
Existential Types

Ralph Debusmann

rade@ps.uni-sb.de

Programming Systems Lab

Universität des Saarlandes

Existential Types – p.1/42



Overview

1. Typing and evaluation rules

2. Encoding existential types

3. Abstract data types (ADTs) and objects
(a) Introducing ADTs
(b) Introducing objects
(c) Objects vs. ADTs

Existential Types – p.2/42



Overview

1. Typing and evaluation rules
2. Encoding existential types

3. Abstract data types (ADTs) and objects
(a) Introducing ADTs
(b) Introducing objects
(c) Objects vs. ADTs

Existential Types – p.3/42



Existential introduction

• an existentially typed value introduced by pairing a type with a
term: 〈S, t〉

• intuition: value 〈S, t〉 of type ∃X.T is a module with a type
component S and a term component t, where [S/X]T.

Existential Types – p.4/42



Existential introduction

• an existentially typed value introduced by pairing a type with a
term: 〈S, t〉

• intuition: value 〈S, t〉 of type ∃X.T is a module with a type
component S and a term component t, where [S/X]T.

Existential Types – p.4/42



Example

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

type component

term component

Existential Types – p.5/42



Example

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

type component

term component

Existential Types – p.5/42



Example

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

type component

term component

Existential Types – p.5/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory

Existential Types – p.6/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory

Existential Types – p.6/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory

Existential Types – p.6/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory

Existential Types – p.6/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory

Existential Types – p.6/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory

Existential Types – p.6/42



Type annotation

• e.g.:

〈Int, {a = 5, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ X}

〈Int, {a = 5, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}

Existential Types – p.7/42



Type annotation

• e.g.:

〈Int, {a = 5, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ X}

〈Int, {a = 5, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}

Existential Types – p.7/42



Revised typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 as ∃X.T : ∃X.T
T-PACK

Existential Types – p.8/42



Revised typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 as ∃X.T : ∃X.T
T-PACK

Existential Types – p.8/42



Existential elimination

• an existentially typed value m is eliminated by binding its type and
term components to variables X and x, and use them in
calculating t2:

open 〈X, x〉 = m in t2

Existential Types – p.9/42



Example

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}

open 〈X, x〉 = m4 in (λy : X. (x.f y)) x.a;

. 1 : Int

Existential Types – p.10/42



Example

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}

open 〈X, x〉 = m4 in (λy : X. (x.f y)) x.a;

. 1 : Int

Existential Types – p.10/42



Example

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}

open 〈X, x〉 = m4 in (λy : X. (x.f y)) x.a;

. 1 : Int

Existential Types – p.10/42



Typing rule for existential elimination

Γ ` t1 : ∃X.T1 Γ,X, x : T1 ` t2 : T2

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK’

Existential Types – p.11/42



Typing rule for existential elimination

Γ ` t1 : ∃X.T1

Γ,X, x : T1 ` t2 : T2

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK’

Existential Types – p.11/42



Typing rule for existential elimination

Γ ` t1 : ∃X.T1 Γ,X, x : T1 ` t2 : T2

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK’

Existential Types – p.11/42



Evaluation rule

open 〈X, x〉 = (〈S, t〉 as T1) in t2

→ [S/X][t/x]t2

Existential Types – p.12/42



Evaluation rule

open 〈X, x〉 = (〈S, t〉 as T1) in t2 →

[S/X][t/x]t2

Existential Types – p.12/42



Evaluation rule

open 〈X, x〉 = (〈S, t〉 as T1) in t2 → [S/X][t/x]t2

Existential Types – p.12/42



Example

• all operations on term x must be warranted by its abstract type,
e.g. we cannot use x.a concretely as a number (since the
concrete type of the module is hidden):

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in succ(x.a);

. Error : argument of succ is not a number

Existential Types – p.13/42



Example

• all operations on term x must be warranted by its abstract type,
e.g. we cannot use x.a concretely as a number (since the
concrete type of the module is hidden):

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in succ(x.a);

. Error : argument of succ is not a number

Existential Types – p.13/42



Example

• all operations on term x must be warranted by its abstract type,
e.g. we cannot use x.a concretely as a number (since the
concrete type of the module is hidden):

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in succ(x.a);

. Error : argument of succ is not a number

Existential Types – p.13/42



Example

• all operations on term x must be warranted by its abstract type,
e.g. we cannot use x.a concretely as a number (since the
concrete type of the module is hidden):

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in succ(x.a);

. Error : argument of succ is not a number

Existential Types – p.13/42



Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type

Existential Types – p.14/42



Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type

Existential Types – p.14/42



Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} Γ,X, x ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type

Existential Types – p.14/42



Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} Γ,X, x ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type

Existential Types – p.14/42



Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} Γ,X, x ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type

Existential Types – p.14/42



Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} Γ,X, x ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type

Existential Types – p.14/42



Revised typing rule for existential elimination

Γ ` t1 : ∃X.T1 Γ,X, x : T1 ` t2 : T2

X /∈ FV(T2)

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK

Existential Types – p.15/42



Revised typing rule for existential elimination

Γ ` t1 : ∃X.T1 Γ,X, x : T1 ` t2 : T2 X /∈ FV(T2)

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK

Existential Types – p.15/42



Overview

1. Typing and evaluation rules

2. Encoding existential types
3. Abstract data types (ADTs) and objects

(a) Introducing ADTs
(b) Introducing objects
(c) Objects vs. ADTs

Existential Types – p.16/42



Duality

• universal types: ∀X.T is a value of type [S/X]T for all types S.

• existential types: ∃X.T is a value of type [S/X]T for some type S.
• idea: exploit duality to encode existential types using universal

types, using the equality:

∃X.T = ¬∀X.¬T

Existential Types – p.17/42



Duality

• universal types: ∀X.T is a value of type [S/X]T for all types S.

• existential types: ∃X.T is a value of type [S/X]T for some type S.

• idea: exploit duality to encode existential types using universal
types, using the equality:

∃X.T = ¬∀X.¬T

Existential Types – p.17/42



Duality

• universal types: ∀X.T is a value of type [S/X]T for all types S.

• existential types: ∃X.T is a value of type [S/X]T for some type S.
• idea: exploit duality to encode existential types using universal

types, using the equality:

∃X.T = ¬∀X.¬T

Existential Types – p.17/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding existential elimination

• given:
open 〈X, x〉 = t1 in t2

where t1 : ∀Y.(∀X.T → Y)→ Y

• £rst apply to result type T2 to get type (∀X.T → T2)→ T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 . . .

• then apply to continuation of type ∀X.T → T2 to get result type T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 (λX.λx : T.t2)

Existential Types – p.19/42



Encoding existential elimination

• given:
open 〈X, x〉 = t1 in t2

where t1 : ∀Y.(∀X.T → Y)→ Y

• £rst apply to result type T2 to get type (∀X.T → T2)→ T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 . . .

• then apply to continuation of type ∀X.T → T2 to get result type T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 (λX.λx : T.t2)

Existential Types – p.19/42



Encoding existential elimination

• given:
open 〈X, x〉 = t1 in t2

where t1 : ∀Y.(∀X.T → Y)→ Y

• £rst apply to result type T2 to get type (∀X.T → T2)→ T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 . . .

• then apply to continuation of type ∀X.T → T2 to get result type T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 (λX.λx : T.t2)

Existential Types – p.19/42



Encoding existential introduction

• given:
〈S, t〉 as ∃X.T

we must use S and t to build a value of type ∀Y.(∀X.T → Y)→ Y

• begin with two abstractions:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y) . . .

• apply f to appropriate arguments: £rst, supply S:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T→ Y). f S . . .

• then supply t of type S to get result type Y:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y). f S t

Existential Types – p.20/42



Encoding existential introduction

• given:
〈S, t〉 as ∃X.T

we must use S and t to build a value of type ∀Y.(∀X.T→ Y)→ Y

• begin with two abstractions:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y) . . .

• apply f to appropriate arguments: £rst, supply S:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T→ Y). f S . . .

• then supply t of type S to get result type Y:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y). f S t

Existential Types – p.20/42



Encoding existential introduction

• given:
〈S, t〉 as ∃X.T

we must use S and t to build a value of type ∀Y.(∀X.T→ Y)→ Y

• begin with two abstractions:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y) . . .

• apply f to appropriate arguments: £rst, supply S:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T→ Y). f S . . .

• then supply t of type S to get result type Y:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y). f S t

Existential Types – p.20/42



Encoding existential introduction

• given:
〈S, t〉 as ∃X.T

we must use S and t to build a value of type ∀Y.(∀X.T→ Y)→ Y

• begin with two abstractions:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y) . . .

• apply f to appropriate arguments: £rst, supply S:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T→ Y). f S . . .

• then supply t of type S to get result type Y:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y). f S t

Existential Types – p.20/42



Overview

1. Typing and evaluation rules

2. Encoding existential types

3. Abstract data types (ADTs) and objects
(a) Introducing ADTs
(b) Introducing objects
(c) Objects vs. ADTs

Existential Types – p.21/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects

Existential Types – p.22/42



Overview

1. Typing and evaluation rules

2. Encoding existential types

3. Abstract data types (ADTs) and objects

(a) Introducing ADTs
(b) Introducing objects
(c) Objects vs. ADTs

Existential Types – p.23/42



SML example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

Existential Types – p.24/42



SML example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

abstract representation type

Existential Types – p.24/42



SML example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

abstract representation type

concrete representation type

Existential Types – p.24/42



SML example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

abstract representation type

concrete representation type

interface

Existential Types – p.24/42



SML example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

abstract representation type

concrete representation type

interface

implementation

Existential Types – p.24/42



Example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

− counter.get (counter.inc counter.new);

val it = 2 : int

Existential Types – p.25/42



Example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

− counter.get (counter.inc counter.new);

val it = 2 : int

Existential Types – p.25/42



ADTs as existentials

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

• Mitchell/Plotkin 1984: “Abstract types have existential type”

Existential Types – p.26/42



ADTs as existentials

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

• Mitchell/Plotkin 1984: “Abstract types have existential type”

Existential Types – p.26/42



ADTs as existentials

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

• Mitchell/Plotkin 1984: “Abstract types have existential type”

Existential Types – p.26/42



ADTs as existentials

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

• Mitchell/Plotkin 1984: “Abstract types have existential type”
Existential Types – p.26/42



Example

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

open 〈Counter, counter〉 = CounterADT in

counter.get (counter.inc counter.new);

. 2 : Int

• type name Counter can be used just like a new base type
• e.g. we can de£ne new ADTs with representation type Counter,

e.g. a ¤ip-¤op

Existential Types – p.27/42



Example

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

open 〈Counter, counter〉 = CounterADT in

counter.get (counter.inc counter.new);

. 2 : Int

• type name Counter can be used just like a new base type
• e.g. we can de£ne new ADTs with representation type Counter,

e.g. a ¤ip-¤op

Existential Types – p.27/42



Example

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

open 〈Counter, counter〉 = CounterADT in

counter.get (counter.inc counter.new);

. 2 : Int

• type name Counter can be used just like a new base type
• e.g. we can de£ne new ADTs with representation type Counter,

e.g. a ¤ip-¤op

Existential Types – p.27/42



Example

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

open 〈Counter, counter〉 = CounterADT in

counter.get (counter.inc counter.new);

. 2 : Int

• type name Counter can be used just like a new base type

• e.g. we can de£ne new ADTs with representation type Counter,
e.g. a ¤ip-¤op

Existential Types – p.27/42



Example

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

open 〈Counter, counter〉 = CounterADT in

counter.get (counter.inc counter.new);

. 2 : Int

• type name Counter can be used just like a new base type
• e.g. we can de£ne new ADTs with representation type Counter,

e.g. a ¤ip-¤op

Existential Types – p.27/42



Flip-¤op

open 〈Counter, counter〉 = CounterADT in

FlipFlopADT =

〈Counter, {new = counter.new,

read = λc : Counter. iseven(counter.get c),

toggle = λc : Counter. counter.inc c,

reset = λc : Counter. counter.new}〉

as ∃FlipFlop.{new : FlipFlop,

read : FlipFlop → Bool,

toggle : FlipFlop → FlipFlop,

reset : FlipFlop → FlipFlop}

open 〈FlipFlop, flipflop〉 = FlipFlopADT in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

. false : Bool

Existential Types – p.28/42



Flip-¤op

open 〈Counter, counter〉 = CounterADT in

FlipFlopADT =

〈Counter, {new = counter.new,

read = λc : Counter. iseven(counter.get c),

toggle = λc : Counter. counter.inc c,

reset = λc : Counter. counter.new}〉

as ∃FlipFlop.{new : FlipFlop,

read : FlipFlop → Bool,

toggle : FlipFlop → FlipFlop,

reset : FlipFlop → FlipFlop}

open 〈FlipFlop, flipflop〉 = FlipFlopADT in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

. false : Bool

Existential Types – p.28/42



Flip-¤op

open 〈Counter, counter〉 = CounterADT in

FlipFlopADT =

〈Counter, {new = counter.new,

read = λc : Counter. iseven(counter.get c),

toggle = λc : Counter. counter.inc c,

reset = λc : Counter. counter.new}〉

as ∃FlipFlop.{new : FlipFlop,

read : FlipFlop → Bool,

toggle : FlipFlop → FlipFlop,

reset : FlipFlop → FlipFlop}

open 〈FlipFlop, flipflop〉 = FlipFlopADT in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

. false : Bool

Existential Types – p.28/42



Representation independence

• alternative implementation of the CounterADT:

CounterADT =

〈{x : Int}, {

new = {x = 1},

get = λn : {x : Int}. n.x

inc = λn : {x : Int}. {x = succ(n.x)}}〉

as ∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

• representation independence: follows from parametricity: the
whole program remains typesafe since the counter instances
cannot be accessed except using ADT operations

• Mitchell 1991, Pitts 98

Existential Types – p.29/42



Representation independence

• alternative implementation of the CounterADT:

CounterADT =

〈{x : Int}, {

new = {x = 1},

get = λn : {x : Int}. n.x

inc = λn : {x : Int}. {x = succ(n.x)}}〉

as ∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

• representation independence: follows from parametricity: the
whole program remains typesafe since the counter instances
cannot be accessed except using ADT operations

• Mitchell 1991, Pitts 98

Existential Types – p.29/42



Representation independence

• alternative implementation of the CounterADT:

CounterADT =

〈{x : Int}, {

new = {x = 1},

get = λn : {x : Int}. n.x

inc = λn : {x : Int}. {x = succ(n.x)}}〉

as ∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

• representation independence: follows from parametricity: the
whole program remains typesafe since the counter instances
cannot be accessed except using ADT operations

• Mitchell 1991, Pitts 98

Existential Types – p.29/42



ADT-style of programming

• yields huge improvements in robustness and maintainability of
large systems:

◦ limits the scope of changes to the program
◦ encourages the programmer to limit the dependencies

between parts of the program (by making the signatures of the
ADTs as small as possible)

◦ forces programmers to think about designing abstractions

Existential Types – p.30/42



ADT-style of programming

• yields huge improvements in robustness and maintainability of
large systems:
◦ limits the scope of changes to the program

◦ encourages the programmer to limit the dependencies
between parts of the program (by making the signatures of the
ADTs as small as possible)

◦ forces programmers to think about designing abstractions

Existential Types – p.30/42



ADT-style of programming

• yields huge improvements in robustness and maintainability of
large systems:
◦ limits the scope of changes to the program
◦ encourages the programmer to limit the dependencies

between parts of the program (by making the signatures of the
ADTs as small as possible)

◦ forces programmers to think about designing abstractions

Existential Types – p.30/42



ADT-style of programming

• yields huge improvements in robustness and maintainability of
large systems:
◦ limits the scope of changes to the program
◦ encourages the programmer to limit the dependencies

between parts of the program (by making the signatures of the
ADTs as small as possible)

◦ forces programmers to think about designing abstractions

Existential Types – p.30/42



Overview

1. Typing and evaluation rules

2. Encoding existential types

3. Abstract data types (ADTs) and objects
(a) Introducing ADTs

(b) Introducing objects
(c) Objects vs. ADTs

Existential Types – p.31/42



Existential objects

• two basic components: internal state, methods to manipulate the
state:

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

Existential Types – p.32/42



Invoking the get method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.get (body.state);

. 5 : Int

Existential Types – p.33/42



Invoking the get method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.get (body.state);

. 5 : Int

Existential Types – p.33/42



Encapsulating the get method

C = ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

sendget = λc : C.

open 〈X, body〉 = c in

body.methods.get (body.state)

Existential Types – p.34/42



Invoking the inc method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.inc (body.state);

. Error : scoping error

• why? X appears free in the body of the open

Existential Types – p.35/42



Invoking the inc method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.inc (body.state);

. Error : scoping error

• why? X appears free in the body of the open

Existential Types – p.35/42



Invoking the inc method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.inc (body.state);

. Error : scoping error

• why? X appears free in the body of the open

Existential Types – p.35/42



Encapsulating the inc method

• in order to properly invoke the inc method, we must repackage
the fresh internal state as a counter object:

C = ∃X.{

state : X,

methods : {

get : X → Int,

inc : X→ X}}

sendinc = λc : C.

open 〈X, body〉 = c in

〈X, {

state = body.methods.inc (body.state),

methods = body.methods}〉

as C;

Existential Types – p.36/42



Overview

1. Typing and evaluation rules

2. Encoding existential types

3. Abstract data types (ADTs) and objects
(a) Introducing ADTs
(b) Introducing objects

(c) Objects vs. ADTs

Existential Types – p.37/42



Abstract type of counters

• ADT-style: counter values are elements of the underlying
representation (i.e. simple numbers of type Int)

• object-style: each counter is a whole module, including not only
the internal representation but also the methods. Type Counter

stands for the whole existential type:

∃X.{

state : X,

methods : {

get : X → Int,

inc : X→ X}}

Existential Types – p.38/42



Abstract type of counters

• ADT-style: counter values are elements of the underlying
representation (i.e. simple numbers of type Int)

• object-style: each counter is a whole module, including not only
the internal representation but also the methods. Type Counter

stands for the whole existential type:

∃X.{

state : X,

methods : {

get : X → Int,

inc : X→ X}}

Existential Types – p.38/42



Stylistic advantages

• advantage of the object-style: since each object chooses its own
representation and operations, different implementations of the
same object can be freely intermixed

• advantage of the ADT-style: binary operations (i.e. operations that
accept ≥ 2 arguments of the abstract type) can be implemented,
contrary to objects

Existential Types – p.39/42



Stylistic advantages

• advantage of the object-style: since each object chooses its own
representation and operations, different implementations of the
same object can be freely intermixed

• advantage of the ADT-style: binary operations (i.e. operations that
accept ≥ 2 arguments of the abstract type) can be implemented,
contrary to objects

Existential Types – p.39/42



Stylistic advantages

• advantage of the object-style: since each object chooses its own
representation and operations, different implementations of the
same object can be freely intermixed

• advantage of the ADT-style: binary operations (i.e. operations that
accept ≥ 2 arguments of the abstract type) can be implemented,
contrary to objects

Existential Types – p.39/42



Binary operations and the object-style

• e.g. set objects type:

IntSet = {∃X, {state : X,methods : {empty : X,

singleton : Int → X,

member : X → Int → Bool,

union : X→ IntSet → X}}

• cannot implement the method since it can have no access to the
concrete representation of the second argument

• in reality, mainstream OO languages such as C++ and Java have
a hybrid object model that allows binary operations (with the the
cost of restricting type equivalence)

Existential Types – p.40/42



Binary operations and the object-style

• e.g. set objects type:

IntSet = {∃X, {state : X,methods : {empty : X,

singleton : Int → X,

member : X → Int → Bool,

union : X→ IntSet → X}}

• cannot implement the method since it can have no access to the
concrete representation of the second argument

• in reality, mainstream OO languages such as C++ and Java have
a hybrid object model that allows binary operations (with the the
cost of restricting type equivalence)

Existential Types – p.40/42



Binary operations and the object-style

• e.g. set objects type:

IntSet = {∃X, {state : X,methods : {empty : X,

singleton : Int → X,

member : X → Int → Bool,

union : X→ IntSet → X}}

• cannot implement the method since it can have no access to the
concrete representation of the second argument

• in reality, mainstream OO languages such as C++ and Java have
a hybrid object model that allows binary operations (with the the
cost of restricting type equivalence)

Existential Types – p.40/42



Summary

• existential types are another form of polymorphism

• existentials can be encoded using universal types
• parametricity of existentials leads to representation independence

• trade-offs between ADTs and objects:
◦ ADTs support binary operations, objects do not
◦ objects support free intermixing of different implementations,

ADTs do not

Existential Types – p.41/42



Summary

• existential types are another form of polymorphism
• existentials can be encoded using universal types

• parametricity of existentials leads to representation independence

• trade-offs between ADTs and objects:
◦ ADTs support binary operations, objects do not
◦ objects support free intermixing of different implementations,

ADTs do not

Existential Types – p.41/42



Summary

• existential types are another form of polymorphism
• existentials can be encoded using universal types
• parametricity of existentials leads to representation independence

• trade-offs between ADTs and objects:
◦ ADTs support binary operations, objects do not
◦ objects support free intermixing of different implementations,

ADTs do not

Existential Types – p.41/42



Summary

• existential types are another form of polymorphism
• existentials can be encoded using universal types
• parametricity of existentials leads to representation independence
• trade-offs between ADTs and objects:

◦ ADTs support binary operations, objects do not
◦ objects support free intermixing of different implementations,

ADTs do not

Existential Types – p.41/42



Summary

• existential types are another form of polymorphism
• existentials can be encoded using universal types
• parametricity of existentials leads to representation independence
• trade-offs between ADTs and objects:

◦ ADTs support binary operations, objects do not

◦ objects support free intermixing of different implementations,
ADTs do not

Existential Types – p.41/42



Summary

• existential types are another form of polymorphism
• existentials can be encoded using universal types
• parametricity of existentials leads to representation independence
• trade-offs between ADTs and objects:

◦ ADTs support binary operations, objects do not
◦ objects support free intermixing of different implementations,

ADTs do not

Existential Types – p.41/42



References

• Benjamin C. Pierce 2002: “Types and Programming Languages”
• Andrew M. Pitts 1998: “Existential Types: Logical Relations and

Operational Equivalence”
• John C. Mitchell 1991: “On the Equivalence of Data

Representations”
• Luca Cardelli and Xavier Leroy: “Abstract types and the dot

notation”

Existential Types – p.42/42


	Overview
	Overview
	Existential introduction
	Example
	Typing rule for existential introduction
	Type annotation
	Revised typing rule for existential introduction
	Existential elimination
	Example
	Typing rule for existential elimination
	Evaluation rule
	Example
	Scoping errors
	Revised typing rule for existential elimination
	Overview
	Duality
	Encoding
	Encoding existential elimination
	Encoding existential introduction
	Overview
	Parametricity
	Overview
	SML example
	Example
	ADTs as existentials
	Example
	Flip-flop
	Representation independence
	ADT-style of programming
	Overview
	Existential objects
	Invoking the get method
	Encapsulating the get method
	Invoking the inc method
	Encapsulating the inc method
	Overview
	Abstract type of counters
	Stylistic advantages
	Binary operations and the object-style
	Summary
	References

