
Type Reconstruction

Sven Woop

woop@ps.uni-sb.de

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

mailto:@ps.uni-
http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Goal
 Calculating a principle type of a not type-annotated term.

More Formally: Given a pair (,t), compute the most
general type T such that  > t : T es well typed.

 Example:

 2 Steps
 Derive a set of contraints
 find the principal unifier for these constraints

 We compute principal types, not principal typings.

  XXXfxfxxf  :)(. 

XXxx :. 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Index

 Basics
 Standard Unification
 Nonstandard Unification
 Typing-rules for simply typed -calculus

 Type Reconstruction
 Constraint typing rules for -calculus
 CT-Rules and Recursive types

 Polymorphism
 Let-Polymorphism

 Overview

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Unification

 Unification, [Robinson, 1965]

 Unification in linear space complexity
[Martelli, Montanary, 1984]

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Standard Unification

 More precisely: syntactic equational unification
 We define the set of terms as:

s,t := x | f(t1,...,tn) with x  Var, f  FuncSymbols
 Given an equation

s  t
we search a substitution  such that

 s =  t
  is called a unifier for s  t

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://,...,
http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Standard Unification

 We call a unifier 1 more general than a unifier 2 iff
there is a substitution  such that  1 = 2.
We write 1  2.

 A principal unifier of s  t is a unifier  such that for all
unifiers ‘ of s  t we have   ‘.

Unification Theorem: Each equation
s  t has a principal unifier if it is
unifiable.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

 f(x,y)  f(a,y)

 1 = { x := a, y := b } is a unifier as
1 f(x,y) = 1 f(a,y)
f(a,b) = f(a,b)

 2 = { x := a } is a principal unifier
2 f(x,y) = 2 f(a,y)
f(a,y) = f(a,y)

 { y := b } 2 = 1

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

 f(x)  g(a) is not unifiable

 x  f(x) is not unifiable by standard unification !!!!

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Unification by Martelli/Montanari

t  t, R |  MM R | 

f(...)  g(...), R |  MM  if f  g or Arity(f)  Arity(g)

f(s1,...,sn)  f(t1,...,tn), R |  MM s1  t1, ... , sn  tn, R | 

x  t, R |  MM [x:= t] R | [x:=t]  if x  var(t)
(Self Occurence Check)

x  t, R |  MM  if x  var(t)

t  x, R |  MM x  t, R | 

 |  MM 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://f(...)
http://,...,
http://,...,
http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Motivation

x  f(x) is not unifiable with a finite term. But the
following regular tree is an infinite solution:

f

f

f

...

finite representation:

f
x =

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Equivalence Test

s := 

fun eq(n,m) =

if {n,m}  s then

true

else if Label(n)  Label(m) or Arity(n)  Arity(m)

false

else

s := s  { {n,m} }

Arity(n)

 eq(n.i,m.i)

i = 1

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Nonstandard Unification

See the unification problem t1  t2 as a graph unification
problem. Let eq be a function that computes the
equivalence between two nodes in a graph.

While not eq(t1,t2) do

let (n,m) be a pair of nodes with Label(n)  Label(m)

or Arity(n)  Arity(m)

if Label(n) = f and Label(m) = g and f  g or

Arity(n)  Arity(m) then return 

else if Label(n) = x then subst(x,m)

else if Label(m) = x then subst(x,n)
Note: No occurence
check !!!!!!
Solutions are infinite
regular trees.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example: f(g(x))  f(x)

f

g

x

f

x



a b

[x:= a]

f

g

f

a

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Typing rules for simply
typed lambda calculus

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Typing Rules

Var)-(Ty
:

:
Tx

Tx




Abs)-(Ty
:.:

::,

2121

221

TTtTx
TtTx







App)-(Ty
:

:T:

321

22321

Ttt
TtTt








If)-(Ty
:telsethen if

:::

321

321

Ttt
TtTtBoolt








Rec)-(Ty
::

::,

2211

2211

TtTx
TtTx







Note: Abstractions
and recursions are
type annotated!!!!

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

Supposition: It exists a
principal type annotation.

 x: Bool  Bool.  y: Bool. x y : (Bool  Bool)  Bool  Bool

 x: Nat  Bool.  y: Nat. x y : (Nat  Bool)  Nat  Bool

 x: Bool  Y.  y: Bool. x y : (Bool  Y)  Bool  Y

 x: X  Y.  y: X. x y : (X  Y)  X  Y

 x.  y. x y

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Constraint typing rules

Principal Types, Curry and Feys [1958]

Algorithm to compute principal types, Hindley [1969]

Type reconstruction, Algorithm W, Damas and Milner
[1982]

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Goal
 Calculating a principle type of a not type-annotated term.

More Formally: Given a pair (,t), compute the most
general type T such that  > t : T es well typed.

 Example:

 2 Steps
 Derive a set of contraints
 find the principal unifier for these constraints

 We compute principal types, not principal typings.

  XXXfxfxxf  :)(. 

XXxx :. 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

CT-Rules by Pierce
Visage eXPert PDF Copyright © 1998,2003 Visage Software

This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed
after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Constraint typing rules

Var)-(CT
{}|:

:
Tx

Tx




Abs)-(CT
|:.:

|::,

2121

221

CTXtXx
CTtXx







App)-(CT
}{|:

|:|:

212121

222111

XTTCCXtt
CTtCTt








If)-(CT
},{|:telsethen if

|:|:|:

3213212321

333222111

TTBoolTCCCTtt
CTtCTtCTt








Rec)-(CT
}{|::

|::,

212211

2211

TXCTtXx
CTtXx








Let all Xi be fresh type variables.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Idea

 Do just the same as the standard typing rules.

 Introduce fresh type variables each time a type can‘t be
computed directly.

 Construct constraints consisting of the conditions the
typing rules check.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

CT-Var

:
:

Tx
Tx




{}|:
:

Tx
Tx




Ty-Var

CT-Var

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

CT-Rec

}{|::
|::,

212211

2211

TXCTtXx
CTtXx








2211

212211

::
::,

TtTx
TTTtTx







Ty-Rec

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

CT-Abs

2121

221

:.:
::,

TTtTx
TtTx







CTXtXx
CTtXx

|:.:
|::,

2121

221







Ty-Abs

CT-Abs

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

CT-App

321

22321

:
::

Ttt
TtTTt








}{|:
|:|:

32121321

222111

XTTCCXtt
CTtCTt








Ty-App

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

}{|:)(.::
|:)(.::

}{|:)(:,:
}{|::,:

|::,:|::,:
|::,:

4212121

24221

24321421

1321321

221121

221

XXXCXxfxXxXf
CXXxfxXxXf

CXXXCXxfxXxXf
CXXXXxfXxXf

XxXxXfXfXxXf
XxXxXf

















































421

432

321

3

XXX
XXX
XXX

C

)(. xfxxf 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

























421

432

321

3

XXX
XXX
XXX

C

]:[3211 XXX 

























4232

432

3232

31

XXXX
XXX

XXXX
C

]:,:[434212 XXXXX 























4242

442

4242

32

XXXX
XXX

XXXX
C

]:,:,)(:[4424344413 XXXXXXXXX 























444444

4444

444444

33

)()(

)()(

XXXXXX
XXXX

XXXXXX
C

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Recursive Types

 CT-Rules can be maintained

 Use the Nonstandard Unification Algorithm

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Simple Example

}{|:.:
}{|:}:{
|X:x}:{|X:x}:{

211211

21121

1111

XXXXXxxXx
XXXXxxXx

XxXx














 211 XXXC 

xxx.
Visage eXPert PDF Copyright © 1998,2003 Visage Software

This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed
after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Unification

1X





2X

 

A

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Unification

][1 AX 





2X

A

Most general type of

is

xxx.

  2211 :X XXX 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Advanced Example

352121

35422521

242314

213113

11

2

|:)(y .::
}{|:)(y }:,:{

}{|:
|:}{|:

|:|:

|X:y

CXXXyxxXyXx
CXXXCXyxxXyXx

CXXXCXyxx
XyCXXXXxx

XxXx




















































542

423

311

3

XXX
XXX
XXX

C

)(y y.. yxxxF  FFfix 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

1X

1X





3X

3X

2X





4X

2X

4X





5X

 

A

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/





3X

3X

2X





4X

2X

4X





5X

][1 AX 

A B

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/





2X





4X

2X

4X





5X

],[31 BXAX 

A B C

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/









4X 4X





5X

],,[231 CXBXAX 

A B C

52121 :)(y .:: XXXyxxXyXx 

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Correctness

typedwellisCsatisfies σ t 

  4321 ::)(.:: XXxfxXxXf 






















421

432

321

XXX
XXX
XXX

C

Note: It exists a principal
type annotation.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Let-Polymorphism

Let-polymorphism, Milner [1978]

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Polymorphism

Polymorphism is a language mechanism that
allow a single part of a program to be used with
different types in different contexts.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Let-Polymorphism

let

id = x.x

in

id 1;

id true

end

id : X1 X1

X1=Nat

X1=Bool

type clash

Naive Let-Rule:

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Solution: type scheme

Let)-(CT
'|':endin let

'|':),:,...,(:,|:

21

211

CTttx
CTtCTXXxCTtx n








  Var2)-(CT
|:

],...,[,:,...,: ''
111

CTx
XXXXCTXXx nnn







Let X1,...,Xn be the free type variables of T
that do not occur in . We define:

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://,...,
http://,...,
http://,...,
http://,...,
http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

let

id = x.x

in

id 1;

id true

end

id : X1:X1 X1

id : X11 X11 X11=Nat

id : X12 X12 X12=Bool

Now, the program is well typed.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Problem: side effects

let

r = ref(x.x)

in

r:= x:Nat.succ x;

(!r) true

end

r : X1:(X1X1)Ref

r : (X11X11)Ref X11=Nat

r : (X12X12)Ref X12=Bool

no type clash

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Solution

Only if t1 is a value !!!!!

Let)-(CT
'|':endin let

'|':),:,...,(:,|:

21

211

CTttx
CTtCTXXxCTtx n








Note: The type scheme is introduced after
the typechecking of the term x=t1. This
means, that you can not use x
polymorphically in the term t1 itself (no
polymorphic recursion).

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://,...,
http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Example

let

r = ref(x.x)

in

r:= x:Nat.succ x;

(!r) true

end

r : (X1X1)Ref

r : (X1X1)Ref X1=Nat

r : (X1X1)Ref X1=Bool

no value no type scheme

type clash

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Restriction

You can not compute a polymorphic function.

E.g:

val f = let val i = ref true

in

fn x => fn y =>

(if !i then x else y) before i := not(!i)

end

f is no polymorphic function.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Runtime is Exponential

let val f0 = fun x => (x,x) in

let val f1 = fun y => f0 (f0 y) in

let val f2 = fun y => f1 (f1 y) in

let val f3 = fun y => f2 (f2 y) in

let val f4 = fun y => f3 (f3 y) in

f4 (fun z => z)

end end end end end

The following program is well typed but takes a long time to
typecheck.

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Runtime Analysis

let val f0 =

fun x => (x,x) in

let val f1 = fun y =>

f0 (f0 y) in

let val f2 = fun y =>

f1 (f1 y) in

let val f3 = fun y =>

f2 (f2 y) in

let val f4 = fun y =>

f3 (f3 y) in

f4 (fun z => z)

end end end end end

X0:X0X0*X0

X1:X1 (X1*X1)*(X1*X1)

X2:X2((((X2*X2)*(X2*X2))*

((X2*X2)*(X2*X2)))*

(((X2*X2)*(X2*X2))*

((X2*X2)*(X2*X2))))

(...)

Program Derived Type Constraints
0

2

4

8

16

Type Size
20

22

24

28

216

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://(...)
http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Overview

 Unification, Nonstandard Unification
 Constraint typing rules for -calculus (similar to standard

typing rules)
 It exists a principal type annotation as the solution of a

set of constraints (Unification Theorem)
 Constraint typing rules and recursive types
 Let-Polymorphism

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Historical Context
 Unification, [Robinson, 1965]
 Unification in linear space complexity

[Martelli, Montanary, 1984]
 Nonstandard Unification ???

 Principal Types, Curry and Feys [1958]

 Algorithm to compute principal types, Hindley [1969]

 Type reconstruction, Algorithm W, Damas and Milner
[1982]

 Type Reconstruction with Recursive Types
[Huet, 1975, 1976]

 Let-polymorphism, Milner [1978]

Visage eXPert PDF Copyright © 1998,2003 Visage Software
This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed

after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

Seminar: Types and Programming Languages

Questions?
Visage eXPert PDF Copyright © 1998,2003 Visage Software

This document was created with free TRIAL version of Visage eXPert PDF.This watermark will be removed
after purchasing the licensed full version of Visage eXPert PDF. Please visit http://www.visagesoft.com for more details

http://www.visagesoft.com/pdfprinter/

