Type Reconstruction

Sven Woop

woop@ps.uni-sb.de

Goal

Calculating a principle type of a not type-annotated term.
 More Formally: Given a pair (Γ,t), compute the most general type T such that Γ > t : T es well typed.

• Example:
$$\phi \succ f = \lambda x. x (f x) \Rightarrow f : (X \to X) \to X$$

 $\phi \succ \lambda x. x : X \to X$

Derive a set of contraints

find the principal unifier for these constraints

We compute principal types, not principal typings.

Index

Basics

- Standard Unification
- Nonstandard Unification
- I Typing-rules for simply typed λ -calculus
- Type Reconstruction
 - Constraint typing rules for λ -calculus
 - CT-Rules and Recursive types
- Polymorphism
 - Let-Polymorphism
- **Overview**

Unification, [Robinson, 1965]

 Unification in linear space complexity [Martelli, Montanary, 1984]

Standard Unification

- More precisely: syntactic equational unification
- We define the set of terms as:
 - s,t := x | $f(t_1,...,t_n)$ with $x \in Var$, $f \in FuncSymbols$
- Given an equation

s ≈ t

we search a substitution $\boldsymbol{\sigma}$ such that

```
\sigma s = \sigma t
```

 σ is called a *unifier* for $s \approx t$

Standard Unification

- We call a unifier σ_1 more general than a unifier σ_2 iff there is a substitution σ such that $\sigma \sigma_1 = \sigma_2$. We write $\sigma_1 \leq \sigma_2$.
- A *principal unifier* of $s \approx t$ is a unifier σ such that for all unifiers σ ' of $s \approx t$ we have $\sigma \leq \sigma$ '.

Unification Theorem: Each equation $s \approx t$ has a principal unifier if it is unifiable.

$$f(x,y) \approx f(a,y)$$

$$\sigma_1 = \{ x := a, y := b \}$$
 is a unifier as
 $\sigma_1 f(x,y) = \sigma_1 f(a,y)$
 $f(a,b) = f(a,b)$

$$\sigma_2 = \{ x := a \} \text{ is a principal unifier} \\ \sigma_2 f(x,y) = \sigma_2 f(a,y) \\ f(a,y) = f(a,y)$$

{ y := b }
$$\sigma_2 = \sigma_1$$

- f(x) \approx g(a) is not unifiable
- $x \approx f(x)$ is not unifiable by standard unification !!!!

Unification by Martelli/Montanari

$$x \approx t, R | σ \Rightarrow_{MM} [x:=t] R | [x:=t] σ if x ∉ var(t)$$

(Self Occurence Check)

$$\mathbf{x} \approx \mathbf{t}, \, \mathbf{R} \mid \sigma \implies_{\mathsf{MM}} \bot \quad \text{if } \mathbf{x} \in \mathsf{var}(\mathbf{t})$$

$$t \approx x, R \mid \sigma \implies_{MM} x \approx t, R \mid \sigma$$

$$\phi \mid \sigma \Rightarrow_{\mathsf{MM}} \sigma$$

 $x \approx f(x)$ is not unifiable with a **finite** term. But the following regular tree is an **infinite** solution:

Equivalence Test

s := 0 fun eq(n,m) =if $\{n,m\} \in s$ then true else if Label(n) \neq Label(m) or Arity(n) \neq Arity(m) false else $s := s \cup \{ \{n,m\} \}$ Arity(n) eq(n.i,m.i) i = 1

Nonstandard Unification

See the unification problem $t_1 \approx t_2$ as a graph unification problem. Let eq be a function that computes the equivalence between two nodes in a graph.

```
While not eq(t1,t2) do
  let (n,m) be a pair of nodes with Label(n) \neq Label(m)
      or Arity(n) \neq Arity(m)
  if Label(n) = f and Label(m) = q and f \neq q or
      Arity(n) \neq Arity(m) then return \perp
  else if Label(n) = x then subst(x,m)
  else if Label(m) = x then subst(x,n)
                                          Note: No occurence
                                          check !!!!!!
                                          Solutions are infinite
                                          regular trees.
```

Example: $f(g(x)) \approx f(x)$

Typing rules for simply typed lambda calculus

Typing Rules

$$\frac{x:T\in\Gamma}{\Gamma\succ x:T}$$
 (Ty - Var)

$$\frac{\Gamma, x_1: T_1 \succ t_2: T_2}{\Gamma \succ x_1: T_1 = t_2: T_2}$$
(Ty - Rec)

$$\frac{\Gamma, x: T_1 \succ t_2: T_2}{\Gamma \succ \lambda x: T_1.t_2: T_1 \rightarrow T_2}$$
(Ty - Abs)

$$\frac{\Gamma \succ t_1 : T_2 \rightarrow T_3 \quad \Gamma \succ t_2 : T_2}{\Gamma \succ t_1 \, t_2 : T_3}$$
(Ty - App)

Note: Abstractions and recursions are type annotated!!!!

$$\frac{\Gamma \succ t_1 : Bool \quad \Gamma \succ t_2 : T \quad \Gamma \succ t_3 : T}{\Gamma \succ \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad (\text{Ty - If})$$

Example $\lambda \mathbf{x}$. $\lambda \mathbf{y}$. $\mathbf{x} \mathbf{y}$

 λ x: Bool \rightarrow Bool. λ y: Bool. x y : (Bool \rightarrow Bool) \rightarrow Bool \rightarrow Bool

 λ x: Nat \rightarrow Bool. λ y: Nat. x y : (Nat \rightarrow Bool) \rightarrow Nat \rightarrow Bool

 λ x: Bool \rightarrow Y. λ y: Bool. x y : (Bool \rightarrow Y) \rightarrow Bool \rightarrow Y

 $\lambda : \mathsf{X} \to \mathsf{Y}. \ \lambda \ \mathsf{y}: \mathsf{X}. \ \mathsf{x} \ \mathsf{y}: (\mathsf{X} \to \mathsf{Y}) \to \mathsf{X} \to \mathsf{Y}$

Supposition: It exists a principal type annotation.

Constraint typing rules

Principal Types, Curry and Feys [1958]

Algorithm to compute principal types, Hindley [1969]

Type reconstruction, Algorithm W, Damas and Milner [1982]

Goal

Calculating a principle type of a not type-annotated term.
 More Formally: Given a pair (Γ,t), compute the most general type T such that Γ > t : T es well typed.

• Example:
$$\phi \succ f = \lambda x. x (f x) \implies f : (X \to X) \to X$$

 $\phi \succ \lambda x. x : X \to X$

2 Steps

Derive a set of contraints

find the principal unifier for these constraints

We compute principal types, not principal typings.

CT-Rules by Pierce

 $x:T \in \Gamma$ (CT-VAR) $\Gamma \vdash x : T \mid a \}$ $\Gamma, x:T_1 \vdash t_2:T_2 \mid x C$ (CT-ABS) $\Gamma \vdash \lambda x: T_1, t_2: T_1 \rightarrow T_2 \mid x \in C$ $\Gamma \vdash t_1 : T_1 \mid x_1 C_1 \qquad \Gamma \vdash t_2 : T_2 \mid x_2 C_2$ $X_1 \cap X_2 = X_1 \cap FV(\mathsf{T}_2) = X_2 \cap FV(\mathsf{T}_1) = \emptyset$ $X \notin X_1, X_2, T_1, T_2, C_1, C_2, \Gamma, t_1, \text{ or } t_2$ $C' = C_1 \cup C_2 \cup \{\mathsf{T}_1 = \mathsf{T}_2 \rightarrow \mathsf{X}\}$ $\Gamma \vdash t_1 t_2 : X \mid_{X_1 \cup X_2 \cup \{X\}} C'$ (CT-APP) $\Gamma \vdash 0$: Nat $| \sigma \{ \}$ (CT-ZERO) $\Gamma \vdash t_1 : T \mid_Y C$ $C' = C \cup \{T = Nat\}$ (CT-SUCC) $\Gamma \vdash \operatorname{succ} t_1 : \operatorname{Nat} \mid_X C'$

 $\Gamma \vdash t_1 : T \mid_Y C$ $C' = C \cup \{\mathsf{T} = \mathsf{Nat}\}\$ (CT-PRED) $\Gamma \vdash \mathsf{pred} \mathsf{t}_1 : \mathsf{Nat} \mid_{\mathcal{X}} C'$ $\Gamma \vdash t_1 : T \mid_Y C$ $C' = C \cup \{\mathsf{T} = \mathsf{Nat}\}\$ (CT-ISZERO) $\Gamma \vdash iszerot_1 : Bool \mid_X C'$ $\Gamma \vdash \mathsf{true} : \mathsf{Bool} \mid_{\varnothing} \{\}$ (CT-TRUE) $\Gamma \vdash \mathsf{false} : \mathsf{Bool} \mid_{\varnothing} \{\}$ (CT-FALSE) $\Gamma \vdash t_1 : T_1 \mid X_1 C_1$ $\Gamma \vdash \mathbf{t}_2 : \mathbf{T}_2 \mid \mathbf{\chi}_2 \quad \Gamma \vdash \mathbf{t}_3 : \mathbf{T}_3 \mid \mathbf{\chi}_3 \quad C_3$ χ_1, χ_2, χ_3 nonoverlapping $C' = C_1 \cup C_2 \cup C_3 \cup \{T_1 = Bool, T_2 = T_3\}$ $\Gamma \vdash \text{ift}_1 \text{ then } t_2 \text{ else } t_3 : T_2 \mid_{x_1 \cup x_2 \cup x_3} C'$ (CT-IF)

Figure 22-1: Constraint typing rules

Constraint typing rules

Let all X_i be fresh type variables.

$$\frac{x:T\in\Gamma}{\Gamma\succ x:T\mid\{\}} \text{ (CT-Var)} \quad \frac{\Gamma, x_1:X_1\succ t_2:T_2\mid C}{\Gamma\succ x_1:X_1=t_2:T_2\mid C\cup\{X_1=T_2\}} \text{ (CT-Rec)}$$

$$\frac{\Gamma, x: X_1 \succ t_2: T_2 \mid C}{\Gamma \succ \lambda x: X_1.t_2: X_1 \rightarrow T_2 \mid C} \quad (\text{CT-Abs})$$

$$\frac{\Gamma \succ t_1 : T_1 \mid C_1 \quad \Gamma \succ t_2 : T_2 \mid C_2}{\Gamma \succ t_1 : t_2 : X \mid C_1 \cup C_2 \cup \{T_1 = T_2 \to X\}}$$
(CT - App)

$$\frac{\Gamma \succ t_1 : T_1 \mid C_1 \quad \Gamma \succ t_2 : T_2 \mid C_2 \quad \Gamma \succ t_3 : T_3 \mid C_3}{\Gamma \succ \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T_2 \mid C_1 \cup C_2 \cup C_3 \cup \{T_1 = Bool, T_2 = T_3\}}$$
(CT - If)

Do just the same as the standard typing rules.

- Introduce fresh type variables each time a type can't be computed directly.
- Construct constraints consisting of the conditions the typing rules check.

$\frac{x:T\in\Gamma}{\Gamma\succ x:T}$ Ty-Var

$$\frac{x:T\in\Gamma}{\Gamma\succ x:T\mid\{\}}$$
 CT-Var

$$\frac{\Gamma, x_1: T_1 \succ t_2: T_2 \quad T_1 = T_2}{\Gamma \succ x_1: T_1 = t_2: T_2}$$
 Ty-Rec

$$\frac{\Gamma, x_1 : X_1 \succ t_2 : T_2 \mid C}{\Gamma \succ x_1 : X_1 = t_2 : T_2 \mid C \cup \{X_1 = T_2\}}$$

$$\begin{split} & \frac{\Gamma, x: T_1 \succ t_2: T_2}{\Gamma \succ \lambda x: T_1.t_2: T_1 \rightarrow T_2} & \text{Ty-Abs} \\ & \frac{\Gamma, x: X_1 \succ t_2: T_1 \rightarrow T_2}{\Gamma \succ \lambda x: X_1.t_2: X_1 \rightarrow T_2 \mid C} & \text{CT-Abs} \end{split}$$

$$\frac{\Gamma \succ t_1 : T_2 \rightarrow T_3 \quad \Gamma \succ t_2 : T_2}{\Gamma \succ t_1 t_2 : T_3}$$
 Ty-App

$$\frac{\Gamma \succ t_1 : T_1 \mid C_1 \quad \Gamma \succ t_2 : T_2 \mid C_2}{\Gamma \succ t_1 : t_2 : X_3 \mid C_1 \cup C_2 \cup \{T_1 = T_2 \rightarrow X_3\}}$$

Example $f = \lambda x. x (f x)$

$$\begin{array}{c} \underbrace{f:X_{1}, x:X_{2} \succ f:X_{1} \mid \phi \quad f:X_{1}, x:X_{2} \succ x:X_{2} \mid \phi}_{f:X_{1}, x:X_{2} \succ f:X_{1} \mid \phi \quad f:X_{1}, x:X_{2} \succ x:X_{2} \mid \phi}_{f:X_{1}, x:X_{2} \succ f:X_{2} \mid f:X_{2} \rightarrow X_{3} \mid eC_{1}} \\ \underbrace{f:X_{1}, x:X_{2} \succ x(f x):X_{4} \mid C_{1} \cup \{X_{2} = X_{3} \rightarrow X_{4}\} = C_{2}}_{f:X_{1} \succ \lambda x:X_{2}, x(f x):X_{2} \rightarrow X_{4} \mid C_{2}} \\ \varphi \succ f:X_{1} = \lambda x:X_{2}, x(f x):X_{1} \mid C_{2} \cup \{X_{1} = X_{2} \rightarrow X_{4}\} \end{array}$$

$$C_{3} = \begin{cases} X_{1} = X_{2} \rightarrow X_{3} \\ X_{2} = X_{3} \rightarrow X_{4} \\ X_{1} = X_{2} \rightarrow X_{4} \end{cases}$$

Example

$$C_{3} = \begin{cases} X_{1} = X_{2} \to X_{3} \\ X_{2} = X_{3} \to X_{4} \\ X_{1} = X_{2} \to X_{4} \end{cases} \qquad \sigma_{1} C_{3} = \begin{cases} X_{2} \to X_{3} = X_{2} \to X_{3} \\ X_{2} = X_{3} \to X_{4} \\ X_{2} \to X_{3} = X_{2} \to X_{4} \end{cases}$$

 $\sigma_1 = [X_1 \coloneqq X_2 \to X_3] \qquad \sigma_2 = [X_1 \coloneqq X_2 \to X_4, X_3 \coloneqq X_4]$

$$\sigma_{2} C_{3} = \begin{cases} X_{2} \to X_{4} = X_{2} \to X_{4} \\ X_{2} = X_{4} \to X_{4} \\ X_{2} \to X_{4} = X_{2} \to X_{4} \end{cases} \quad \sigma_{3} C_{3} = \begin{cases} (X_{4} \to X_{4}) \to X_{4} = (X_{4} \to X_{4}) \to X_{4} \\ X_{4} \to X_{4} = X_{4} \to X_{4} \\ (X_{4} \to X_{4}) \to X_{4} = (X_{4} \to X_{4}) \to X_{4} \end{cases}$$

 $\sigma_3 = [X_1 \coloneqq (X_4 \to X_4) \to X_4, X_3 \coloneqq X_4, X_2 \coloneqq X_4 \to X_4]$

CT-Rules can be maintained

Use the Nonstandard Unification Algorithm

Simple Example $\lambda x. x x$

$$\begin{array}{l} \{x:X_1\} \succ x:X_1 \mid \phi \qquad \{x:X_1\} \succ x:X_1 \mid \phi \\ \\ \{x:X_1\} \succ x x:X_2 \mid \{X_1 = X_1 \rightarrow X_2\} \\ \\ \phi \succ \lambda x:X_1 \cdot x x:X_1 \rightarrow X_2 \mid \{X_1 = X_1 \rightarrow X_2\} \end{array}$$

 $C = \left\{ X_1 = X_1 \to X_2 \right\}$

Unification

 $\sigma = \phi$

Unification

$$\sigma = [X_1 = A]$$

Most general type of $\lambda x. x x$ is $(\mu X_1: X_1 \rightarrow X_2) \rightarrow X_2$

Advanced Example

$$F = \lambda x \cdot \lambda y \cdot y (x x y)$$
 $fix = F F$

$$\begin{array}{c} \displaystyle \frac{\Gamma \succ x : X_1 \mid \phi \quad \Gamma \succ x : X_1 \mid \phi}{\Gamma \succ x : X_3 \mid \{X_1 = X_1 \rightarrow X_3\} = C_1} \quad \Gamma \succ y : X_2 \mid \phi} \\ \\ \displaystyle \frac{\Gamma \succ y : X_2 \mid \phi \quad \Gamma \succ x x y : X_4 \mid C_1 \cup \{X_3 = X_2 \rightarrow X_4\} = C_2}{\Gamma = \{x : X_1, y : X_2\} \succ y (x x y) : X_5 \mid C_2 \cup \{X_2 = X_4 \rightarrow X_5\} = C_3} \\ \\ \displaystyle \phi \succ \lambda x : X_1 \lambda y : X_2. y (x x y) : X_1 \rightarrow X_2 \rightarrow X_5 \mid C_3} \end{array}$$

$$C_3 = \begin{cases} X_1 = X_1 \rightarrow X_3 \\ X_3 = X_2 \rightarrow X_4 \\ X_2 = X_4 \rightarrow X_5 \end{cases}$$

 $\sigma = \phi$

$$\sigma = [X_1 = A]$$

$$\sigma = [X_1 = A, X_3 = B]$$

$$\sigma = [X_1 = A, X_3 = B, X_2 = C]$$

$$\lambda x \colon X_1 \lambda y \colon X_2 \colon y (x x y) \colon X_1 \to X_2 \to X_5$$

σ satisfies C $\Leftrightarrow \sigma t$ is well typed

$$C = \begin{cases} X_1 = X_2 \to X_3 \\ X_2 = X_3 \to X_4 \\ X_1 = X_2 \to X_4 \end{cases} \qquad f : X_1 = \lambda x : X_2 . (x (f x) : X_3) : X_4$$

Note: It exists a principal type annotation.

Let-Polymorphism

Let-polymorphism, Milner [1978]

Polymorphism is a language mechanism that allow a single part of a program to be used with *different types* in different contexts.

Let-Polymorphism

Naive Let-Rule:

let id = $\lambda x.x$ id : $X_1 \rightarrow X_1$ in id 1; $X_1=Nat$ id true $X_1=Bool$ end type clash

Solution: type scheme

Let $X_1, ..., X_n$ be the *free type variables* of T that do not occur in Γ . We define:

$$\frac{\Gamma \succ x = t_1 : T \mid C \quad \Gamma, x : (\forall X_1, \dots, X_n : T, C) \succ t_2 : T' \mid C'}{\Gamma \succ \text{let } x = t_1 \text{ in } t_2 \text{ end } : T' \mid C'} \quad (\text{CT-Let})$$

$$\frac{x: (\forall X_1, \dots, X_n: T, C) \in \Gamma \quad \sigma = [X_1 = X_1, \dots, X_n = X_n]}{\Gamma \succ x: \sigma \ T \mid \sigma \ C} \quad (CT - Var2)$$

Now, the program is well typed.

let						
id	= $\lambda x \cdot x$	id	•	$\forall x_1: x_2$	$X_1 \rightarrow X_1$	
in						
id	1;	id	•	$\mathbf{X}_{11}\!\!\rightarrow\!$	X_{11}	X_{11} =Nat
id	true	id	•	$X_{12} \rightarrow$	X ₁₂	X ₁₂ =Bool
end						

Problem: side effects

let				
$r = ref(\lambda x.x)$	r	•	$\forall X_1: (X_1 \rightarrow X_1) Re$	f
in				
r:= λx:Nat.succ x;	r	•	$(X_{11} \rightarrow X_{11})$ Ref	X_{11} =Nat
(!r) true	r	•	$(X_{12} \rightarrow X_{12})$ Ref	X ₁₂ =Bool
end				

no type clash

$$\frac{\Gamma \succ x = t_1 : T \mid C \quad \Gamma, x : (\forall X_1, \dots, X_n : T, C) \succ t_2 : T' \mid C'}{\Gamma \succ \operatorname{let} x = t_1 \operatorname{in} t_2 \operatorname{end} : T' \mid C'} \quad (CT - Let)$$

Only if t₁ is a value !!!!!

Note: The type scheme is introduced **after** the typechecking of the term $x=t_1$. This means, that you can not use x **polymorphically** in the term t_1 itself (no polymorphic recursion).

type clash

Restriction

You can not compute a polymorphic function.

```
E.g:
val f = let val i = ref true
    in
        fn x => fn y =>
            (if !i then x else y) before i := not(!i)
        end
```

f is no polymorphic function.

Runtime is Exponential

The following program is well typed but takes a long time to typecheck.

let val f0 = fun x => (x,x) in
let val f1 = fun y => f0 (f0 y) in
let val f2 = fun y => f1 (f1 y) in
let val f3 = fun y => f2 (f2 y) in
let val f4 = fun y => f3 (f3 y) in
f4 (fun z => z)
end end end end

Runtime Analysis

Program	Derived Type	Type Size	Constraints
let val f0 =	∀X0:X0→X0*X0	20	0
fun x => (x,x) in			
let val f1 = fun y =>	∀X1:X1 →(X1*X1)*(X1*X1)	2 ²	2
f0 (f0 y) in			
let val f2 = fun y =>	∀X2:X2→((((X2*X2)*(X2*X2	2))* 2 ⁴	4
fl (fl y) in	((X2*X2)*(X2*X	(2)))*	
<pre>let val f3 = fun y =></pre>	(((X2*X2)*(X2*X2	2))* 2 ⁸	8
f2 (f2 y) in	((X2*X2)*(X2*X	(2))))	
let val f4 = fun y =>		2 ¹⁶	16
f3 (f3 y) in	()		
f4 (fun z => z)			
end end end end end			

Overview

- Unification, Nonstandard Unification
- Constraint typing rules for λ-calculus (similar to standard typing rules)
- It exists a principal type annotation as the solution of a set of constraints (Unification Theorem)
- Constraint typing rules and recursive types
- Let-Polymorphism

Historical Context

- Unification, [Robinson, 1965]
- Unification in linear space complexity [Martelli, Montanary, 1984]
- Nonstandard Unification ???
- Principal Types, Curry and Feys [1958]
- Algorithm to compute principal types, Hindley [1969]
- Type reconstruction, Algorithm W, Damas and Milner [1982]
- Type Reconstruction with Recursive Types [Huet, 1975, 1976]
- Let-polymorphism, Milner [1978]

