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Existential introduction

• an existentially typed value introduced by pairing a type with a
term: 〈S, t〉

• intuition: value 〈S, t〉 of type ∃X.T is a module with a type
component S and a term component t, where [S/X]T.
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Example

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

type component

term component

Existential Types – p.5/42



Example

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

type component

term component

Existential Types – p.5/42



Example

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

type component

term component

Existential Types – p.5/42



Typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 : ∃X.T
T-PACK’

• we lose the unique type property, e.g.:

〈Int, {a = 5, f = λx : Int.succ(x)}〉 : ∃X.{a : X, f : X→ X}

• can also have type:

∃X.{a : X, f : X → Int}

• solution: make type annotation mandatory
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Type annotation

• e.g.:

〈Int, {a = 5, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ X}

〈Int, {a = 5, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}
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Type annotation

• e.g.:
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Revised typing rule for existential introduction

Γ ` t : [S/X]T

Γ ` 〈S, t〉 as ∃X.T : ∃X.T
T-PACK
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Existential elimination

• an existentially typed value m is eliminated by binding its type and
term components to variables X and x, and use them in
calculating t2:

open 〈X, x〉 = m in t2
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Example

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X→ Int}

open 〈X, x〉 = m4 in (λy : X. (x.f y)) x.a;

. 1 : Int
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Typing rule for existential elimination

Γ ` t1 : ∃X.T1 Γ,X, x : T1 ` t2 : T2

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK’
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Evaluation rule

open 〈X, x〉 = (〈S, t〉 as T1) in t2

→ [S/X][t/x]t2
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Example

• all operations on term x must be warranted by its abstract type,
e.g. we cannot use x.a concretely as a number (since the
concrete type of the module is hidden):

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in succ(x.a);

. Error : argument of succ is not a number
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Scoping errors

• be careful:

m4 = 〈Int, {a = 0, f = λx : Int. succ(x)}〉 as ∃X.{a : X, f : X → Int}

open 〈X, x〉 = m4 in x.a;

. Error : scoping error

• why? consider:

Γ ` m4 : ∃X.{a : X, f : X→ Int} ` x.a : X

Γ ` open 〈X, x〉 = m4 in x.a : X

• must add side condition to typing rule for existential elimination; X

may not occur in the result type
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Revised typing rule for existential elimination

Γ ` t1 : ∃X.T1 Γ,X, x : T1 ` t2 : T2

X /∈ FV(T2)

Γ ` open 〈X, x〉 = t1 in t2 : T2

T-UNPACK
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Overview
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Duality

• universal types: ∀X.T is a value of type [S/X]T for all types S.

• existential types: ∃X.T is a value of type [S/X]T for some type S.
• idea: exploit duality to encode existential types using universal

types, using the equality:

∃X.T = ¬∀X.¬T
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Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding

• encoding existential types using universal types:

∃X.T
def
= ∀Y.(∀X.T→ Y)→ Y

• operational view: a module is a value that gets a result type and a
continuation, then calls the continuation to yield the £nal result

Existential Types – p.18/42



Encoding existential elimination

• given:
open 〈X, x〉 = t1 in t2

where t1 : ∀Y.(∀X.T → Y)→ Y

• £rst apply to result type T2 to get type (∀X.T → T2)→ T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 . . .

• then apply to continuation of type ∀X.T → T2 to get result type T2:

open 〈X, x〉 = t1 in t2
def
= t1 T2 (λX.λx : T.t2)
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Encoding existential introduction

• given:
〈S, t〉 as ∃X.T

we must use S and t to build a value of type ∀Y.(∀X.T → Y)→ Y

• begin with two abstractions:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y) . . .

• apply f to appropriate arguments: £rst, supply S:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T→ Y). f S . . .

• then supply t of type S to get result type Y:

〈S, t〉 as ∃X.T
def
= λY.λf : (∀X.T → Y). f S t
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Parametricity

• consider:

m1 = 〈Int, {a = 0, f = λx : Int. 0}〉 as ∃X.{a : X, f : X → Int}

m2 = 〈Bool, {a = false, f = λx : Bool. 0}〉 as ∃X.{a : X, f : X→ Int}

• evaluation does not depend on the speci£c type of m1 and m2: it is
parametric in X:

open 〈X, x〉 = m1 in (x.f x.a)

. 0

open 〈X, x〉 = m2 in (x.f x.a)

. 0

• idea: use parametricity to construct two kinds of programmer
de£ned abstractions: abstract data types (ADTs) and objects
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SML example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;
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Example

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

− counter.get (counter.inc counter.new);

val it = 2 : int
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ADTs as existentials

signature COUNTER =

sig

type counter

val new : counter

val get : counter→ int

val inc : counter→ counter

end;

structure Counter :> COUNTER =

struct

type counter = int

val new = 1

fun get(n) = n

fun inc(n) = n+ 1

end;

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

• Mitchell/Plotkin 1984: “Abstract types have existential type”
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Example

COUNTER =

∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

CounterADT =

〈Int, {

new = 1,

get = λn : Int. n

inc = λn : Int. succ(n)}〉

as COUNTER

open 〈Counter, counter〉 = CounterADT in

counter.get (counter.inc counter.new);

. 2 : Int

• type name Counter can be used just like a new base type
• e.g. we can de£ne new ADTs with representation type Counter,

e.g. a ¤ip-¤op
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Flip-¤op

open 〈Counter, counter〉 = CounterADT in

FlipFlopADT =

〈Counter, {new = counter.new,

read = λc : Counter. iseven(counter.get c),

toggle = λc : Counter. counter.inc c,

reset = λc : Counter. counter.new}〉

as ∃FlipFlop.{new : FlipFlop,

read : FlipFlop → Bool,

toggle : FlipFlop → FlipFlop,

reset : FlipFlop → FlipFlop}

open 〈FlipFlop, flipflop〉 = FlipFlopADT in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));

. false : Bool
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Representation independence

• alternative implementation of the CounterADT:

CounterADT =

〈{x : Int}, {

new = {x = 1},

get = λn : {x : Int}. n.x

inc = λn : {x : Int}. {x = succ(n.x)}}〉

as ∃Counter.{

new : Counter,

get : Counter → Int,

inc : Counter → Counter}

• representation independence: follows from parametricity: the
whole program remains typesafe since the counter instances
cannot be accessed except using ADT operations

• Mitchell 1991, Pitts 98
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ADT-style of programming

• yields huge improvements in robustness and maintainability of
large systems:

◦ limits the scope of changes to the program
◦ encourages the programmer to limit the dependencies

between parts of the program (by making the signatures of the
ADTs as small as possible)

◦ forces programmers to think about designing abstractions
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Existential objects

• two basic components: internal state, methods to manipulate the
state:

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}
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Invoking the get method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.get (body.state);

. 5 : Int
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Encapsulating the get method

C = ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

sendget = λc : C.

open 〈X, body〉 = c in

body.methods.get (body.state)
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Invoking the inc method

c = 〈Int, {

state = 5,

methods = {

get = λx : Int. x,

inc = λx : Int. succ(x)}}

as ∃X.{

state : X,

methods : {

get : X→ Int,

inc : X → X}}

open 〈X, body〉 = c in

body.methods.inc (body.state);

. Error : scoping error

• why? X appears free in the body of the open
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Encapsulating the inc method

• in order to properly invoke the inc method, we must repackage
the fresh internal state as a counter object:

C = ∃X.{

state : X,

methods : {

get : X → Int,

inc : X→ X}}

sendinc = λc : C.

open 〈X, body〉 = c in

〈X, {

state = body.methods.inc (body.state),

methods = body.methods}〉

as C;
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Abstract type of counters

• ADT-style: counter values are elements of the underlying
representation (i.e. simple numbers of type Int)

• object-style: each counter is a whole module, including not only
the internal representation but also the methods. Type Counter

stands for the whole existential type:

∃X.{

state : X,

methods : {

get : X → Int,

inc : X→ X}}
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Stylistic advantages

• advantage of the object-style: since each object chooses its own
representation and operations, different implementations of the
same object can be freely intermixed

• advantage of the ADT-style: binary operations (i.e. operations that
accept ≥ 2 arguments of the abstract type) can be implemented,
contrary to objects
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Binary operations and the object-style

• e.g. set objects type:

IntSet = {∃X, {state : X,methods : {empty : X,

singleton : Int → X,

member : X → Int → Bool,

union : X→ IntSet → X}}

• cannot implement the method since it can have no access to the
concrete representation of the second argument

• in reality, mainstream OO languages such as C++ and Java have
a hybrid object model that allows binary operations (with the the
cost of restricting type equivalence)
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Summary

• existential types are another form of polymorphism

• existentials can be encoded using universal types
• parametricity of existentials leads to representation independence

• trade-offs between ADTs and objects:
◦ ADTs support binary operations, objects do not
◦ objects support free intermixing of different implementations,

ADTs do not
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