
Recursive Types

Marco Kuhlmann∗

Infinite but regular data structures are indispensable tools in all modern program-

ming languages. Recursive types are finite representations of such infinite struc-

tures, yielding a natural extension of the simply typed Lambda-Calculus. This pa-

per presents the formal tools needed to reason about recursive types, discusses a

generic type-checking algorithm, and demonstrates how this algorithm can be gen-

eralised to also handle subtyping.

1 Introduction

Recursion is ubiquitious in all modern programming languages: Lists and trees are

just two large classes of examples for data structures whose values may be arbitrar-

ily large, but follow a simple, regular structure. In a typed language, the structure of

a value is captured by its type, and lists and trees are instances of recursive types.

The running example for a recursive data structure that will be used throughout this

paper is the type of lists of natural numbers, NatList. Each such list is either empty

(nil) or the concatenation (cons) of a natural number (type Nat) and a possibly empty

rest list. Using an ML-like type constructor notation, the structure of the NatList type

may be written as

NatList = nil : Unit | cons : Nat× NatList.

Note that NatList occurs both to the left and to the right of the equals sign—the

definition is recursive. The Unit type used in the nil case is a dummy type with just

one value, also written Unit.

∗ This paper is the extended abstract of a talk given in a seminar on Types and Programming

Languages at Saarland University on March 5, 2003. All material, including references, was taken

from Benjamin Pierce’s book Types and Programming Languages, MIT Press 2002.

The author of this summary may be contacted via email at kuhlmann@ps.uni-sb.de.

1

+

Unit ×

Nat +

Unit ×

Nat . . .

Figure 1: Representation of the NatList type µT. Unit + Nat × T as an infinite tree. The

shaded area corresponds to a one-level unfolding of the type term.

A more abstract view on the NatList type will omit concrete names for the alterna-

tives of the sum type and make the recursion in the cons alternative explicit. The

NatList type may then be written as

NatList = µT . Unit+ Nat× T .

This notation is the µ-notation that will be formally developed in section 3.1: µ is an

abstraction operator for types, just as λ is an abstraction operator for values.

The µ-notation can be taken as a compact representation of infinite regular trees.

For example, the NatList type corresponds to the tree depicted in figure 1. Section 3

will elaborate this view.

Expressiveness of recursive types

Recursive types are an extremely expressive extension of the simply-typed Lambda-

Calculus λ→. To see this, recall that in the untyped Lambda-Calculus, recursive

functions can be defined with the help of the fixed point combinator

fix = λ f . (λx. f (xx)) (λx. f (xx)) .

This term cannot be typed in λ→, as in order to do so, the sub-term x would need to

have an arrow type whose domain is the type of x itself—something that does not

exist in λ→. In a type system with recursive types, however, the required property is

easily satisfied by the type µS. S → T , and for every type T , a fixed point combinator

can be typed as follows:

fixT = λ f : T → T . (λx : (µS. S → T). f (xx)) (λx : (µS. S → T). f (xx))

fixT : (T → T) → T

This feature was first noticed by James Morris in 1968 (Morris 1968), one of the

earliest authors to deal with recursive types in computer science.

2

A corollary of the presence of a well-typed fixed point combinator for every type T

is, that systems with recursive types do not have the strong normalisation property

according to which every well-typed term should have a normal form. More specifi-

cally, they allow for infinitely many well-typed diverging functions: For every type T ,

a function divergeT can be defined and typed that diverges when applied to Unit:

divergeT = λ _ : Unit. fixT (λx : T . x)

divergeT : Unit→ T

The existance of such functions also renders recursive type systems useless as logics

in the Curry–Howard sense: The fact that every type T is inhabited translates to the

statement that every proposition is provable.

The structure of this paper

The next section will present two ways to formalise recursive types. Section 3 intro-

duces two formal tools needed to reason about recursive types, the µ-notation and

the concept of co-induction. In section 4, a generic algorithm for membership tests

for recursive types is developed. Finally, in section 5, this algorithm is instantiated

with a typability relation for subtyping on recursive types.

2 Formalising recursive types

The literature on type systems offers two principal views on recursive types, which

may be distinguished by their answer to a simple question: What is the relation

between the recursive type µX. T and its one-step unfolding, T[X/µX. T]? In the

NatList example, this means asking for the relation between

µT . Unit+ Nat× T and Unit+ Nat× (µT . Unit+ Nat× T).

In the equi-recursive approach, a recursive type and its unfoldings are considered

to be interchangeable in all contexts—both denote the same infinite type. In the

iso-recursive approach, recursive types and their unfoldings are taken to be differ-

ent, though isomorphic types. Either of the two approaches has its benefits and

drawbacks.

The major benefit of the equi-recursive approach is that it is conceptually clean and

can be integrated into an existing type system in a straightforward fashion—the only

3

U = µX. T1 Γ ` t1 : U

Γ ` unfoldU(t1) : T1[X/U]
TUnfold

U = µX. T1 Γ ` t1 : T1[X/U]

Γ ` foldU(t1) : U
TFold

unfoldS(foldT (v1)) → v1

Figure 2: Typing rules for folding and unfolding

thing that needs to be changed is to allow type expressions to be infinite. The imple-

mentation of type-checkers for equi-recursive types is not straightforward, however;

one basic idea for such an implementation will be outlined in section 4. Another

unpleasant thing about the equi-recursive approach is that it does not smoothly

integrate with other advanced typing features, such as bounded quantification.

Implementability is the strong side of the iso-recursive approach: While on the for-

mal level, the need for an explicit isomorphism between a recursive type and its

unfoldings makes a type system more complicated, this isomorphism can often be

hidden away completely behind other language constructs in the implementation.

The rest of this section briefly discusses such “piggybacking” techniques.

Although the distinction between the equi-recursive and the iso-recursive approach

towards has been present in the literature on recursive types from the beginning, the

names for the two approaches were coined in a paper by Karl Crary, Robert Harper,

and Sidd Puri from as recent as 1999 (Crary et. al. 1999).

Folding, unfolding, and piggybacking

In the iso-recursive approach, the isomorphism between a recursive type and its

unfoldings is established by two functions unfold and fold:

unfoldµX. T : µX. T → T[X/µX. T]

foldµX. T : T[X/µX. T]→ µX. T

These functions, together with a new evaluation rule that annihilates a fold when it

meets a corresponding unfold, can then be used in the type system to equalise two

type annotations whenever their recursive types are isomorphic (figure 2).

For an iso-recursively defined NatList type, the two functions would have the types

unfoldNatList : NatList→ NatListBody

foldNatList : NatListBody→ NatList,

4

where NatListBody := Unit+ Nat× NatList. Given these functions, the two type con-

structors for the NatList type, nil and cons could be written as

nil = foldNatList(〈1,Unit〉)

cons = λn : Nat. λ l : NatList. foldNatList(〈2, (n, l)〉).

Folding can thus be hidden away behind the type constructors of an SML datatype:

Each use of a constructor implicitly includes a fold. Similarly, the unfolding of an iso-

recursive type can be “piggybacked” onto pattern matching: Each type constructor

implicitly forces an unfold operation. Variations of this technique are used in many

implementations of SML.

3 Reasoning about recursive types

This section will introduce the formal framework needed to reason about recursive

types. The basic idea is that recursive types can be represented as infinite but reg-

ular labelled trees over a signature containing type variables and type constructors

like × (for product types), + (for sum types) and → (for arrow types).

Arbitrary labelled trees can be defined like this:

Definition 1 (Labelled tree) Let (Σ,ar : Σ → N) be a signature. A labelled tree is a

partial function T ∈ N∗ → Σ where (a) T(ε) is defined, (b) T(π) is defined whenever

T(πσ) is defined, and (c) if (ar ◦ T)(π) = k, then T(πi) is defined for 1 ≤ i ≤ k.

The domain of T is called the set of the nodes of the tree; the special node ε required

by condition (a) is the root node. The codomain of T is a set of labels. Condition (b)

induces an ancestor relation on the tree: A node π1 is an ancestor of a node π2 if

and only if π1, taken as a word in N∗, is a prefix of π2.

In the context of a type system, we are only interested in trees that can be finitely

represented. These trees are called regular trees:

Definition 2 (Subtree; regular trees) Let T be a tree. A tree S is a subtree of T if

S = λσ. T(πσ) for some π . T is called regular, if the set of its subtrees is finite.

In the following, the µ-notation will be developed as a compact representation of

regular trees.

5

treeof(T1 × T2)(ε) = ×

treeof(T1 × T2)(iπ) = treeof(Ti)(π)

treeof(T1 + T2)(ε) = +

treeof(T1 + T2)(iπ) = treeof(Ti)(π)

treeof(T1 → T2)(ε) = →

treeof(T1 → T2)(iπ) = treeof(Ti)(π)

treeof(µX. T)(π) = treeof(T[X/µX. T])(π)

Figure 3: Mapping µ-types to trees

3.1 Regular trees and µ-types

As already mentioned in the introduction, regular trees can be described by µ-terms

(or µ-types—the two names are used synonymously in the following paragraphs):

Each distinct subtree is represented by a different subterm of a µ-term, and (regular)

infinity is introduced by the the µ-binder.

Definition 3 (Raw µ-terms) Let V be a set of type variables. The set of raw µ-terms

over V then is defined by the following abstract grammar:

T ,T1, T2, T
′ ::= X ∈ V | T1 × T2 | T1 → T2 | µX. T

′.

Raw µ-terms are not yet exactly what we would like to have: For example, a term like

µX. X cannot sensibly be interpreted as a regular tree. Therefore, we define µ-types

to be raw µ-terms with the additional property of being contractive:

Definition 4 (Contractive µ-terms) Let T be a raw µ-term. T is called contractive, if

it does not have the form µX. µX1 . . . µXn. X.

Each regular tree uniquely corresponds to a (contractive) µ-term. (The proof of this

proposition is omitted due to reasons of space.) In particular, there is a function

treeof that maps µ-terms to trees (figure 3). The rest of this section will present

co-induction as a proof technique for the reasoning about µ-types.

3.2 Co-inductive definitions

The central proof technique used in the reasoning about the simply-typed Lambda-

Calculus is induction. Inductively defined sets can be infinitely large, but contain

only finite objects. For sets of infinite objects, such as a µ-type as a certain set of

infinite regular trees, induction as a proof technique does not suffice.

6

Every inductively defined set X can be identified with a pair of a universe of values,

U, and a generating function, F , that eventually partitions U into the elements of X

and the non-elements. The set X then is the least fixed point of F , µF :

U = X]X = µF] µF.

Dually, a co-inductively defined set is the greatest fixed point of the generating

function F , νF . For example, if F is a generating function for the NatList type, then

µF will be the (infitely large) set of finite NatLists, while νF will contain all objects

of the NatList type, even the infinite ones.

Theorem 1, which was first published by Alfred Tarski in 1955 (Tarski 1955), char-

acterises the least and the greatest fixed point of a generating function F on a uni-

verse U in terms of set operations.

Definition 5 Let X be a subset of U.

• X is F -closed if F(X) ⊆ X.

• X is F -consistent if X ⊆ F(X).

• X is a fixed point of F if F(X) = X.

Theorem 1 (Knaster-Tarski) Let F ∈ P(U)→ P(U) be monotone.

1. The intersection of all F -closed sets is the least fixed point of F .

2. The union of all F -consistent sets is the greatest fixed point of F .

Proof: Due to lack of space, I only give the proof of the second part of the theorem.

Let C be the collection of all F -consistent sets, and let P be the union of all these

sets. Take any X ∈ C . As X is F -consistent, X ⊆ F(X). From the definition of P , we

have X ⊆ P ; together with the monotonicity of F , this yields F(X) ⊆ F(P). Thus, by

transitivity, X ⊆ F(P). Because X was arbitrary,

P =
⋃

X∈C

X ⊆ F(P).

That is, P is an F -consistent set. As F is a monotonic function, F(P) ⊆ F(F(P)), so

F(P) is F -consistent as well, thus F(P) ∈ C . Remember that for any X ∈ C , X ⊆ P , so

in particular F(P) ⊆ P—that is, P is F -closed. Because of P ⊆ F(P) (P is F -consistent)

and F(P) ⊆ P (P is F -closed), P is a fixed point of F . It is also the largest fixed point,

as every other fixed point P ′ ⊇ P would need to be F -consistent, whereas by its

definition, P already is the largest F -consistent set. �

7

The Knaster-Tarski theorem justifies induction and co-induction as two proof prin-

ciples for sets defineable by generating functions:

• Induction: To show that µF ⊆ P , show that P is F -closed.

Example: Let P be any property on (that is, subset of) the natural numbers,

which are taken to be defined by the generating function

F(N) = {0} ∪ { succ(n) | n ∈ N }.

In order to show that all n ∈ N satisfy the property P (N ⊆ P), one has to show

that P is F -closed—or, more specifically, that {0} ⊆ P and that

{ succ(p) | p ∈ P } ⊆ P.

• Co-induction: To show that P ⊆ νF , show that P is F -consistent.

(Trivial) example: Let � be the reduction relation on functional programs,

and let the set of diverging programs be defined by the generating function

F(↑) = {a | ∃b : (a� b ∧ b ∈ ↑) }.

Consider an expression Ω that reduces to itself (Ω� Ω), and let P = {Ω}. P is

F -consistent, as {Ω} = P ⊆ F(P). Therefore, P ⊆ ↑.

The concept of co-induction originates from universal algebra and category theory,

but was not employed in computer science until the 1970s. Michael Brandt and

Fritz Henglein in a paper published in 1998 were the first to give a co-inductive

axiomatisation of the equality of recursive types (Brandt and Henglein 1998).

4 Membership tests for equi-recursive types

The last section has argued that equi-recursive types can be formalised as the great-

est fixed point of some generating function F . The present section will outline an

effective algorithm that checks whether or not a given type belongs to a certain re-

cursive type—or, to name the more abstract problem, whether or not a given object

belongs to the greatest fixed point of F .

The exposition of the generic membership algorithm is based on chapter 21 of Ben-

jamin Pierce’s book on Types and Programming Languages, which in turns draws

from work by Martín Abadi, Luca Cardelli, Michael Brandt, and Fritz Henglein, pub-

lished during the second half of the 1990s.

8

4.1 A generic algorithm

Every x ∈ νF is generated by F from one or more sets Sx ⊆ νF with the property

that x ∈ F(Sx). In fact, as F is required to be monotone, it suffices to consider

the smallest sets with this property. Let us call the individual sets Sx the (smallest)

support sets of x and their collection

Gx = {Sx ⊆ U | x ∈ F(Sx) and ∀X ⊆ U : x ∈ F(X)⇒ Sx ⊆ X }

the generating set for x. One way to solve the membership problem for an object x

then is to start from νF and to trace F “backwards” in order to find a support set

for x. If such a set exists, one can conclude that x ∈ νF ; if it cannot be found, one

has to conclude that x ∉ νF . Pictorally, the chase for a Sx ∈ Gx corresponds to a

search graph with νF as its root and the inverse applications of F as its edges.

Clearly, the search for Sx will be inefficient, if elements x ∈ νF can be generated

by F in different ways—that is, if |Gx| > 1: The search tree then would necessarily

be branching, potentially leading to combinatorial explosion and to an exponential

complexity of the algorithm. There is no problem, however, if there is always at

most one path backwards. Generating functions F with this property (that is, with

the property that ∀x ∈ U : 0 ≤ |Gx| ≤ 1) will be called invertible, and only invertible

generating functions will be considered in what follows.

For invertible generating functions, the support function

supportF(x) =







X if Gx = {X},

↑ if Gx = ∅

is well-defined and can be lifted to sets by defining

supportF(X) =







⋃

x∈X supportF(x) if supportF(x)↓ for all x ∈ X,

↑ otherwise.

The support graph for a universe U of objects and a generating function F is the

graph whose edges are the elements of U and that contains an edge (x, y) whenever

x is F -supported by y , that is, y ∈ supportF(x).

With all these concepts defined, the membership problem can be reduced to a reach-

ability problem in the support graph: For a set X of objects to belong to the greatest

fixed point of F onU, X must be F -supported, and all the elements that F -support X

must be reachable from X in the support graph:

gfpF(X) = supportF(X)↓ ∧
(

supportF(X) ⊆ X ∨ gfpF(supportF(X)∪X)
)

(1)

9

4.2 Correctness

This section will establish a correctness result for the generic algorithm in (1). Re-

member that F is taken to be invertible.

The first step is to establish the relation between the notion of “being generated

by F” and the notion of “being F -supported”.

Lemma 1 X ⊆ F(Y) if and only if supportF(X)↓ and supportF(X) ⊆ Y .

Proof: I will show that x ∈ F(Y) if and only if supportF(x)↓ and supportF(x) ⊆ Y .

If x ∈ F(Y), then Gx is non-empty; at least Y is a generating set for x. In par-

ticular, since F is invertible, supportF(x), the smallest generating set, exists, and

supportF(x) ⊆ Y . Now, if supportF(x) ⊆ Y , then F(supportF(x)) ⊆ F(Y) due to the

monotonicity of F . By the definition of support, x ∈ F(support(x)), so x ∈ F(Y). �

Lemma 2 Let P be a fixed point of F . Then X ⊆ P if and only if supportF(X)↓ and

supportF(X) ⊆ P .

Proof: Recall that P = F(P) and apply the previous lemma. �

With the previous two lemmas, it is possible to show partial correctness of the algo-

rithm: If the algorithm terminates, it yields the correct result.

Theorem 2 (Partial correctness) Consider the algorithm in equation (1).

1. If gfpF(X) = true, then X ⊆ νF .

2. If gfpF(X) = false, then X 6⊆ νF .

Proof: The proof works by induction on the recursive structure of gfpF .

1. If gfpF(X) = true, then either

(a) supportF(X) ⊆ X, or

(b) gfpF(supportF(X)∪X) = true.

In the first case, by lemma 2, X ⊆ F(X), that is, X is F -consistent; therefore,

X ⊆ νF by the coinduction principle. In the second case, supportF(X)∪X ⊆ νF

by the induction hypothesis, and so X ⊆ νF .

10

2. If gfpF(X) = false, then either

(a) supportF(X)↑, or

(b) gfpF(supportF(X)∪X) = false.

In the first case, by lemma 2, X 6⊆ νF . In the second case, supportF(X)∪X 6⊆ νF ,

that is, X 6⊆ νF or supportF(X) 6⊆ νF . Either way, X 6⊆ νF by lemma 1.

This concludes the proof. �

Termination measure

To prove termination of the algorithm, it is important to identify reasons for possi-

ble divergence. Clearly, gfpF will diverge if supportF(X) is infinite for some X ⊆ U.

Translated to the graph metaphor, this is the case when the set of nodes reachable

from the nodes associated to X is infinite.

Definition 6 (Reachable elements) Let X be a set of nodes in the search graph of the

algorithm in (1), and let predecessorsi be a function that returns the predecessors

of the nodes in X reachable via paths of length i. Then the set of elements reachable

from X is defined as

reachableF(X) =
⋃

n≥0

predecessorsn(X).

Termination can be guaranteed for generating functions that yield finite sets of

reachable elements.

Definition 7 An invertible function F is said to be finite state if reachableF(X) is

finite for all X ⊆ U.

Theorem 3 If F is finite state, gfpF(X) terminates for any finite X ⊆ U.

Proof: Define nextF(X) := supportF(X)∪X. For each call of gfpF ,

nextF(X) ⊆ reachableF(X).

Moreover, nextF(X) strictly increases on each recursive call. Since reachableF(X) is

finite, the following serves as a decreasing termination measure:

m(gfpF(X)) := |reachableF(X)| − |nextF(X)|

This concludes the proof. �

11

4.3 Refinements of the algorithm

The generic algorithm presented in (1) can be refined in a number of ways.

Adding an accumulator

First, an obvious deficiency of the current form is that the set of F -supporting el-

ements for a given set X, supportF(X), is recomputed in every recursive call. This

inefficiency can be overcome by distinguishing between goals, elements that still

need to be shown to be reachable in the support graph, and assumptions, elements

already known to be reachable—a common technique called “adding an accumula-

tor”. The modified form of the algorithm will be named gfpaF :

gfpaF(A,X) = supportF(X)↓ ∧
(

X = ∅∨ gfpaF(A∪X, supportF(X) \ (A∪X))
)

(2)

Initially, gfpaF is called with an empty set of assumptions and X as the set of goals.

The relation between gfpaF and gfpF then is that

gfpF(X) = true ⇐⇒ gfpaF(∅, X) = true.

A nice property of gfpaF is that it is tail-recursive.

Threading the assumptions

Form (2) of the algorithm shares assumptions about F -supporting elements among

function calls at different levels of recursion, but not among calls at the same level of

recursion. This can be achieved by splitting up the goal set into individual elements,

calling the algorithm recursively for each of them, and threading the assumptions

through the call sequence. The resulting function will be named gfptF ; in contrast to

the former two forms of the algorithm, it does not return true or false, but the set

of newly computed assumptions. It also is no longer tail-recursive, as gfpaF was. The

relation between gfptF and the original gfpF is that

gfpF({x}) = true ⇐⇒ gfptF(∅, x)↓.

5 Subtyping for recursive types

This last section of the paper will instantiate the generic algorithm that was devel-

oped in the previous section with the subtype relation established in section 21.3 of

Pierce’s book, extended to recursive types.

12

S <: T[X/µX. T]

S <: µX. T

S[X/µX. S] <: T

µX. S <: T

Figure 4: Subtyping rules for µ-folding

The task of a subtype algorithm is to check whether or not two (potentially recursive)

µ-types stand in the subtype relation. This subtype relation is obtained by extending

the subtype relation for types in λ→ by two clauses for types formed using the µ-

operator (figure 4). These rules reflect the intuition that the subtype question is

decided “in the limit”: A recursive type µX. S is a subtype (supertype) of a type T if

its unfolding is.

The subtype relation on µ-types is the greatest fixed point of the following generat-

ing function:

Sµ(R) = { (S,>) | S ∈ Tµ }

∪ { (S1 × S2, T1 × T2) | (S1, T1) ∈ R, (S2, T2) ∈ R }

∪ { (S1 → S2, T1 → T2) | (T1, S1) ∈ R, (S2, T2) ∈ R }

∪ { (S, µX. T) | (S, T[X/µX. T]) ∈ R }

∪ { (µX. S, T) | (S[X/µX. S], T) ∈ R }

Before the formal results of the previous section can be applied to this generating

function, we need to establish that it is both monotone and invertible. The first task

is simple, although a proof is omitted due to lack of space. Note however, that, in

its present form, Sµ is not invertible: The generating set for the pair (µX. >, µY . >)

contains two sets {(>, µY . >)} and {(µX. >,>)}. In order to make Sµ invertible,

the symmetry between its last two clauses needs to be eliminated by introducing

additional conditions in either clause.

Assuming that Sµ can be made invertible, from (1) we automatically obtain an algo-

rithm gfpSµ that checks for membership in the subtype relation, as well as its partial

correctness.

To prove termination, we still need to show that reachableSµ(S, T) is finite for any

pair (S, T) of µ-types. This proof requires a surprising amount of work, which is

due to the fact that the subexpressions of µ-types can be defined in two different

ways: The set of top-down subexpressions directly corresponds to the subexpres-

sions generated by the supportSµ function; the set of bottom-up subexpressions is

more suitable for the proof that the set of subexpressions is finite. The complete

proof proceeds by showing that the former set is a subset of the latter.

13

This proof approach is due to Brandt and Henglein (Brandt and Henglein 1998).

Definition 8 (Bottom-up subexpressions of a µ-type)

SubB(R) = { (T , T) | T ∈ Tµ }

∪ { (S, T1 × T2) | (S, T1) ∈ R }

∪ { (S, T1 × T2) | (S, T2) ∈ R }

∪ { (S, T1 → T2) | (S, T1) ∈ R }

∪ { (S, T1 → T2) | (S, T2) ∈ R }

∪ { (S[X/µX. T], µX. T) | (S, T) ∈ R }

Proposition 1 {S | (S, T) ∈ µ SubB } is finite.

Definition 9 (Top-down subexpressions of a µ-type)

SubT (R) = { (T , T) | T ∈ Tµ }

∪ { (S, T1 × T2) | (S, T1) ∈ R }

∪ { (S, T1 × T2) | (S, T2) ∈ R }

∪ { (S, T1 → T2) | (S, T1) ∈ R }

∪ { (S, T1 → T2) | (S, T2) ∈ R }

∪ { (S, µX. T) | (S, T[X/µX. T]) ∈ R }

Proposition 2 µ SubT ⊆ µ SubB

More efficient algorithms

The first, exponential-time algorithm for the subtyping problem for recursive types

is due to Abadi and Cardelli (1993).

Dexter Kozen, Jens Palsberg and Michael Schwartzbach published a quadratic al-

gorithm based on a reformulation of the subtype relation on µ-terms in terms of

finite-state automata in 1993 (Kozen et. al. 1993). The proof that two µ-terms are in

the subtype relation can then be reduced to the proof that a product automaton of

their term automata (which can be constructed in quadratic time) does not contain

any accepting states (a linear-time problem).

Please note that all references refer to the bibliography of Pierce’s book.

14

