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Seminar: Types and Programming Languages

Goal
 Calculating a principle type of a not type-annotated term.

More Formally: Given a pair (,t), compute the most
general type T such that  > t : T es well typed.

 Example:

 2 Steps
 Derive a set of contraints
 find the principal unifier for these constraints

 We compute principal types, not principal typings.
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Unification

 Unification, [Robinson, 1965]

 Unification in linear space complexity
[Martelli, Montanary, 1984]
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Seminar: Types and Programming Languages

Standard Unification

 More precisely: syntactic equational unification
 We define the set of terms as:

s,t := x | f(t1,...,tn)     with x  Var, f  FuncSymbols
 Given an equation

s  t
we search a substitution  such that

 s =  t
  is called a unifier for s  t
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Seminar: Types and Programming Languages

Standard Unification

 We call a unifier 1 more general than a unifier 2 iff
there is a substitution  such that  1 = 2.
We write 1  2.

 A principal unifier of s  t is a unifier  such that for all
unifiers ‘ of s  t we have   ‘.

Unification Theorem: Each equation
s  t has a principal unifier if it is
unifiable.
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Seminar: Types and Programming Languages

Example

 f(x,y)  f(a,y)

 1 = { x := a, y := b } is a unifier as
1 f(x,y) = 1 f(a,y)
f(a,b) = f(a,b)

 2 = { x := a } is a principal unifier
2 f(x,y) = 2 f(a,y)
f(a,y) = f(a,y)

 { y := b } 2 = 1
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Seminar: Types and Programming Languages

Example

 f(x)  g(a) is not unifiable

 x  f(x) is not unifiable by standard unification !!!!
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Seminar: Types and Programming Languages

Unification by Martelli/Montanari

t  t, R |  MM R | 

f(...)  g(...), R |  MM  if f  g or Arity(f)  Arity(g)

f(s1,...,sn)  f(t1,...,tn), R |  MM s1  t1, ... , sn  tn, R | 

x  t, R |  MM [x:= t] R | [x:=t]  if x  var(t)
(Self Occurence Check)

x  t, R |  MM  if x  var(t)

t  x, R |  MM x  t, R |  

 |  MM 
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Seminar: Types and Programming Languages

Motivation

x  f(x) is not unifiable with a finite term. But the
following regular tree is an infinite solution:

f

f

f

...

finite representation:

f
x =
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Seminar: Types and Programming Languages

Equivalence Test

s := 

fun eq(n,m) =

if {n,m}  s then

true

else if Label(n)  Label(m) or Arity(n)  Arity(m)

false

else

s := s  { {n,m} }

Arity(n)

 eq(n.i,m.i)

i = 1
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Seminar: Types and Programming Languages

Nonstandard Unification

See the unification problem t1  t2 as a graph unification
problem. Let eq be a function that computes the
equivalence between two nodes in a graph.

While not eq(t1,t2) do

let (n,m) be a pair of nodes with Label(n)  Label(m)

or Arity(n)  Arity(m)

if Label(n) = f and Label(m) = g and f  g or

Arity(n)  Arity(m) then return 

else if Label(n) = x then subst(x,m)

else if Label(m) = x then subst(x,n)
Note:  No occurence
check !!!!!!
Solutions are infinite
regular trees.
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Seminar: Types and Programming Languages

Example: f(g(x))  f(x)

f

g

x

f

x



a b

[ x:= a ]

f

g

f

a
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Typing rules for simply
typed lambda calculus
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Seminar: Types and Programming Languages

Typing Rules

Var)-(Ty
:

:
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TTtTx
TtTx




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App)-(Ty
:

:T:

321

22321

Ttt
TtTt








If)-(Ty
:telsethen if

:::

321

321

Ttt
TtTtBoolt








Rec)-(Ty
::

::,

2211

2211

TtTx
TtTx







Note: Abstractions
and recursions are
type annotated!!!!
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Seminar: Types and Programming Languages

Example

Supposition: It exists a
principal type annotation.

 x: Bool  Bool.  y: Bool. x y : (Bool  Bool)  Bool  Bool

 x: Nat  Bool.  y: Nat. x y : (Nat  Bool)  Nat  Bool

 x: Bool  Y.  y: Bool. x y : (Bool  Y)  Bool  Y

 x: X  Y.  y: X. x y : (X  Y)  X  Y

 x.  y. x y
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Constraint typing rules

Principal Types, Curry and Feys [1958]

Algorithm to compute principal types, Hindley [1969]

Type reconstruction, Algorithm W, Damas and Milner
[1982]
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Seminar: Types and Programming Languages

Goal
 Calculating a principle type of a not type-annotated term.

More Formally: Given a pair (,t), compute the most
general type T such that  > t : T es well typed.

 Example:

 2 Steps
 Derive a set of contraints
 find the principal unifier for these constraints

 We compute principal types, not principal typings.
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CT-Rules by Pierce
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Seminar: Types and Programming Languages

Constraint typing rules
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



Let all Xi be fresh type variables.
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Seminar: Types and Programming Languages

Idea

 Do just the same as the standard typing rules.

 Introduce fresh type variables each time a type can‘t be
computed directly.

 Construct constraints consisting of the conditions the
typing rules check.
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Seminar: Types and Programming Languages

CT-Var

:
:

Tx
Tx




{}|:
:

Tx
Tx


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Ty-Var

CT-Var

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/


Seminar: Types and Programming Languages

CT-Rec
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CT-Abs
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CT-App
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Example
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Example
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Recursive Types

 CT-Rules can be maintained

 Use the Nonstandard Unification Algorithm
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Simple Example
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Unification

1X





2X

 

A
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Unification

][ 1 AX 





2X

A

Most general type of

is

xxx.
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Advanced Example
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Seminar: Types and Programming Languages

Correctness
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Note: It exists a principal
type annotation.
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Let-Polymorphism

Let-polymorphism, Milner [1978]
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Seminar: Types and Programming Languages

Polymorphism

Polymorphism is a language mechanism that
allow a single part of a program to be used with
different types in different contexts.
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Seminar: Types and Programming Languages

Let-Polymorphism

let

id = x.x

in

id 1;

id true

end

id : X1 X1

X1=Nat

X1=Bool

type clash

Naive Let-Rule:
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Seminar: Types and Programming Languages

Solution: type scheme
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Let X1,...,Xn be the free type variables of T
that do not occur in . We define:
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Seminar: Types and Programming Languages

Example

let

id = x.x

in

id 1;

id true

end

id : X1:X1 X1

id : X11 X11 X11=Nat

id : X12 X12 X12=Bool

Now, the program is well typed.
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Seminar: Types and Programming Languages

Problem: side effects

let

r = ref(x.x)

in

r:= x:Nat.succ x;

(!r) true

end

r : X1:(X1X1)Ref

r : (X11X11)Ref X11=Nat

r : (X12X12)Ref X12=Bool

no type clash
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Seminar: Types and Programming Languages

Solution

Only if t1 is a value !!!!!
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Note: The type scheme is introduced after
the typechecking of the term x=t1. This
means, that you can not use x
polymorphically in the term t1 itself (no
polymorphic recursion).
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Seminar: Types and Programming Languages

Example

let

r = ref(x.x)

in

r:= x:Nat.succ x;

(!r) true

end

r : (X1X1)Ref

r : (X1X1)Ref   X1=Nat

r : (X1X1)Ref X1=Bool

no value no type scheme

type clash
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Seminar: Types and Programming Languages

Restriction

You can not compute a polymorphic function.

E.g:

val f = let val i = ref true

in

fn x => fn y =>

(if !i then x else y) before i := not(!i)

end

f is no polymorphic function.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/


Seminar: Types and Programming Languages

Runtime is Exponential

let val f0 = fun x => (x,x) in

let val f1 = fun y => f0 (f0 y) in

let val f2 = fun y => f1 (f1 y) in

let val f3 = fun y => f2 (f2 y) in

let val f4 = fun y => f3 (f3 y) in

f4 (fun z => z)

end end end end end

The following program is well typed but takes a long time to 
typecheck.
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Runtime Analysis

let val f0 =

fun x => (x,x) in

let val f1 = fun y =>

f0 (f0 y) in

let val f2 = fun y =>

f1 (f1 y) in

let val f3 = fun y =>

f2 (f2 y) in

let val f4 = fun y =>

f3 (f3 y) in

f4 (fun z => z)

end end end end end

X0:X0X0*X0

X1:X1 (X1*X1)*(X1*X1)

X2:X2((((X2*X2)*(X2*X2))*

((X2*X2)*(X2*X2)))*

(((X2*X2)*(X2*X2))*

((X2*X2)*(X2*X2))))

(...)
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Seminar: Types and Programming Languages

Overview

 Unification, Nonstandard Unification
 Constraint typing rules for -calculus (similar to standard

typing rules)
 It exists a principal type annotation as the solution of a

set of constraints (Unification Theorem)
 Constraint typing rules and recursive types
 Let-Polymorphism
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Seminar: Types and Programming Languages

Historical Context
 Unification, [Robinson, 1965]
 Unification in linear space complexity

[Martelli, Montanary, 1984]
 Nonstandard Unification ???

 Principal Types, Curry and Feys [1958]

 Algorithm to compute principal types, Hindley [1969]

 Type reconstruction, Algorithm W, Damas and Milner
[1982]

 Type Reconstruction with Recursive Types
[Huet, 1975, 1976]

 Let-polymorphism, Milner [1978]
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Questions?
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