $P \approx P'$: es gibt eine schwache Bisimulation S mit PSP'

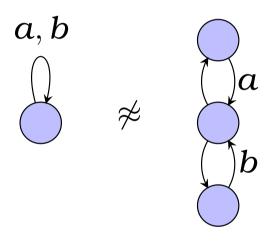
- ightharpoonup Übersetzen: CCS-Ausdrücke P, P' in LTS
 - CCS-Ausdrücke als Knoten
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- ightharpoonup P pprox P' definiert über schwache Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt schwache Simulation: für alle Knoten P, P', R und Experimente e mit


- ▶ Definition: S schwache Bisimulation: S und S^{-1} schwache Simulationen
- ▶ Definition: $P \approx P'$: es gibt eine schwache Bisimulation S mit PSP'

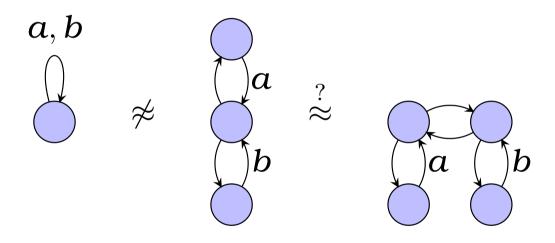
- ightharpoonup Übersetzen: CCS-Ausdrücke P,P' in LTS
 - CCS-Ausdrücke als Knoten
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- ightharpoonup P pprox P' definiert über schwache Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt schwache Simulation: für alle Knoten P, P', R und Aktionen α mit

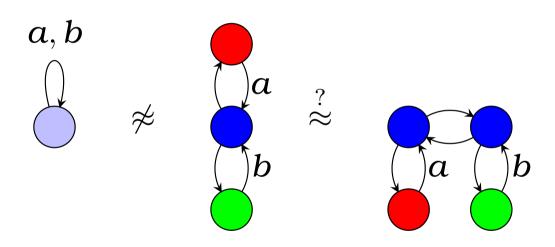

- ▶ Definition: S schwache Bisimulation: S und S^{-1} schwache Simulationen
- ▶ Definition: $P \approx P'$: es gibt eine schwache Bisimulation S mit PSP'

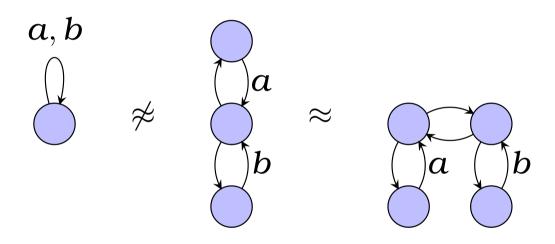
- ightharpoonup Übersetzen: CCS-Ausdrücke P, P' in LTS
 - CCS-Ausdrücke als Knoten
 - ▶ Transitionen durch Regeln $\stackrel{\alpha}{\rightarrow}$.
- ightharpoonup P pprox P' definiert über schwache Bisimulationen:
 - ▶ Definition: Relation $\stackrel{\mathcal{S}}{-}$ heißt schwache Simulation: für alle Knoten P, P', R und Aktionen α mit



- ▶ Definition: S schwache Bisimulation: S und S^{-1} schwache Simulationen
- ▶ Definition: $P \approx P'$: es gibt eine schwache Bisimulation S mit PSP'


Beispiel: schwache Äquivalenz (\sim) Lotterien


Beispiel: schwache Äquivalenz (\sim) Lotterien


Beispiel: schwache Äquivalenz (~) Lotterien

Beispiel: schwache Äquivalenz (\sim) Lotterien

Beispiel: schwache Äquivalenz (~) Lotterien

ightharpoonup \sim ist die größte Bisimulation.

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $lackbox{P}(\stackrel{ au}{
 ightarrow}\circ\equiv)P'\Longleftrightarrow P
 ightarrow P'$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $\blacktriangleright P(\overset{\tau}{\rightarrow} \circ \equiv) P' \Longleftrightarrow P \rightarrow P'$
- $ightharpoonup P \approx \tau.P$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $\blacktriangleright P(\overset{\tau}{\rightarrow} \circ \equiv) P' \Longleftrightarrow P \rightarrow P'$
- $ightharpoonup P \approx \tau.P$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $P(\stackrel{\tau}{\rightarrow} \circ \equiv) P' \Longleftrightarrow P \rightarrow P'$
- $P \approx \tau P$
- $\qquad \qquad (\text{new }a)a.P \sim 0 \sim (\text{new }a)\overline{a}.P$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $\blacktriangleright P(\overset{\tau}{\rightarrow} \circ \equiv) P' \Longleftrightarrow P \rightarrow P'$
- $ightharpoonup P pprox \tau.P$
- $\qquad \qquad (\text{new }a)a.P \sim 0 \sim (\text{new }a)\overline{a}.P$
- ▶ Um P' simuliert P zu testen, genügt es, Relation S zu finden, sodass

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $P(\overset{\tau}{\rightarrow} \circ \equiv) P' \Longleftrightarrow P \rightarrow P'$
- $ightharpoonup P \approx \tau . P$
- ▶ (new a) $a.P \sim 0 \sim (\text{new } a)\overline{a}.P$
- ▶ Um P' simuliert P zu testen, genügt es, Relation S zu finden, sodass
 - für alle Knoten P, P', R und Aktionen α mit

$$P \stackrel{\mathcal{S}}{\longrightarrow} P'$$
 existiert R' mit $Q = \mathbb{S} = \mathbb{S} = \mathbb{S}$

- ightharpoonup \sim ist die größte Bisimulation.
- ightharpoonup pprox ist die größte schwache Bisimulation.
- $ightharpoonup P \equiv P' \Longrightarrow P \sim P'$
- $ightharpoonup P \sim P' \Longrightarrow P \approx P'$
- $ightharpoonup P(\stackrel{ au}{
 ightharpoonup}\circ\equiv)P'\Longleftrightarrow P
 ightarrow P'$
- $P \approx \tau . P$
- ▶ $(\text{new } a)a.P \sim 0 \sim (\text{new } a)\overline{a}.P$
- Um P' simuliert P (schwach) zu testen, genügt es, Relation S zu finden, sodass
 - für alle Knoten P, P', R und Aktionen α mit

$$P \stackrel{\mathcal{S}}{\longrightarrow} P'$$
 existiert R' mit P'
 $R \stackrel{\boxtimes \mathcal{S}}{\longrightarrow} R'$

Verhaltensäquivalenzen Übersicht

$$\equiv$$
 structural congruence chemical machine \equiv, \rightarrow $(\rightarrow) = (\stackrel{\tau}{\rightarrow} \circ \equiv)$

$$\sim$$
 strong equivalence $\stackrel{lpha}{ o}$ $_{P}$ -

$$pprox$$
 weak equivalence

$$\Rightarrow$$
, $\stackrel{\lambda}{\Rightarrow}$ $P \stackrel{\approx}{\longrightarrow} P$

$$(\to) = (\xrightarrow{\tau} \circ \equiv)$$

$$P \stackrel{\sim}{\longrightarrow} R$$
 $\alpha \downarrow \alpha \downarrow \alpha$
 $P' \stackrel{\sim}{\longrightarrow} R'$

Referenzen

- ▶ R. Milner, "Communicating and Mobile Systems: the π -Calculus", Cambridge University Press, 1999.
- ► H. Hermanns, "Verification" (Vorlesungsskript), Universität des Saarlandes, 2003.
- ► G. Berry und G. Boudol, "The Chemical Abstract Machine." (Theoretical Computer Science), 96:217-248, 1992.