Seminar on Types and Programming Languages Programming Systems Lab, Saarland University

Recursive types

Marco Kuhlmann

2003-03-05

Recursive types are ubiquitious

Lists of natural numbers:

NatList = nil : Unit | cons : Nat × NatList μT . Unit + Nat × T

Dependency trees:

 $\mathsf{DTree} = \mathbf{t} : \mathsf{Lex} \mid \mathbf{n} : \mathsf{Lex} \times (\mathsf{Role} \times \mathsf{DTree}) \mathsf{List}$ $\mu T. \mathsf{Lex} + \mathsf{Lex} \times (\mathsf{Role} \times T) \mathsf{List}$

Functional counters:

Counter = get : Nat | inc : Unit \rightarrow Counter μT . Nat + (Unit $\rightarrow T$)

Recursive types as infinite trees

Recursive type definitions = specifications of infinite regular trees

Example:

NatList = nil : Unit | cons : Nat × NatList

Introduction

- Introducing recursive types
 - Intuition
 - Expressive power
 - Formalities
- Reasoning about infinite trees
- Membership tests
- Recursive types and subtyping
- Conclusions

Typing the fixed-point combinator

fix = λf . (λx . f(xx)) (λx . f(xx))

How would we type the fixed-point combinator?

- x needs to have an arrow type whose domain is the type of x itself
- property is satisfied by the recursive type $\mu S. S \rightarrow T$

A well-typed fixed-point combinator

 $\begin{aligned} \mathsf{fix}_T &= \lambda f: T \to T. \ (\lambda x: (\mu S. S \to T). f(xx)) \ (\lambda x: (\mu S. S \to T). f(xx)) \\ \mathsf{fix}_T: \ (T \to T) \to T \end{aligned}$

Typing divergence

Infinitely many well-typed diverging functions

```
diverge<sub>T</sub> = \lambda_-: Unit. fix<sub>T</sub>(\lambda x : T. x)
diverge<sub>T</sub> : Unit \rightarrow T
```

Consequences: Systems with recursive types ...

- ... do not have the strong normalisation property
- ... have at least one value of every type
- ... are useless as logics (every proposition is provable)

Two approaches towards formalising recursive types

What is the relation between a recursive type and its one-step unfolding?

 μT . Unit + Nat $\times T$ ~ Unit + Nat $\times (\mu T$. Unit + Nat $\times T$)

Two approaches:

- equi-recursive approach
- iso-recursive approach

Equi-recursive approach

What is the relation between a recursive type and its one-step unfolding?

interchangeable in all contexts

Consequences:

- conceptually clean
- infinite type expressions
- implementation can be tricky
- may interfere with other advanced typing features

Iso-recursive approach

What is the relation between a recursive type and its one-step unfolding?

different but isomorphic

Consequences:

- conceptually awkward
- finite type expressions + fold/unfold operations
- implementation rather straightforward
- implementation can often be "piggybacked"

Folding and unfolding

unfold_T and fold_T witness the isomorphism

Unfold:

unfold_{$$\mu X. T$$} : $\mu X. T \rightarrow [X \rightarrow \mu X. T]^*T$
$$\frac{U = \mu X. T_1 \qquad \Gamma \vdash t_1 : U}{\Gamma \vdash \mathsf{unfold}_U(t_1) : [X \rightarrow U]^*T_1} \text{ TUnfold}$$

Fold:

$$\begin{aligned} \mathsf{fold}_{\mu X.\,T} &: [X \to \mu X.\,T]^* T \to \mu X.\,T \\ \\ \underline{U = \mu X.\,T_1 \quad \Gamma \vdash t_1 : [X \to U]^* T_1}_{\Gamma \vdash \mathsf{fold}_U(t_1) : U} \ \mathsf{TFold} \end{aligned}$$

Piggybacking

unfold_{$\mu X, T$} : $\mu X, T \rightarrow [X \rightarrow \mu X, T]^*T$ fold_{$\mu X, T$} : $[X \rightarrow \mu X, T]^*T \rightarrow \mu X, T$

Lists of natural numbers:

 $unfold_{NatList}$: NatList \rightarrow NatListBody fold_{NatList} : NatListBody \rightarrow NatList

 $\mathbf{nil} = \text{fold}_{\text{NatList}}(\langle 1, \text{Unit} \rangle)$ $\mathbf{cons} = \lambda n : \text{Nat. } \lambda l : \text{NatList. fold}_{\text{NatList}}(\langle 2, (n, l) \rangle)$

Overview

- Introducing recursive types
- Reasoning about infinite trees
 - Infinite trees
 - Regular trees and μ -types
 - Induction and co-induction
- Membership tests
- Recursive types and subtyping
- Conclusions

Infinite trees

Let $(\Sigma, ar : \Sigma \to \mathbb{N})$ be a signature.

A **tree** is a partial function $T \in \mathbb{N}^* \to \Sigma$ where

- $T(\varepsilon)$ is defined,
- if $T(\pi\sigma)$ is defined then $T(\pi)$ is defined,
- if $(ar \circ T)(\pi) = k$, then $T(\pi i)$ is defined for and only for $1 \le i \le k$.

Terminology:

- nodes: dom(T)
- root node: $\varepsilon \in dom(T)$
- labels: codom(T)
- daughter relation: $\sigma \in \text{daughters}_{\mathsf{T}}(\pi) \iff \mathsf{T}(\pi\sigma) \downarrow$

Regular trees and μ **-types**

 μ -types are compact representations of regular trees:

- *S* is a **subtree** of *T* if $S = \lambda \sigma$. $T(\pi \sigma)$ for some π .
- *T* is **regular** if the set of its subtrees is finite.

Set of μ -types:

 $T ::= X \in \mathcal{V} \mid T_1 \times T_2 \mid T_1 \to T_2 \mid \mu X. T'$

Contractive *µ***-types**:

- $\mu X. X$ cannot reasonably be interpreted as a tree.
- allow only **contractive** *µ*-types
- *T* is contractive if it does not have the form $\mu X. \mu X_1...\mu X_n. X$

Review: Induction

Inductive definitions:

- start with a universe U of values
- want to define $X \subseteq U$
- monotone generator function $F : \mathfrak{P}(U) \to \mathfrak{P}(U)$
- consider $\mu X. F(X)$

Example:

$$N_0 = \emptyset$$

$$N_{k+1} = \{0\} \cup \{ \operatorname{succ}(n) \mid n \in N_k \}$$

$$N = \bigcup_{k=0}^{\infty} N_k = \mu k. N_k$$

Inductively defined objects are finite.

Proof techniques for infinite trees

Co-induction can deal with infinite objects.

Co-inductive definitions:

- start with a universe U of values
- want to define $X \subseteq U$
- monotone generator function $F : \mathfrak{P}(U) \to \mathfrak{P}(U)$
- consider vX. F(X)

Example: Infinite trees

- same generating function as for finite trees
- consider greatest instead of least fixed point

Induction and co-induction: Basics

Definition: Let X be a subset of \mathcal{U} .

- *X* is *F*-closed if $F(X) \subseteq X$.
- *X* is *F*-consistent if $X \subseteq F(X)$.
- X is a **fixed point** of F if F(X) = X.

Theorem: Let $F \in \mathfrak{P}(U) \to \mathfrak{P}(U)$ be monotone.

- 1. The intersection of all *F*-closed sets is the least fixed point of *F*.
- 2. The union of all *F*-consistent sets is the greatest fixed point of *F*.

Principle of induction

 $\mu X. F(X) := \bigcap \{ X \mid F(X) \subseteq X \}$ is the least fixed point of *F*.

Principle of induction: $F(X) \subseteq X \Rightarrow \mu F \subseteq X$

Proof technique: To show that $\mu F \subseteq P$, show that *P* is *F*-closed.

Example: Let P be any property on natural numbers, which are taken to be defined by the generating function

 $F(N) = \{0\} \cup \{ \operatorname{succ}(n) \mid n \in N \}.$

To show that all $n \in N$ satisfy the property P, show that P is F-closed, i.e., that $\{0\} \subseteq P$ and that $\{ \text{succ}(p) \mid p \in P \} \subseteq P$.

Principle of co-induction

 $vX. F(X) := \bigcup \{ X \mid X \subseteq F(X) \}$ is the greatest fixed point of *F*.

Principle of co-induction: $X \subseteq F(X) \Rightarrow X \subseteq \nu F$

Proof technique: To show that $P \subseteq \nu F$, show that *P* is *F*-consistent.

Example: Let \rightsquigarrow be the reduction relation on functional programs, and let the set of diverging programs be defined by the generating function

 $F(\uparrow) = \{ a \mid \exists b \colon (a \rightsquigarrow b \land b \in \uparrow) \}.$

Consider an expression Ω that reduces to itself ($\Omega \rightsquigarrow \Omega$), and let $P = {\Omega}$. *P* is *F*-consistent, as ${\Omega} = P \subseteq F(P)$. Therefore, $P \subseteq \uparrow$.

Overview

- Introducing recursive types
- Reasoning about infinite trees
- Membership tests for infinite types
 - Generic algorithm
 - Correctness and completeness
- Recursive types and subtyping
- Conclusions

Generating sets

When does an element $x \in U$ fall into the greatest (least) fixed point of *F*?

Idea for an algorithm: Start from νF (μF) and follow *F* backwards.

- problem: $x \in U$ can be generated by F in different ways
- danger of combinatorial explosion
- no problem if there is just one path backwards

Generating sets:

- $G_X = \{ X \subseteq \mathcal{U} \mid x \in F(X) \}$
- Any superset of a generating set for x is also a generating set for x.
- *F* is called **invertible** iff $\forall x \in U$: $0 \le |G_x| \le 1$.

Support graph

Support set: Let *F* be invertible.

$$\mathsf{support}_F(x) = \begin{cases} X & \text{if } X \in G_x \text{ and } \forall X' \in G_x \colon X \subseteq X', \\ \uparrow & \text{if } G_x = \emptyset. \end{cases}$$

Support graph:

- nodes: supported and unsupported elements of $\boldsymbol{\mathcal{U}}$
- edge (x, y) whenever $y \in \text{support}(x)$

Generic algorithm

 $X \subseteq U$ is in the greatest fixed point of an invertible generating function F if no unsupported elements are reachable from x in the support graph of F:

 $gfp_F(X) = support_F(X) \downarrow \land (support_F(X) \subseteq X \lor gfp_F(support_F(X) \cup X))$

Reduction to a reachability problem in graphs

Partial correctness (1)

Let F be invertible.

Lemma: $X \subseteq F(Y)$ if and only if support_{*F*}(*X*) \downarrow and support_{*F*}(*X*) \subseteq *Y*.

Proof: Show that $x \in F(Y)$ if and only if $support_F(x) \downarrow$ and $support_F(x) \subseteq Y$.

- Assume $x \in F(Y)$. Then G_x is non-empty: at least Y is a generating set for x. In particular, since F is invertible, support_F(x), the smallest generating set, exists, and support_F(x) $\subseteq Y$.
- If $support_F(x) \subseteq Y$, then $F(support_F(x)) \subseteq F(Y)$ due to the monotonicity of F. By the definition of support, $x \in F(support(x))$, so $x \in F(Y)$.

Lemma: Suppose that *P* is a fixed point of *F*. Then $X \subseteq P$ if and only if $support_F(X) \downarrow$ and $support_F(X) \subseteq P$.

Proof: Recall that P = F(P) and apply the previous lemma.

Partial correctness (2)

 $\mathsf{gfp}_F(X) = \mathsf{support}_F(X) \downarrow \land (\mathsf{support}_F(X) \subseteq X \lor \mathsf{gfp}_F(\mathsf{support}_F(X) \cup X))$

Theorem:

- 1. If $gfp_F(X) = true$, then $X \subseteq \nu F$.
- 2. If $gfp_F(X) = false$, then $X \notin \nu F$.

Proof: Induction on the recursive structure of gfp_F .

1. Assume support_{*F*}(*X*) \subseteq *X*. By a previous lemma, *X* \subseteq *F*(*X*), i.e., *X* is *F*-consistent; thus, *X* \subseteq *vF* by the coinduction principle.

Assume $gfp_F(support_F(X) \cup X) = true$. By the induction hypothesis, $support_F(X) \cup X \subseteq \nu F$, and so $X \subseteq \nu F$.

2. ...

Partial correctness (3)

 $\mathsf{gfp}_F(X) = \mathsf{support}_F(X) \downarrow \land (\mathsf{support}_F(X) \subseteq X \lor \mathsf{gfp}_F(\mathsf{support}_F(X) \cup X))$

Theorem:

- 1. If $gfp_F(X) = true$, then $X \subseteq \nu F$.
- 2. If $gfp_F(X) = false$, then $X \notin \nu F$.

Proof: Induction on the recursive structure of gfp_F .

1. . . .

2. Assume support_{*F*}(*X*)[†]. Then, by a previous lemma, $X \notin \nu F$.

Assume $gfp_F(support_F(X) \cup X) = false$. Then $support_F(X) \cup X \notin \nu F$, i.e., $X \notin \nu F$ or $support_F(X) \notin \nu F$. Either way, $X \notin \nu F$ – in the latter case by using a previous lemma.

Reachable elements

Problem: gfp_{*F*} will diverge if support_{*F*}(x) is infinite for some $x \in U$.

Set of reachable elements:

reachable_{*F*}(*X*) = $\bigcup_{n \ge 0}$ predecessors^{*n*}(*X*)

Definition: An invertible function *F* is said to be **finite state** if reachable_{*F*}(*x*) is finite for all $x \in U$.

Termination condition

 $\mathsf{gfp}_F(X) = \mathsf{support}_F(X) \downarrow \land (\mathsf{support}_F(X) \subseteq X \lor \mathsf{gfp}_F(\mathsf{support}_F(X) \cup X))$

Theorem: If *F* is finite state, $gfp_F(X)$ terminates for any finite $X \subseteq U$.

Proof: Define next_{*F*}(*X*) := support_{*F*}(*X*) \cup *X*.

For each call of gfp_F , $next_F(X) \subseteq reachable_F(X)$. Moreover, $next_F(X)$ strictly increases on each recursive call. Since $reachable_F(X)$ is finite, the following serves as a decreasing termination measure:

 $m(gfp_F(X)) := |reachable_F(X)| - |next_F(X)|$

Variants of the algorithms

Adding an accumulator:

- $support_F(X)$ is recomputed for every recursive call
- distinguish between goals (X) and assumptions (A)
- $gfp_F(X) = true \ if \ gfp_F^a(\emptyset, X) = true$

Threading the assumptions:

- share support assumptions among calls at the same level of recursion
- return the set of assumptions, not true/false
- $gfp_F({x}) = true \ if \ gfp_F^t(\emptyset, x) \downarrow$

Overview

- Introducing recursive types
- Reasoning about infinite trees
- Membership tests
- Recursive types and subtyping
- Conclusions

Subtyping

Goal: Instantiating the generic algorithm with the subtyping relation.

Generating function for the subtyping relation:

$$S(R) = \{ (S, \mathsf{Top}) \mid S \in \mathcal{T}_{\mu} \} \\ \cup \{ (S_1 \times S_2, T_1 \times T_2) \mid (S_1, T_1) \in R, (S_2, T_2) \in R \} \\ \cup \{ (S_1 \to S_2, T_1 \to T_2) \mid (T_1, S_1) \in R, (S_2, T_2) \in R \} \\ \cup \{ (S, \mu X. T) \mid (S, [X \to \mu X. T]^*T) \in R \} \\ \cup \{ (\mu X. S, T) \mid ([X \to \mu X. S]^*S, T) \in R \}$$

Properties:

- monotone
- not invertible (but can be made so)

Proving termination (1)

Show that reachable_{S_u}(S, T) is finite for any pair (S, T) of μ -types.

Bottom-up subexpressions of *µ*-types:

$$Sub_{B}(R) = \{ (T, T) \mid T \in \mathcal{T}_{\mu} \}$$

$$\cup \{ (S, T_{1} \times T_{2}) \mid (S, T_{1}) \in R \}$$

$$\cup \{ (S, T_{1} \times T_{2}) \mid (S, T_{2}) \in R \}$$

$$\cup \{ (S, T_{1} \to T_{2}) \mid (S, T_{1}) \in R \}$$

$$\cup \{ (S, T_{1} \to T_{2}) \mid (S, T_{2}) \in R \}$$

$$\cup \{ ([X \to \mu X, T]^{*}S, \mu X, T) \mid (S, T) \in R \}$$

Lemma: { $S \mid (S,T) \in \mu \operatorname{Sub}_B$ } is finite.

Proof: Structural induction on *T*.

Proving termination (2)

Top-down subexpressions of *µ*-types:

$$Sub_{T}(R) = \{ (T,T) \mid T \in \mathcal{T}_{\mu} \}$$

$$\cup \{ (S,T_{1} \times T_{2}) \mid (S,T_{1}) \in R \}$$

$$\cup \{ (S,T_{1} \times T_{2}) \mid (S,T_{2}) \in R \}$$

$$\cup \{ (S,T_{1} \to T_{2}) \mid (S,T_{1}) \in R \}$$

$$\cup \{ (S,T_{1} \to T_{2}) \mid (S,T_{2}) \in R \}$$

$$\cup \{ (S,\mu X. T) \mid (S,[X \to \mu X. T]^{*}T) \in R \}$$

Lemma: μ Sub $_T \subseteq \mu$ Sub $_B$

Proof: requires some work

Conclusions

- recursive types = infinite trees
- proof technique: co-induction
- checking membership in greatest fixed points
- application to subtyping