
Seminar on Types and Programming Languages

Programming Systems Lab, Saarland University

Recursive types

Marco Kuhlmann

2003–03–05

1



Recursive types are ubiquitious

Lists of natural numbers:

NatList = nil : Unit | cons : Nat× NatList

µT . Unit+ Nat× T

Dependency trees:

DTree = t : Lex | n : Lex× (Role×DTree) List

µT . Lex+ Lex× (Role× T) List

Functional counters:

Counter = get : Nat | inc : Unit→ Counter

µT . Nat+ (Unit→ T)

2



Recursive types as infinite trees

Recursive type definitions = specifications of infinite regular trees

Example:

NatList = nil : Unit | cons : Nat× NatList

+

Unit ×

Nat +

Unit ×

Nat . . .

3



Introduction

• Introducing recursive types

– Intuition

– Expressive power

– Formalities

• Reasoning about infinite trees

• Membership tests

• Recursive types and subtyping

• Conclusions

4



Typing the fixed-point combinator

fix = λ f . (λx. f (xx)) (λx. f (xx))

How would we type the fixed-point combinator?

• x needs to have an arrow type whose domain is the type of x itself

• property is satisfied by the recursive type µS. S → T

A well-typed fixed-point combinator

fixT = λ f : T → T . (λx : (µS. S → T). f (xx)) (λx : (µS. S → T). f (xx))
fixT : (T → T)→ T

5



Typing divergence

Infinitely many well-typed diverging functions

divergeT = λ _ : Unit. fixT (λx : T . x)
divergeT : Unit→ T

Consequences: Systems with recursive types . . .

. . . do not have the strong normalisation property

. . . have at least one value of every type

. . . are useless as logics (every proposition is provable)

6



Two approaches towards formalising recursive types

What is the relation between a recursive type and its one-step unfolding?

µT . Unit+ Nat× T ∼ Unit+ Nat× (µT . Unit+ Nat× T)

Two approaches:

• equi-recursive approach

• iso-recursive approach

7



Equi-recursive approach

What is the relation between a recursive type and its one-step unfolding?

interchangeable in all contexts

Consequences:

• conceptually clean

• infinite type expressions

• implementation can be tricky

• may interfere with other advanced typing features

8



Iso-recursive approach

What is the relation between a recursive type and its one-step unfolding?

different but isomorphic

Consequences:

• conceptually awkward

• finite type expressions + fold/unfold operations

• implementation rather straightforward

• implementation can often be “piggybacked”

9



Folding and unfolding

unfoldT and foldT witness the isomorphism

Unfold:

unfoldµX. T : µX. T → [X → µX. T]∗T

U = µX. T1 Γ ` t1 : U
Γ ` unfoldU(t1) : [X → U]∗T1

TUnfold

Fold:

foldµX. T : [X → µX. T]∗T → µX. T

U = µX. T1 Γ ` t1 : [X → U]∗T1

Γ ` foldU(t1) : U
TFold

10



Piggybacking

unfoldµX. T : µX. T → [X → µX. T]∗T
foldµX. T : [X → µX. T]∗T → µX. T

Lists of natural numbers:

unfoldNatList : NatList→ NatListBody

foldNatList : NatListBody→ NatList

nil = foldNatList(〈1,Unit〉)
cons = λn : Nat. λ l : NatList. foldNatList(〈2, (n, l)〉)

11



Overview

• Introducing recursive types

• Reasoning about infinite trees

– Infinite trees

– Regular trees and µ-types

– Induction and co-induction

• Membership tests

• Recursive types and subtyping

• Conclusions

12



Infinite trees

Let (Σ, ar : Σ→ N) be a signature.

A tree is a partial function T ∈ N∗ → Σ where

• T(ε) is defined,

• if T(πσ) is defined then T(π) is defined,

• if (ar ◦ T)(π) = k, then T(πi) is defined for and only for 1 ≤ i ≤ k.

Terminology:

• nodes: dom(T)

• root node: ε ∈ dom(T)

• labels: codom(T)

• daughter relation: σ ∈ daughtersT(π) ⇐⇒ T(πσ)↓

13



Regular trees and µ-types

µ-types are compact representations of regular trees:

• S is a subtree of T if S = λσ. T(πσ) for some π .

• T is regular if the set of its subtrees is finite.

Set of µ-types:

T ::= X ∈ V | T1 × T2 | T1 → T2 | µX. T ′

Contractive µ-types:

• µX. X cannot reasonably be interpreted as a tree.

• allow only contractive µ-types

• T is contractive if it does not have the form µX. µX1 . . . µXn. X

14



Review: Induction

Inductive definitions:

• start with a universe U of values

• want to define X ⊆ U

• monotone generator function F : P(U)→ P(U)

• consider µX. F(X)

Example:

N0 = ∅
Nk+1 = {0} ∪ { succ(n) | n ∈ Nk }

N =
∞⋃
k=0

Nk = µk. Nk

Inductively defined objects are finite.

15



Proof techniques for infinite trees

Co-induction can deal with infinite objects.

Co-inductive definitions:

• start with a universe U of values

• want to define X ⊆ U

• monotone generator function F : P(U)→ P(U)

• consider νX. F(X)

Example: Infinite trees

• same generating function as for finite trees

• consider greatest instead of least fixed point

16



Induction and co-induction: Basics

Definition: Let X be a subset of U.

• X is F -closed if F(X) ⊆ X.

• X is F -consistent if X ⊆ F(X).

• X is a fixed point of F if F(X) = X.

Theorem: Let F ∈ P(U)→ P(U) be monotone.

1. The intersection of all F -closed sets is the least fixed point of F .

2. The union of all F -consistent sets is the greatest fixed point of F .

17



Principle of induction

µX. F(X) :=
⋂
{X | F(X) ⊆ X } is the least fixed point of F .

Principle of induction: F(X) ⊆ X ⇒ µF ⊆ X

Proof technique: To show that µF ⊆ P , show that P is F -closed.

Example: Let P be any property on natural numbers, which are taken to be

defined by the generating function

F(N) = {0} ∪ { succ(n) | n ∈ N }.

To show that all n ∈ N satisfy the property P , show that P is F -closed, i. e.,

that {0} ⊆ P and that { succ(p) | p ∈ P } ⊆ P .

18



Principle of co-induction

νX. F(X) :=
⋃
{X | X ⊆ F(X) } is the greatest fixed point of F .

Principle of co-induction: X ⊆ F(X)⇒ X ⊆ νF

Proof technique: To show that P ⊆ νF , show that P is F -consistent.

Example: Let � be the reduction relation on functional programs, and let

the set of diverging programs be defined by the generating function

F(↑) = {a | ∃b : (a� b ∧ b ∈ ↑) }.

Consider an expression Ω that reduces to itself (Ω� Ω), and let P = {Ω}. P
is F -consistent, as {Ω} = P ⊆ F(P). Therefore, P ⊆ ↑.

19



Overview

• Introducing recursive types

• Reasoning about infinite trees

• Membership tests for infinite types

– Generic algorithm

– Correctness and completeness

• Recursive types and subtyping

• Conclusions

20



Generating sets

When does an element x ∈ U fall into the greatest (least) fixed point of F?

Idea for an algorithm: Start from νF (µF ) and follow F backwards.

• problem: x ∈ U can be generated by F in different ways

• danger of combinatorial explosion

• no problem if there is just one path backwards

Generating sets:

• GX = {X ⊆ U | x ∈ F(X) }

• Any superset of a generating set for x is also a generating set for x.

• F is called invertible iff ∀x ∈ U : 0 ≤ |Gx| ≤ 1.

21



Support graph

Support set: Let F be invertible.

supportF(x) =

X if X ∈ Gx and ∀X′ ∈ Gx : X ⊆ X′,
↑ if Gx = ∅.

Support graph:

• nodes: supported and unsupported elements of U

• edge (x, y) whenever y ∈ support(x)

22



Generic algorithm

X ⊆ U is in the greatest fixed point of an invertible generating function F if

no unsupported elements are reachable from x in the support graph of F :

gfpF(X) = supportF(X)↓∧
(
supportF(X) ⊆ X ∨ gfpF(supportF(X)∪X)

)

Reduction to a reachability problem in graphs

23



Partial correctness (1)

Let F be invertible.

Lemma: X ⊆ F(Y) if and only if supportF(X)↓ and supportF(X) ⊆ Y .

Proof: Show that x ∈ F(Y) if and only if supportF(x)↓ and supportF(x) ⊆ Y .

• Assume x ∈ F(Y). Then Gx is non-empty: at least Y is a generating

set for x. In particular, since F is invertible, supportF(x), the smallest

generating set, exists, and supportF(x) ⊆ Y .

• If supportF(x) ⊆ Y , then F(supportF(x)) ⊆ F(Y) due to the monotonic-

ity of F . By the definition of support, x ∈ F(support(x)), so x ∈ F(Y).

Lemma: Suppose that P is a fixed point of F . Then X ⊆ P if and only if

supportF(X)↓ and supportF(X) ⊆ P .

Proof: Recall that P = F(P) and apply the previous lemma.

24



Partial correctness (2)

gfpF(X) = supportF(X)↓ ∧
(
supportF(X) ⊆ X ∨ gfpF(supportF(X)∪X)

)
Theorem:

1. If gfpF(X) = true, then X ⊆ νF .

2. If gfpF(X) = false, then X 6⊆ νF .

Proof: Induction on the recursive structure of gfpF .

1. Assume supportF(X) ⊆ X. By a previous lemma, X ⊆ F(X), i. e., X is

F -consistent; thus, X ⊆ νF by the coinduction principle.

Assume gfpF(supportF(X) ∪ X) = true. By the induction hypothesis,

supportF(X)∪X ⊆ νF , and so X ⊆ νF .

2. . . .

25



Partial correctness (3)

gfpF(X) = supportF(X)↓ ∧
(
supportF(X) ⊆ X ∨ gfpF(supportF(X)∪X)

)
Theorem:

1. If gfpF(X) = true, then X ⊆ νF .

2. If gfpF(X) = false, then X 6⊆ νF .

Proof: Induction on the recursive structure of gfpF .

1. . . .

2. Assume supportF(X)↑. Then, by a previous lemma, X 6⊆ νF .

Assume gfpF(supportF(X) ∪ X) = false. Then supportF(X) ∪ X 6⊆ νF ,

i. e., X 6⊆ νF or supportF(X) 6⊆ νF . Either way, X 6⊆ νF – in the latter

case by using a previous lemma.

26



Reachable elements

Problem: gfpF will diverge if supportF(x) is infinite for some x ∈ U.

Set of reachable elements:

reachableF(X) =
⋃
n≥0

predecessorsn(X)

Definition: An invertible function F is said to be finite state if reachableF(x)
is finite for all x ∈ U.

27



Termination condition

gfpF(X) = supportF(X)↓ ∧
(
supportF(X) ⊆ X ∨ gfpF(supportF(X)∪X)

)
Theorem: If F is finite state, gfpF(X) terminates for any finite X ⊆ U.

Proof: Define nextF(X) := supportF(X)∪X.

For each call of gfpF , nextF(X) ⊆ reachableF(X). Moreover, nextF(X) strictly

increases on each recursive call. Since reachableF(X) is finite, the following

serves as a decreasing termination measure:

m(gfpF(X)) := |reachableF(X)| − |nextF(X)|

28



Variants of the algorithms

Adding an accumulator:

• supportF(X) is recomputed for every recursive call

• distinguish between goals (X) and assumptions (A)

• gfpF(X) = true if gfpaF(∅, X) = true

Threading the assumptions:

• share support assumptions among calls at the same level of recursion

• return the set of assumptions, not true/false

• gfpF({x}) = true if gfptF(∅, x)↓

29



Overview

• Introducing recursive types

• Reasoning about infinite trees

• Membership tests

• Recursive types and subtyping

• Conclusions

30



Subtyping

Goal: Instantiating the generic algorithm with the subtyping relation.

Generating function for the subtyping relation:

S(R) = { (S,Top) | S ∈ Tµ }
∪ { (S1 × S2, T1 × T2) | (S1, T1) ∈ R, (S2, T2) ∈ R }
∪ { (S1 → S2, T1 → T2) | (T1, S1) ∈ R, (S2, T2) ∈ R }
∪ { (S, µX. T) | (S, [X → µX. T]∗T) ∈ R }
∪ { (µX. S, T) | ([X → µX. S]∗S, T) ∈ R }

Properties:

• monotone

• not invertible (but can be made so)

31



Proving termination (1)

Show that reachableSµ(S, T) is finite for any pair (S, T) of µ-types.

Bottom-up subexpressions of µ-types:

SubB(R) = { (T , T) | T ∈ Tµ }
∪ { (S, T1 × T2) | (S, T1) ∈ R }
∪ { (S, T1 × T2) | (S, T2) ∈ R }
∪ { (S, T1 → T2) | (S, T1) ∈ R }
∪ { (S, T1 → T2) | (S, T2) ∈ R }
∪ { ([X → µX. T]∗S, µX. T) | (S, T) ∈ R }

Lemma: {S | (S, T) ∈ µ SubB } is finite.

Proof: Structural induction on T .

32



Proving termination (2)

Top-down subexpressions of µ-types:

SubT (R) = { (T , T) | T ∈ Tµ }
∪ { (S, T1 × T2) | (S, T1) ∈ R }
∪ { (S, T1 × T2) | (S, T2) ∈ R }
∪ { (S, T1 → T2) | (S, T1) ∈ R }
∪ { (S, T1 → T2) | (S, T2) ∈ R }
∪ { (S, µX. T) | (S, [X → µX. T]∗T) ∈ R }

Lemma: µ SubT ⊆ µ SubB

Proof: requires some work

33



Conclusions

• recursive types = infinite trees

• proof technique: co-induction

• checking membership in greatest fixed points

• application to subtyping

34


