Seminar on Types and Programming Languages
Programming Systems Lab, Saarland University

Recursive types

Marco Kuhlmann

2003-03-05

Recursive types are ubiquitious

Lists of natural numbers:
NatList = nil : Unit | cons : Nat X NatList
uT.Unit+ Natx T

Dependency trees:
DTree = t: Lex | n: Lex X (Role x DTree) List
UT. Lex + Lex X (Role x T) List

Functional counters:

Counter = get : Nat | inc : Unit — Counter
uT.Nat + (Unit - T)

Recursive types as infinite trees
Recursive type definitions = specifications of infinite regular trees

Example:

NatList = nil : Unit | cons : Nat x NatList

Unit X

N
/

Nat +

AN
S

Unit X

Nat

Introduction

e Introducing recursive types

- Expressive power

- Formalities

Typing the fixed-point combinator

fix =Af. (Ax.f(xx)) (Ax.f(xx))

How would we type the fixed-point combinator?
e X needs to have an arrow type whose domain is the type of x itself

e property is satisfied by the recursive type uS.S - T

A well-typed fixed-point combinator

fixr=Af:T->T. Ax:(uS.S—>T).f(xx)) (Ax:(uS.S = T).f(xx))
fixp : (T-T)-T

Typing divergence

Infinitely many well-typed diverging functions

diverger = A_: Unit. fixp (Ax: T. X)
diverger : Unit—- T

Consequences: Systems with recursive types ...
. do not have the strong normalisation property
have at least one value of every type

. are useless as logics (every proposition is provable)

Two approaches towards formalising recursive types

What is the relation between a recursive type and its one-step unfolding?

uT.Unit+Natx T ~ Unit+ Natx (uT.Unit+NatxT)

Two approaches:
e equi-recursive approach

e iso-recursive approach

Equi-recursive approach

interchangeable in all contexts

Consequences:

conceptually clean
infinite type expressions
implementation can be tricky

may interfere with other advanced typing features

Iso-recursive approach

different but isomorphic

Consequences:

conceptually awkward

finite type expressions + fold/unfold operations

implementation rather straightforward

implementation can often be “piggybacked”

Folding and unfolding
unfoldt and foldt witness the isomorphism

Unfold:
unfoldx. 7: uX. T — [X — uX. T1*T

U=uX.T '-t1:U0
I' = unfoldy (t;) : [X — U]*Tl

TUnfold

Fold:
foldyx. 7: [X - uX. T1*T - uX. T

U=uX.T I-4:[X-Ul*T
I'foldy(ty) : U

TFold

Piggybacking

Lists of natural numbers:

unfoldatList : NatList — NatListBody
foldnatList : NatListBody — NatList

nil = foldnarList ({1, Unit))
cons = An:Nat. Al: NatList. foldnatList ({2, (n,1)))

Overview

e Reasoning about infinite trees
- Infinite trees
- Regular trees and u-types

- Induction and co-induction

Infinite trees

Let (2,ar: X — N) be a signature.

A tree is a partial function T € N* — 3 where
e T(&) is defined,
e if T(1r0) is defined then T(71) is defined,
e if (aroT)(1r) =k, then T(77i) is defined for and only for 1 <i < k.

Terminology:

nodes: dom(T)

root node: € € dom(T)

labels: codom(T)

daughter relation: o € daughters;(1m) < T(mo)!

Regular trees and pu-types

U-types are compact representations of regular trees:
e Sisasubtreeof TifS=Ao.T(mmo) for some 1.

e T is regular if the set of its subtrees is finite.

Set of u-types:

Tuo=XeV|ITixT|Th-T|uX.T

Contractive p-types:
e uX. X cannot reasonably be interpreted as a tree.

e allow only contractive u-types

e T is contractive if it does not have the form uX. uXj...

UXn. X

Review: Induction

Inductive definitions:
e start with a universe U of values
e want to define X c U
e monotone generator function F :0(U) — V(U)

e consider uX. F(X)

Example:

No=0
Nis+1 = {0} U {succ(n) | n € N }

N = | Nk = pk. Ni
k=0

Inductively defined objects are finite.

Proof techniques for infinite trees
Co-induction can deal with infinite objects.

Co-inductive definitions:
e start with a universe U of values
e want to define X c U
e monotone generator function F :0(U) — 0 (U)

e consider vX. F(X)

Example: Infinite trees
e same generating function as for finite trees

e consider greatest instead of least fixed point

Induction and co-induction: Basics

Definition: Let X be a subset of ‘U.
e X is F-closed if F(X) < X.
e X is F-consistent if X c F(X).

e X is a fixed point of F if F(X) = X.

Theorem: Let F €)0(U) — ¥(U) be monotone.
1. The intersection of all F-closed sets is the least fixed point of F.

2. The union of all F-consistent sets is the greatest fixed point of F.

Principle of induction

Principle of induction: F(X) c X > uF c X

Proof technique: To show that uF < P, show that P is F-closed.

Example: Let P be any property on natural numbers, which are taken to be
defined by the generating function

F(N) = {0} u{succ(n) |ne N }.

To show that all n € N satisfy the property P, show that P is F-closed, i.e.,
that {0} < P and that {succ(p) |pe P} < P.

Principle of co-induction

Principle of co-induction: X ¢ F(X) => X c vF

Proof technique: To show that P < vF, show that P is F-consistent.

Example: Let ~~ be the reduction relation on functional programs, and let
the set of diverging programs be defined by the generating function

F(t)y={a|3b: @~ bAbe?)}.

Consider an expression Q that reduces to itself (O ~ Q), and let P = {Q}. P
is F-consistent, as {Q} = P < F(P). Therefore, P c 1.

Overview

e Membership tests for infinite types
- Generic algorithm

- Correctness and completeness

Generating sets
When does an element x € ‘U fall into the greatest (least) fixed point of F?

Idea for an algorithm: Start from vF (uF) and follow F backwards.
e problem: x € ‘U can be generated by F in different ways
e danger of combinatorial explosion

e no problem if there is just one path backwards

Generating sets:
e Gx={XcU|xeFX)}
e Any superset of a generating set for x is also a generating set for x.

e [is called invertible iff Vx € ‘U: 0 < |Gx]| < 1.

Support graph

Support set: Let F be invertible.

X ifXeGyand VX € Gy: X c X/,
T |fo=@-

supportg(x) = {
Support graph:
e nodes: supported and unsupported elements of U

e edge (x,y) whenever y € support(x)

Generic algorithm

X € U is in the greatest fixed point of an invertible generating function F if
no unsupported elements are reachable from x in the support graph of F:

gfpr(X) = supportg(X)! A (supportp(X) € X Vv gfpgr(supportg(X) U X))

Reduction to a reachability problem in graphs

Partial correctness (1)

Let F be invertible.

Lemma: X c F(Y) if and only if supportz(X)! and supportg(X) € Y.
Proof: Show that x € F(Y) if and only if supportz(x)! and supportz(x) < Y.

e Assume x € F(Y). Then Gy is non-empty: at least Y is a generating
set for x. In particular, since F is invertible, supportg(x), the smallest
generating set, exists, and supportg(x) € Y.

e If supportp(x) € Y, then F(supportr(x)) < F(Y) due to the monotonic-
ity of F. By the definition of support, x € F(support(x)), so x € F(Y).

Lemma: Suppose that P is a fixed point of F. Then X < P if and only if
supportg(X)! and supportg(X) < P.

Proof: Recall that P = F(P) and apply the previous lemma.

Partial correctness (2)

Theorem:

1. If gfpp(X) = true, then X < vF.

Proof: Induction on the recursive structure of gfpr.

1. Assume supportg(X) < X. By a previous lemma, X < F(X), i.e., X is
F-consistent; thus, X < vF by the coinduction principle.

Assume gfpg(supportg(X) U X) = true. By the induction hypothesis,
supportg(X) U X < vF, and so X < VF.

Partial correctness (3)

Theorem:

2. If gfpp(X) = false, then X & VF.

Proof: Induction on the recursive structure of gfpr.

2. Assume supportg(X)1. Then, by a previous lemma, X ¢ vF.

Assume gfpg(supportz(X) U X) = false. Then supportz(X) U X & VF,
i.e., X ¢ vF or supportp(X) ¢ vF. Either way, X ¢ VF - in the latter
case by using a previous lemma.

Reachable elements
Problem: gfpy will diverge if supportg(x) is infinite for some x € U.

Set of reachable elements:
reachabler(X) = | J predecessors”(X)

n>0

Definition: An invertible function F is said to be finite state if reachabler(x)
is finite for all x € U.

Termination condition

Theorem: If F is finite state, gfpr(X) terminates for any finite X < U.

Proof: Define nextr(X) := supportp(X) U X.

For each call of gfpg, nextr(X) < reachabler(X). Moreover, nextr (X) strictly
increases on each recursive call. Since reachabler(X) is finite, the following
serves as a decreasing termination measure:

m(gfpr (X)) := |reachabler(X)| — [nextr(X)|

Variants of the algorithms

Adding an accumulator:
e supportz(X) is recomputed for every recursive call
e distinguish between goals (X) and assumptions (A)

o gfpp(X) = true if gfp% (2, X) = true

Threading the assumptions:
e share support assumptions among calls at the same level of recursion
e return the set of assumptions, not true/false

o gfpp({x}) = true if gfpL (@, x)!

Overview

e Recursive types and subtyping

Subtyping
Goal: Instantiating the generic algorithm with the subtyping relation.

Generating function for the subtyping relation:

S(R)={(S5,Top) | STy}
U {(S1xX82, Ty xT2) | (51,T1) € R,(S2,T2) € R}
U{(S1—8,T1 - T2) | (11,51) €R,(52,T2) €R}
u{S,uX.T)| (S, [X - uX. T1*T) € R}
u{uX.S, T)| ([X — uX.S1*S,T) €eR}

Properties:
e monotone

e not invertible (but can be made so)

Proving termination (1)

Show that reachableg, (S, T) is finite for any pair (S, T) of u-types.

Bottom-up subexpressions of pu-types:

Subg(R) = {(T,T) | T € Ty}
U{{(S, T xT2) | (5,T1) €R}
U{(S, T xT2) | (5,T2) €R}
u{(S,T1 - T12) | (§,T1) €ER}
u{(S,T1 - 12) | (5,T2) €R}
U {([X — uX. T1*S, uX. T) | (S,T) €R}

Lemma: {S | (S,T) € uSubg} is finite.

Proof: Structural induction on T.

Proving termination (2)

Top-down subexpressions of u-types:

Subr(R) = {(T,T) | T € T,}
U{(S,T1 xT2) | (§,T1) ER}
U{(S,T1xT2) [(S,T2) €R}
U{(S,T1 - T2) [(S,T1) €R}
Ui, T1 - Tp) | (S, T2) €R}
U{S,uX.T)| (S,[X - uX.TI*T) €R}

Lemma: uSubr < uSubg

Proof: requires some work

Conclusions

e recursive types = infinite trees
e proof technique: co-induction
e checking membership in greatest fixed points

e application to subtyping

