
Subtyping

Thomas Wies
wies@mpi-sb.mpg.de

Seminar: Types and Programming Languages, WS 02/03
Pierce, ch. 15-18

Types and Programming Languages 1

OVERVIEW

➀ The subtype relation

➁ Typechecking

➂ Extensions: references, casts

➃ Case study: featherweight Java

OVERVIEW 2

FRAMEWORK

Language used in this talk:

simply typed lambda-calculus + records:

Example:

r = (λr : {x : Nat, y : Nat}. r) {x = 1, y = 2};

. r : {x : Nat, y : Nat}

r.x;

. 1 : Nat

in the context of imperative objects:

simply typed lambda-calculus + records + references

FRAMEWORK 3

MOTIVATION

Problem:

Simply typed lambda-calculus is often to restrictive.

Example: (λr : {x : Nat}. r.x) {x = 0, y = 1} is not well-typed.

Intuition:

• Subset semantics: whenever S is a subset of T, then any term
of type S should also be of type T.

• More general: whenever it is safe to use a term of type S in a
context of type T, then S is a subtype of T, written S <: T.

In the example: {x : Nat, y : Nat} <: {x : Nat}

MOTIVATION 4

WHAT IS NEEDED?

• We have to extend our typing rules:

Γ ` t : S S <: T

Γ ` t : T
(T-SUB)

• We have to formalize what S <: T means.

Notice: Evaluation is not effected by the introduction of subtyping.

WHAT IS NEEDED? 5

THE SUBTYPE RELATION

Top:

S <: Top (S-TOP)

Reflexivity:

S <: S (S-REFL)

Transitivity:

S <: U U <: T

S <: T
(S-TRANS)

Arrow-Types:

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2
(S-ARROW)

THE SUBTYPE RELATION 6

THE SUBTYPE RELATION (2)

Record deepening:

∀i :Si <: Ti

{li : Si
i∈1..n} <: {li : Ti

i∈1..n}
(S-RCDDEPTH)

Record widening:

{li : Ti
i∈1..n+k} <: {li : Ti

i∈1..n} (S-RCDWIDTH)

Record permutation:

{ki : Si
i∈1..n} is a permutation of {li : Ti

i∈1..n}

{ki : Si
i∈1..n} <: {li : Ti

i∈1..n}
(S-RCDPERM)

THE SUBTYPE RELATION (2) 7

EXAMPLE: A SUBTYPE DERIVATION

Derivation of:

` (λr : {x : Top}. r.x) {x = 0, y = 1} : Top

EXAMPLE: A SUBTYPE DERIVATION 8

TYPE SAFETY

Type safety is preserved in presence of subtyping:

Theorem (Preservation): If Γ ` t : T and t → t′, then Γ ` t′ : T

Theorem (Progress): If t is a closed, well-typed term, then either
t is a value or t → t′.

TYPE SAFETY 9

TYPECHECKING

• Algorithmic subtyping

• Algorithmic typing

TYPECHECKING 10

A TYPECHECKER WITH SUBTYPING

How to implement a subtypechecker checking S <: T for two types
S and T?

Problem:

S <: S (S-REFL)

S <: U U <: T

S <: T
(S-TRANS)

S and T match any types.

➜ Rules can be applied in any situation.

➜ The subtype relation considered so far can not be used to im-
plement a subtypechecker directly.

Idea: Introduce an algorithmic subtype relation →̀ S <: T,
s.t. →̀ S <: T iff S <: T

A TYPECHECKER WITH SUBTYPING 11

ALGORITHMIC SUBTYPING

Observations:

• Reflexivity is not needed for typechecking.

➜ drop S-REF

• Transitivity is only needed for record-types.

➜ merge record-rules in one single rule
➜ drop S-TRANS

New rule for record-subtyping:

{li
i∈1..n} ⊆ {kj

j∈1..m} kj = li ⇒ →̀ Sj <: Ti

→̀ {kj : Sj
j∈1..m} <: {li : Ti

i∈1..n}
(SA-RCD)

• S-TOP and S-ARROW do not change.

ALGORITHMIC SUBTYPING 12

ALGORITHMIC TYPING

For typechecking we have a similar problem:

Γ ` t : S S <: T

Γ ` t : T
(T-SUB)

t matches any term, hence the rule T-SUB fires on any term.

➜ We need an algorithmic typing relation Γ →̀ t : T

ALGORITHMIC TYPING 13

ALGORITHMIC TYPING (2)

Observation:

• T-SUB is only needed to match the argument- and domain-types
in application terms.

➜ merge T-SUB into T-APP

New rule for applications:

Γ →̀ t1 : T11 → T12 Γ →̀ t2 : T2 →̀ T2 <: T11

Γ →̀ t1 t2 : T12
(TA-APP)

Theorem: Algorithmic typing is sound and complete.

➀ if Γ →̀ t : T, then Γ ` t : T.

➁ if Γ ` t : T, then Γ →̀ t : S for some S <: T.

ALGORITHMIC TYPING (2) 14

SUBTYPING AND EXTENSIONS

• References

• Up- and down-casts

SUBTYPING AND EXTENSIONS 15

SUBTYPING AND REFERENCES

What conditions must hold in order to get Ref S <: Ref T?

Example:

(λr : Ref {x : Nat, y : Nat}. !r.x) (ref {y = 0}) will go wrong.

➜ We need S <: T in order to get safe dereferences.

(λr : Ref {x : Nat, y : Nat}. r := {x = 1}; !r.y) (ref {x = 0, y = 1})

will go wrong, too.

➜ We also need T <: S in order to get safe assignments.

Simple inference rule:

S <: T T <: S

Ref S <: Ref T
(S-REF)

SUBTYPING AND REFERENCES 16

REFERENCES REFINED

Decompose Ref T in two new types

• Source T: capability to read from a reference cell

• Sink T: capability to write into a reference cell

and modify the typing rules for references accordingly:

Γ | Σ ` t : Source T

Γ | Σ ` !t : T
(T-DEREF)

Γ | Σ ` t1 : Sink T Γ | Σ ` t2 : T

Γ | Σ ` t1 := t2 : Unit
(T-ASSIGN)

REFERENCES REFINED 17

REFERENCES REFINED (2)

Now, subtyping for references is easy:

S <: T

Source S <: Source T
(S-SOURCE)

T <: S

Sink S <: Sink T
(S-SINK)

Ref is just a subtype of both Source and Sink:

Ref T <: Source T (S-REFSOURCE)

Ref T <: Sink T (S-REFSINK)

REFERENCES REFINED (2) 18

ASCRIPTION AS A CASTING OPERATOR

Idea: use ascription operator t as T to perform type casts.

Γ ` t : T
Γ ` t as T : T

(T-ASCRIBE)

Up-casts

Application: information-hiding.

Ascription + subsumption immediately gives us Up-casts.

Example: {x = 0, y = 1} as {x : Nat} is well-typed and y is hidden in
the context of the ascribed term.

Notice: up-casts do not require ascription, they can be performed
using lambda-terms, too.

ASCRIPTION AS A CASTING OPERATOR 19

ASCRIPTION AS A CASTING OPERATOR (2)

Down-casts

Application: down-casts + Top provide simple form of polymorphism.

Example: container classes in Java.

Down-casts require an additional typing-rule:

Γ ` t : S
Γ ` t as T : T

(T-DOWNCAST)

Problem: down-casts may be unsound.

Solution: Add dynamic type tests to the evaluation-rules for ascrip-
tion.

ASCRIPTION AS A CASTING OPERATOR (2) 20

COERCION SEMANTICS

Problem: subtyping may result in performance penalties on the low-
level language implementation.

Example:

How to perform efficiently record-field accesses in the presence of
a permutation rule?

Idea: coercion semantics: Use the type- and subtype-derivation
trees to generate additional code for type conversions.

COERCION SEMANTICS 21

CASE STUDY: FEATHERWEIGHT JAVA

• Interfaces

• Inheritance

• Subtyping

• self and open recursion

CASE STUDY: FEATHERWEIGHT JAVA 22

IMPERATIVE OBJECTS

What are the essential features of imperative objects?

• Multiple representations

– same interface, but different implementations

• Encapsulation and information hiding

– internal state only accessible via interface

– concrete representation hidden

• Inheritance

– classes are used as templates for object instantiation

– derived sub-classes can selectively share code with their
super-classes

IMPERATIVE OBJECTS 23

FEATURES OF IMPERATIVE OBJECTS (CONT’D.)

• Subtyping

– objects of sub-classes can be used in any super-class con-
text

• self and open recursion

– methods are allowed to invoke other methods of the same
object via self or this

– in particular: super-classes may invoke methods declared in
sub-classes (late-binding).

FEATURES OF IMPERATIVE OBJECTS (CONT’D.) 24

A SIMPLE JAVA EXAMPLE

Simple implementation of a counter in Java:

class Counter {
private int x;

public Counter() {super(); x=1;}

public int get () { return x;}

public void inc () { x++;}
}

Question: How can we mimic this within the simply typed lambda-
calculus with subtyping?

A SIMPLE JAVA EXAMPLE 25

INTERFACES

The interfaces can be described by using record types:

• a label with functional type for each public method

• a label for each public instance variable with appropriate type

In the example:

Counter = {get : Unit → Nat, inc : Unit → Unit};

INTERFACES 26

OBJECTS

A counter object can be implemented now by allocating the instance
variable and constructing the method table:

c = let x = ref 1 in

{get = λ_ : Unit. !x,

inc = λ_ : Unit. x := succ(!x)};

. c : Counter

(c.inc unit; c.inc unit; c.get unit);

. 3 : Nat

OBJECTS 27

A SIMPLE CLASS

Define a representation type for the instance variables:

CounterRep = {x : Ref Nat};

The counter class now abstracts over the counter representation:

counterClass =

λr : CounterRep.

{get = λ_ : Unit. !(r.x),

inc = λ_ : Unit. x := succ(!(r.x))};

. counterClass : CounterRep → Counter

New objects can be instantiated via an object generator:

newCounter =

λ_ : Unit. let r = {x = ref 1} in

counterClass r;

. newCounter : Unit → Counter

A SIMPLE CLASS 28

INHERITANCE IN JAVA

Example of an inherited class in Java:

class ResetCounter extends Counter {
public ResetCounter() {super();}

public void reset () { x = 1;}
}

INHERITANCE IN JAVA 29

INHERITANCE

First we need to extend the counter interface:

ResetCounter = {get : Unit → Nat, inc : Unit → Unit,

reset : Unit → Unit};

Then we can reuse counterClass within resetCounterClass:

resetCounterClass =

λr : CounterRep.

let super = counterClass r in

{get = super.get,

inc = super.inc,

reset = λ_ : Unit. r.x := 1};

. resetCounterClass : CounterRep → ResetCounter

INHERITANCE 30

SUBTYPING

Record-subtyping provides all we need for subtyping between ob-
jects:

ResetCounter <: Counter

Hence any reset-counter can be used safely as a counter:

rc = newResetCounter unit;

. rc : ResetCounter

inc3 = λc : Counter. c.inc unit; c.inc unit; c.inc unit;

. inc3 : Counter → Unit

(inc3 rc; rc.reset unit; inc3 rc; rc.get unit);

. 4 : Nat

SUBTYPING 31

CLASSES WITH self

Let us implement a new SetCounter class that provides a method
to set the counter to a given amount:

SetCounter = {get : Unit → Nat, set : Nat → Unit,

inc : Unit → Unit};

We use fixpoint recursion to introduce self:

setCounterClass =

λr : CounterRep.

fix

(λself : SetCounter.

{get = λ_ : Unit. !(r.x),

set = λi : Nat. r.x := i,

inc = λ_ : Unit. self.set (succ (self.get unit))});

. setCounterClass : CounterRep → SetCounter

CLASSES WITH self 32

OPEN RECURSION IN JAVA

Example of open recursion in Java:
(in Java all methods are late-bound)

class SetCounter extends Counter {
public SetCounter() {super();}

// set will be bound to a sub−class’ method later
public void reset () { this .set 1}

public void set(int i) { x = i ;}
}

OPEN RECURSION IN JAVA 33

OPEN RECURSION IN JAVA (2)

class BackupCounter extends SetCounter {

private int b;

// bind super−class declaration of set to this one
public void set(int i) { b = x ; super.set i }

public void restore () { x = b;}

}

OPEN RECURSION IN JAVA (2) 34

OPEN RECURSION

There are several possibilities to implement open recursion:

• We can use fixpoint recursion again.

• We can use references.

We will use references here, which is the more efficient solution.

OPEN RECURSION 35

OPEN RECURSION VIA REFERENCES

New SetCounter interface:

SetCounter = {get : Unit → Nat, inc : Unit → Unit,

set : Nat → Unit, reset : Unit → Unit};

self is now a reference to a method table:

setCounterClass =

λr : SetCounterRep. λself : Ref SetCounter.

let super = counterClass r in

{get = super.get,

inc = super.inc,

set = λi : Nat. r.x := i,

reset = λ_ : Unit. (!self).set 1};

. setCounterClass : CounterRep → Ref SetCounter → SetCounter

OPEN RECURSION VIA REFERENCES 36

OBJECT GENERATION FOR OPEN RECURSION

For object generation a dummy object must be allocated first:

newSetCounter =

λ_ : Unit. let r = {x = ref 1} in

let mTbl = ref {get = λ_ : Unit. 0,

inc = λ_ : Unit. unit,

set = λi : Nat. unit,

reset = λ_ : Unit. unit} in

(mTbl := setCounterClass r mTbl); !mTbl;

. newSetCounter : Unit → SetCounter

OBJECT GENERATION FOR OPEN RECURSION 37

BACKUPCOUNTER TYPES

The required BackupCounter interface, and representation:

BackupCounter = {get : Unit → Nat, inc : Unit → Unit,

set : Nat → Unit, reset : Unit → Unit,

restore : Unit → Unit};

BackupCounterRep = {x : Nat, b : Nat};

BACKUPCOUNTER TYPES 38

FIRST ATTEMPT - FAILS!

Problem: S-REF does not allow the required subtyping:

BackupCounterClass =

λself : Ref BackupCounter.

λr : BackupCounterRep. let super = setCounterClass r self in

{get = super.get,

inc = super.inc,

set = λi : Nat. r.b =!(r.x); super.set i,

reset = super.reset,

restore = λ_ : Unit. r.x :=!(r.b)};

. Error : parameter type mismatch

FIRST ATTEMPT - FAILS! 39

REFINED VERSION

Solution:

In setCounterClass only read-access to the method table is needed.

➜ Use Source SetCounter instead of Ref SetCounter:

setCounterClass =

λr : SetCounterRep.

λself : Source SetCounter.

let super = counterClass r in

{get = super.get,

inc = super.inc,

set = λi : Nat. r.x := i,

reset = λ_ : Unit. (!self).set 1};

. setCounterClass : CounterRep → Source SetCounter → SetCounter

REFINED VERSION 40

REFINED VERSION (2)

Now the backup-counter class typechecks:

BackupCounterClass =

λself : Source BackupCounter.

λr : BackupCounterRep. let super = setCounterClass r self in

{get = super.get,

inc = super.inc,

set = λi : Nat. r.b =!(r.x); super.set i,

reset = super.reset,

restore = λ_ : Unit. r.x :=!(r.b)};

. backupCounterClass : BackupCounterRep →

Source BackupCounter → BackupCounter

REFINED VERSION (2) 41

CONCLUSION AND OUTLOOK

• Typing can be extended to respect subset-relations on types.

• Object-oriented language features can be expressed in the sim-
ply typed lambda-calculus.

• Subtyping introduces efficiency problems.
Possible solution: coercion semantics

Aspects not considered in this talk:

• Additional extensions: variants, lists, . . .

• Additional types: the bottom type, joins and meets, . . .

• Method-sharing between objects of the same class.

➜ Bounded quantification cf. Pierce, ch. 27

CONCLUSION AND OUTLOOK 42

