
Propagation Algorithms for the Alldifferent
Constraint

Basileios Anastasatos

Universität des Saarlandes
B.Anastasatos@Gmail.com

Abstract. The alldifferent constraint on a subset of the variables
requires that all variables are pairwise different. Probably because it
emerges in a wide variety of Constraint Satisfation Problems (CSP),
alldifferent is the most studied constraint. With the passing of the
years, special algorithms have been developed to handle it efficiently.
The present article considers three of them. For each algorithm, its goal
is defined and the mathematical background behind the algorithm is
introduced. Then its nuts and bolts are explained. Finally, the algorithms
are compared and appropriate usage of each of them is suggested.

1 Introduction

1.1 Constraint Satisfaction Problems

Definition 1. A constraint satisfaction problem (CSP) is a triple (X ,D, C),
where X is a sequence of n variables x1, x2, . . ., xn, D is a sequence of n finite
domains D1, D2, . . ., Dn, where Di is the set of possible values for variable xi,
and C is a finite set of constraints between variables.

Definition 2. A constraint C on the subsequence of variables xi1 , xi2 , . . ., xim
,

is a subset of the Cartesian product Di1 ×Di2 × . . .×Dim .

Definition 3. A solution to a CSP is an assignment to all variables, i.e. a n-
tuple (d1, d2, . . . , dn) so that all constraints are satisfied, i.e. for every constraint
C in C on the variables xi1 , xi2 , . . ., xim

, di1 , di2 , . . ., dim
∈ C holds.

Specifying (some or all) solutions to a given CSP (or determining the absence
of them) is the aim of constraint programming.

1.2 The Constraint Alldifferent

Definition 4. The constraint alldifferent on the subsequence of variables
xi1 , xi2 , . . ., xim states that all variables are pairwise different. Formally:

alldifferent (xi1 , . . . , xim
) := {(di1 , . . . , dim

) | dil
∈ Dil

, j 6= k ⇒ dij
6= dik

}
(1)

alldifferent occurs naturally in a wide variety of problems, which range
from puzzles, like the n-queens problem, to assignment problems, to time-tabling,
frequency allocation, and, generally speaking, graph colouring problems.

It is built-in in virtually every contraint programming system, for two rea-
sons:

1. The first benefit alldifferent offers as built-in, is its syntactic elegance.
We can formulate the requirement that m variables are pairwise different
either by using alldifferent and an argument list of m elements, or by a
conjuction of m (m− 1) /2 inequalities. The latter is difficult to read, coun-
terintuitive, and error-prone. On the other hand, expressing the same thing
with alldifferent is readable, elegant and easy to change.

2. Of course, were alldifferent merely syntactic sugar, it would not be worth
mentioning. The second and most important reason for having alldifferent
built-in in a system is that it allows us to employ specialized algorithms to
handle the constraint much more efficiently than the general-purpose algo-
rithms do.

Unfortunately, the early constraint programming systems did not exploit the
extra information provided by alldifferent in order to handle it efficiently,
but instead treated it internally either as a conjunction of inequalities, or as a
usual m-ary constraint solved with the general-purpose algorithms.

However, in the last decade, many special algorithms have been developed,
which explore the mathematical structure of alldifferent in a variety of ways,
achieving different kinds —stronger or weaker— of local consistency, and in-
variably much faster than in the early stages of constraint programming. Some
aspects of this progress form the subject of the present paper.

1.3 Constraint Propagation

To each constraint C is assigned a propagator, i.e. a process that tries to shrink
the domains of the constraint variables, by removing values that are certainly
used in no solution. To this end, the propagator exploits the locally available
information, i.e. the information provided by the constraint itself.

On the other hand, when a propagator determines that a value of some
domain is excluded from all solutions, it communicates this information to the
other propagators that share the same variable, which take into account the
removal of the value (i.e. the deletions are propagated). This externally provided
information may reactivate a propagator that, having exploited all the locally
availabe information to shrink the domains, had attained local consistency and
could not proceed further.

However, some time a fixpoint of global stability is attained, i.e. all con-
straints of the CSP become locally consistent, and the propagation cycle reaches
an end. If at this point the goal of determining (some of) the solutions has still
to be reached (which is mathematically possible), the system splits the original
problem into at least two CSPs, so that the union of their solution sets is exactly

the solution set of the original CSP. This is done by dividing a domain Di into
k disjoint subsets Di1 , Di2 , . . ., Dik

with k ≥ 2, the union of which equals Di

and by considering the problems (X, (D1, . . . , Di−1, Di1 , Di+1 . . . , Dm) , C), . . .,
(X, (D1, . . . , Di−1, Dik

, Di+1 . . . , Dm) , C) instead of the original one. Repeating
of this procedure (constraint propagation, followed by splitting) creates a search
tree that has the original problem at its root and the solved (or failed) problems
at its leaves.

Theoretically the search for solutions through a search tree would suffice to
determine all solutions, without having to interleave splitting with constraint
propagation. However, the complexity of this method is exponential, which ren-
ders it useless for practical purposes. Constraint propagation seeks to prune
large portions of the search tree beforehand, thus speeding up the solution pro-
cess. Gains in speed are of course possible, only if pruning portions of the search
tree takes less time than searching these portions for solutions, hence the need
for efficient propagation algorithms!

2 Strong Form of Local Consistency

2.1 Hyper-arc Consistency

Definition 5. An m-ary constraint C1 on the variables xi1 , xi2 , . . ., xim
, is

called hyper-arc consistent iff for every variable xik
and for every value d of

the domain Dik
of xik

, there exist di1 ∈ Di1 , di2 ∈ Di2 , . . ., di(k−1) ∈ Di(k−1) ,
di(k+1) ∈ Di(k+1) , . . ., dim ∈ Dim , such that

(
di1 , di2 , . . . , dik−1 , d, dik+1 , dim

)
, is in

C, i.e. iff all values of the domains of the variables constrained by the constraint
are used in some permissible tuple of the constraint at the position corresponding
to the variable.

Definition 6. The hyper-arc consistency is called simply arc consistency if the
considered constraint is binary.

Note 1. The (somewhat counterintuitive) terms hyper-arc resp. arc consistency
stem from the graph theory. A hyper-arc beginning at the vertex v1, passing
through the vertices v2, . . ., vn−1 and ending at the vertex vn is the graph
equivalent of the n-tuple (v1, v2, . . . , vn). An arc from v1 to v2 is the graph
equivalent of the ordered pair (v1, v2).

Hyper-arc consistency is the “real” local consistency. A constraint has a solu-
tion iff it can be made hyper-arc consistent. Hyper-arc consistency corresponds
to the best possible pruning by exploiting only the local information provided
by the constraint. We are going to see that the notion of local consistency can
be relaxed.

1 Not necessarily the alldifferent.

2.2 Early Approaches

As noted above, the early constraint programming systems treated alldifferent
internally either as a conjunction of inequalities and used known algorithms to
make each inequality arc-consistent, or applied general-purpose algorithms for
achieving hyper-arc consistency.

Binary Decomposition. The constraint alldifferent (xi1 , xi2 , . . . , xim), is
replaced by m (m− 1) /2 binary constraints xij 6= xik

∀j < k. Then every binary
constraint is made arc-consistent. The algorithm works as follows: as soon as the
domain of a variable is reduced to one value, i.e. as soon as a variable is assigned
a value, this value is removed from the domains of all other variables.

This approach has two important drawbacks:

1. From one m-ary alldifferent constraint O
(
m2

)
binary constraints are

produced.
2. Arc consistency of all binary constraints does not imply hyper-arc consis-

tency of the original m-ary constraint.

Example 1. The constraint alldifferent (x1, x2, x3) with domains D1 =
D2 = D3 = {1, 2}, is not hyper-arc consistent (actually it is not even con-
sistent.) However the binary alldifferent constraints x1 6= x2, x2 6= x3,
and x1 6= x3 are all arc-consistent, so no domain can be shrinked during the
propagation phase.

General-purpose Algorithms. The second solution was to use some general-
purpose algorithm for achieving hyper-arc consistency of an arbitrary m-ary
constraint. Such algorithms do their task, suffer nevertheless from a very high
complexity, e.g. the algorithm by Mohr and Masini (1988) has cost d!/ (d−m)!
for m variables and domains size d.

3 Régin’s Algorithm

The first special algorithm for achieving local consistency of alldifferent was
created by Régin (1994). It achieves hyper-arc consistency and makes use of
results of the field of graph theory called matching theory to dramatically reduce
the cost.

3.1 Matching Theory

Definition 7. Given a graph G = (V,E), a subset M of the edges E is called a
matching iff no two edges share a vertex, i.e. iff the degree of the vertices in the
graph (V,M) is at most one.

Definition 8. Given a matching M , an edge e ∈ E is called matching if e ∈ M ,
and free otherwise.

Definition 9. Given a matching M , a vertex v ∈ V is called matched if it is
incident to some edge e ∈ M , and free otherwise, i.e. v is matched ⇔ deg (v) = 1
and v is free ⇔ deg (v) = 0.

Definition 10. A matching M is said to cover a set of vertices X iff all vertices
in X are matched.

Definition 11. Given a matching M , an alternating path (resp. circuit) of the
graph G is a (simple) path (resp. circuit) whose edges are alternately matching
and free.

Definition 12. Given a graph G = (V,E), the maximum matching problem
asks for a matching M ⊆ E of maximum cardinality, i.e. one that contains as
many matching edges as possible, or, equivalently, leaves as few free vertices as
possible.

3.2 Application of Matching Theory to Régin’s Algorithm

The relevance of the maximum matching problem to our problem of making
alldifferent hyperarc-consistent lies on three facts:

1. For an m-ary constraint C on the variables XC = xi1 , xi2 , . . ., xim
, we can

represent the information that each xij
, takes its values in Dij

, by a special

bipartite graph
(
XC

⋃ (⋃m
j=1 Dij

)
, E

)
, where e = {xij , d} ∈ E iff d ∈ Dij .

In other words, the set of the vertices consists of two disjoint sets XC and⋃m
j=1 Dij , XC being the set of the variables constrained by C, and

⋃
Dij

being the union of the domains of the variables in XC . Furthermore, an
edge joins a variable xij

and a value d iff d belongs to the domain of xij
,

Dij
. This bipartite graph is called the value graph of XC and can clearly be

constructed in linear time.
2. alldifferent (xi1 , xi2 , . . . , xim), has a solution iff a maximum matching M

of the value graph G of XC = xi1 , xi2 , . . ., xim , has size m. Furthermore,
there exist efficient algorithms that, given V , determine a maximum match-
ing M in O

(√
(|XC |) · |E|

)
.

3. Given a maximum matching M of G with size |M | = m, efficient algorithms
exist that can make alldifferent hyper-arc consistent.

Proof. The first fact, namely that the value graph G of XC encodes all possi-
ble assignments to the variables in XC , as well as that G can be constructed
efficiently, should be clear.

The second fact is also clear: by construction of G, a matching M of size
m covers XC and is also a maximum matching. Furthermore, to each such
matching M = {{xi1 , di1}, {xi2 , di2}, . . ., {xim

, dim
}}, corresponds a solution

(di1 , di2 , . . . , dim
), of alldifferent (XC) and, conversely, to each solution of

alldifferent (XC) corresponds a matching M covering XC .

Furthermore, alldifferent (XC) is hyper-arc consistent iff every edge e of
the value graph of XC belongs to some matching M that covers XC . The proof
follows directly from the definition of hyper-arc consistency and the second fact.

The third fact needs more explanation. The second fact implies that we can
make alldifferent (XC) hyper-arc consistent, iff its value graph G possesses
a matching M of size |XC | = m (otherwise alldifferent (XC) would be in-
consistent) and if we remove every value d in some Dij

, whose corresponding
edge e = {xij

, d} belongs to no matching of size m in G. Fortunately, we do not
have to compute all maximum matchings, for if we know just one such arbitrary
matching M , then we can efficiently compute if an edge of G belongs to some
matching of size m.

Theorem 1. An edge e belongs to some maximum matching IN of size m, iff,
for a given arbitrary maximum matching M of size m, it either belongs to M or
to an M -alternating path of even length that begins at a M -free vertex, or to
an M -alternating cycle of even length.

So, iff an edge e = {xij
, d} belongs to no such alternating path or circuit,

then we delete d from Dij
. But how can we discover these alternating paths and

circuits?
From the value graph G = (V,E) and M we construct a directed graph

G′ = (V ′, E′) in the following way: e′ =
(
xij , d

)
∈ E′ iff e = {xij , d} ∈ M ,

and e′ =
(
d, xij

)
∈ E′ iff e = {xij

, d} ∈ E\M . In other words, we direct all
M -matching edges from the variables to the values and all M -free edges from
the values to the variables.

Theorem 2. 1. Every directed circuit of G′ has even length (because G′ is
bipartite by construction) and corresponds to an even alternating cycle of G
and vice versa.

2. Every directed (simple) path of G′ that begins at a free vertex is either even,
or it is odd and can be extended at its end to an even path. This even path
corresponds to an even alternating path of G that begins at a free vertex, and
vice versa.

It follows that we can find the paths and circuits of G we were looking for
above, by determining the strongly connected components in G′, which corre-
spond to directed circuits in G′, as well as the directed paths in G′ beginning
at a free vertex. The first task takes O (m + |E′|) time, the second one O (|E′|)
time.

Remark 1. As M covers XC , all M -free vertices are not in XC , but in
⋃

xij
∈XC

Dij
.

The complete algorithm works as follows:

1. Given is C = alldifferent (XC), with XC = xi1 , xi2 , . . ., xim
, and xij

taking values from Dij .

2. Construct the value graph G =
(
XC

⋃
xij

∈XC

(⋃
Dij

)
, E

)
.

3. Compute some maximum matching M of G.
4. If |M | < |XC | = m then fail.
5. Else construct directed graph G′ as explained.
6. Mark all edges of G′ that correspond to an edge of G that belongs to M as

“consistent”.
7. Find all strongly connected components (SCC) in G′ and mark the edges

connecting the vertices of each SSC as “consistent”.
8. Find all directed paths that begin at a free vertex and mark their edges as

“consistent”.
9. For each edge e′ in G′ that has not been marked as “consistent”, find the

corresponding edge e = {xij
, d} in G and remove d from Dij

.

The complexity of the algorithm is that of finding a maximum matching, i.e.
O

(√
(|XC |) · |E|

)
. For |E| ∼ |XC |2 the complexity is O

(
|XC |5/2

)
.

3.3 Incremental Property of Régin’s Algorithm

As mentioned above, in the course of a propagation cycle, values are removed
not only because they are locally inconsistent, but also because they were found
inconsistent to some other constraint. This means, after removing some value we
also have to update our value graph and, possibly, our maximum matching M .

The naive and time-consuming way of reconstructing the matching from
scratch can fortunately be avoided, as there exists an effiecient algorithm for
computing a matching covering XC from a matching of cardinality |M − k|,
where k is the number of the edges removed from M . The complexity of this
algorithm is O

(√
k ·m

)
.

The complexity of the whole propagation cycle is O
(
m2 · d2

)
for m variables

with domains of average size d.

4 Weaker Forms of Local Consistency

Remark 2. For the rest of the article, it is assumed that all domains are subsets
of a linearly ordered set Ω and that for every two elements l, u of that set, l ≤ u
implies |{x such that l ≤ x ≤ u}| ≤ ∞, i.e. between any two elements of Ω there
are only finitely many elements. We write [l, u] for the interval {x such that l ≤
x ≤ u}.

Remark 3. In practice, Ω is always the set of the whole numbers ZZ, as the
algorithms presented take for granted e.g. that | [l, u] | = u− l + 1, or that every
element has an inverse, so that l ≤ u ⇔ −l ≥ −u.

4.1 Leconte’s Algorithm

This algorithm was created by Leconte (1996). It derives from the celebrated
Hall’s Marriage Theorem of combinatorics and achieves the so-called “range
consistency”.

Range Consistency. Range consistency is a relaxation of hyper-arc consis-
tency.

Definition 13. An m-ary constraint C on the variables xi1 , xi2 , . . ., xim
, is

called range consistent iff for every variable xik
and for every value d of the

domain Dik
of xik

, ∃ di1 ∈ [min (Di1) ,max (Di1)], di2 ∈ [min (Di2) ,max (Di2)],
. . ., dik−1 ∈

[
min

(
Dik−1

)
,max

(
Dik−1

)]
, dik+1 ∈

[
min

(
Dik+1

)
,max

(
Dik+1

)]
,

. . ., dim
∈ [min (Dim

) ,max (Dim
)], such that

(
di1 , . . . , dik−1 , d, dik+1 , . . . , dim

)
is in C, i.e. iff all values of the domains of the variables constrained by the
constraint were used in some permissible tuple of the constraint at the position
corresponding to the variable, had we filled the gaps of the other domains by
replacing them by the minimal intervals containing them.

Hyper-arc consistency implies range consistency, while the converse is not
true (range consistency does not “see the holes”).

Hall’s Theorem and its Relation to Range Consistency.

Theorem 3. The constraint alldifferent (xi1 , xi2 , . . . , xim
) has a solution iff

for every subset K ⊆ (xi1 , xi2 , . . . , xim
) : |K| ≤ |DK | holds, where DK is the

union of the domains of the variables in K.

Theorem 4. The constraint alldifferent (xi1 , xi2 , . . . , xim
) is range consis-

tent iff no domain Dij
is empty and for every subset K ⊆ (xi1 , xi2 , . . . , xim

):
| [min (DK) ,max (DK)] | = |K| implies Dij

⋂
[min (DK) ,max (DK)] = ∅ ∀xij

6∈
K.

In other words, if the minimal interval containing the union of the domains of
a subset of the constrainted variables equals the cardinality of this subset, then
no value in this interval should be contained also in the domain of a variable not
in K.

Definition 14. A subset K for which the condition of the theorem holds, is
called a Hall set.

Nuts and Bolts of Leconte’s Algorithm. It can be proven that the time
complexity of every algorithm achieving range consistency of the alldifferent
constraint is at least O

(
m2

)
.

The idea of Leconte’s algorithm exploits the above mentioned theorem: find
all Hall sets K and remove all values in DK from the domains of all variables
not in DK .

A naive algorithm would work as follows: with u ranging over all maximum
domain values and l over all minimum domain values, it would check if the
interval [l, u] corresponds to a Hall set, by counting the number of variables
whose domains fall in [l, u] . For each detected Hall set K it would then remove
the values in [l, u] from the domain of every variable x not in K.

This sums up to three nested loops, one for u, one for l, and one for x,
each one of them having O (m) steps, yielding a total complexity of O

(
m3

)
.

Furthermore, if an [l, u] is detected, such that the number of variables whose
domains are contained in [l, u] is greater than | [l, u] |, then the constraint is
inconsistent and the algorithm terminates immediately.

We can reduce the complexity to the optimal O
(
m2

)
if we find a way to

update the domains not in O (m), as the naive algorithm does, but in O (1).
To this end we first sort the domains twice, once in descending order of their
maximums and once in descending order of their minimums and save the two
orderings. The sorting takes O (m log m) time, which is less than O

(
m2

)
.

Then u loops over all maximum domain values in decreasing order and l loops
over all minimum domain values in decreasing order. When a Hall set is detected,
the current position i in the array descMin, which contains the domains sorted
in descending minimum order, is saved and [l, u] is removed on the fly from the
domains of the variables that follow in the loop, but not from the domains of
the variables already checked. The removal of [l, u] on the fly does not increase
the complexity of the algorithm.

If a new Hall set is detected, then the current [l, u] contains the old [l, u] that
corresponded to the previously detected Hall set, because l is descending and u
constant. The new current position in the array descMin is saved, overwriting
the previously saved one.

Once the loop of l is over, we loop once more from the beginning of descMin
till the saved position i and remove [min (descMin [i]) ,max (descMin [i])] from all
domains falling in that interval. This loop has complexity O (m), so the two loops
together (the last one and the loop of l) have a complexity of O (2 ·m) = O (m).
Considering also the outer loop of u we obtain a total complexity of O

(
m2

)
for

the whole algorithm.

Incremental Property of Leconte’s Algorithm. Like Régin’s algorithm,
Leconte’s algorithm can work incrementally during a propagation cycle. The
algorithm’s cost during a complete propagation cycle is O

(
m2 · d

)
, where d is

the average domain size.

4.2 Puget’s algorithm

This algorithm appeared two years after Leconte’s algorith (1998) and also ex-
ploits Hall’s Theorem to detect inconsistent values. It achieves a third kind of
local consistency, called “bounds consistency”.

Bounds Consistency. Bounds consistency is a relaxation of range consistency
(which was in turn a relaxation of hyper-arc consistency.)

Definition 15. An m-ary constraint C on the variables xi1 , xi2 , . . ., xim
: is

called bounds consistent iff for every variable xik
and for both bounds of its do-

main Dik
i.e. for d ∈ {min (Dik

) ,max (Dik
)}, ∃ di1 ∈ [min (Di1) ,max (Di1)],

di2 ∈ [min (Di2) ,max (Di2)], . . ., dik−1 ∈
[
min

(
Dik−1

)
,max

(
Dik−1

)]
, dik+1 ∈[

min
(
Dik+1

)
,max

(
Dik+1

)]
, . . ., dim ∈ [min (Dim) ,max (Dim)], such that the

tuple
(
di1 , di2 , . . . , dik−1 , d, dik+1 , . . . , dim

)
is in C, i.e. iff the bounds of the do-

mains of all variables constrained by the constraint were used in some permissible
tuple of the constraint at the position corresponding to the variable, had we filled
the gaps of the domains by replacing them by the minimal intervals containing
them.

Clearly range consistency implies bounds consistency, while the converse does
not hold (for bounds consistency considers only the bounds of each domain,
instead of its whole range, as range consistency does).

Application of Hall’s Theorem to Bounds Consistency.

Theorem 5. The constraint alldifferent (xi1 , xi2 , . . . , xim
) is bounds consis-

tent iff no domain Dij
is empty and for each interval |I| >= |DI | (where DI :=⋃

Dij and Dij ⊆ I) and if |I| = |DI | implies Dij 6⊆ I ⇒ max
(
Dij

)
,min

(
Dij

)
6∈

I. In other words, if the number of all variables whose domains fall in an interval
I equals the cardinality of I (which implies that any assignment of these variables
will use all the values in I, thus forbidding their use by the other variables), then
no bounds of the domains of the other variables are in I.

Definition 16. An interval I satisfying |I| = |DI | is called a Hall interval.

Nuts and Bolts of Puget’s Algorithm.

Remark 4. Puget’s algorithm updates only the lower bounds of the domains. To
also update the upper bounds, we inverse the domains by multiplying them by
−1, rerun the algorithm and then restore the original form of the domains by
multiplying them once more by −1.

A naive algorithm would work as follows: with u ranging over all maximum
domain values and l over all minimum domain values, it would check if the inter-
val [l, u] is a Hall interval, by counting the number of variables whose domains
fall in [l, u]. For each detected Hall interval [l, u] it would then remove the values
in [l, u] from the domain of every variable x whose domain is not in [l, u].

The complexity of the two loops for l and u is O
(
m2

)
and the complexity

of each one of the inner loops for detecting Hall intervals resp. for updating the
domains is O (m), so the overall complexity is O

(
m3

)
. Furthermore, if an [l, u]

is detected, such that the number of variables whose domains are contained in
[l, u,] is greater than | [l, u] |, then the constraint is inconsistent and the algorithm
terminates immediately.

It can be proven that given m variables, the number of Hall intervals can
be at least m2. So every algorithm that loops over all Hall intervals is bound to
have complexity of at least O

(
m2 · time to update the domains

)
.

Fortunately it is not necessary to consider all Hall intervals. For if l ≤ l′ and
[l, u] and [l′, u] are both Hall intervals, then every value we delete by considering

[l′, u] would be deleted anyway by considering [l, u]. So for given u it suffices to
detect the left-maximal Hall interval that has u as its right bound and is unique,
provided it exists.

The improved algorithm works as follows: with u ranging over all maximum
domain values, l ranges over all minimum domain values to find the left-maximal
Hall interval with u as its right bound. Then we range over all domains to update
them. The complexity of each of the outer loops and of the two consecutives inner
loops is O (m), so the overall complexity is reduced to O

(
m2

)
.

We can further improve the complexity if we can detect left-maximal Hall
intervals and update the domains in logarithmic time instead of linear one. Both
tasks are possible if we first sort the variables twice, one in ascending order of
their maximums and once in ascending order of their minimums (and, of course,
store the two orderings), consider each variable once in ascending order of their
maximums, and use balanced binary trees both to keep special counters used to
detect Hall intervals, as well as to update the domains.

Updating of the counters and the domains is done in a lazy way along a path
leading from the root of the tree to a leaf. When we discover a Hall interval
[l, u] after having considered the first i variables in ascending order of their
maximums, the only candidates for updating their domains can be found in
the yet unconsidered variables, which have a maximum greater of equal to the
considered ones, because only these variables may have a minimum ≥ l and a
maximum > u. Now, as the variables are kept in a balanced tree in ascending
order of their minimums, it suffices to update a frontier that consists of the
internal nodes whose children’s minimum is at least l and the leaf holding the
first variable whose minimum is at least l, by setting the minimum to at least
u + 1. When it is time to consider a variable, we travel from the root to it and
set its minimum to be the greatest minimum found on the path we walked on.
Updating of the counters is done similarly.

As for balanced trees with m leaves all paths have length at most log m, the
overall complexity of the algorithm is reduced to O (m log m). As the cost of
sorting the variables at the beginning is again O (m log m), it does not affect the
complexity of the algorithm.

Further Improvements. The algorithm was further improved by López et
al. (2003.) Mehlhorn et al. (2000) devised another algorithm based on match-
ing theory. Both algorithms have linear complexity plus the cost of sorting the
variables at the beginning. In special cases, this cost can be linear.

5 Comparisons

For non-ordered domains, Régin’s algorithm clearly outperforms the early so-
lutions of binary decomposition and general-purpose algorithms, as it has the
pruning performance of the second one at a speed of the first one. As Leconte’s
and Puget’s algorithms rely on arithmetical properties of the integers, they are
not applicable to arbitrary domains.

However, if the domains are subsets of the integers, then Leconte’s algorithm
achieves local consistency faster than Régin’s and Puget’s faster than Leconte’s.
Because of the relaxed notions of local consistency they achieve, their pruning
performance is inferior to that of Régin’s algorithm, but nevertheless their overall
performance is better. It should be expected that the pruning performance of the
two last algorithms will equal that of Régin’s algorithm if the domains represent
intervals, i.e. if they have no gaps at all or at least only a few.

Régin’s and Leconte’s algorithms share the benefit of working incrementaly
during a complete propagation cycle (Leconte’s algorithm being d times faster
than Régin’s, where d is the average domain size), which is not the case with
Puget’s algorithm. However, the latter still outperforms Leconte’s algorithm.

The improved algorithm by López-Ortiz et al. as well as the algorithm by
Mehlhorn et at. are even faster than the one by Puget.

It seems that the savings achieved by pruning the search tree as well as
possible are inferior to the time required for this better pruning.

References

Van Hoeve, W.: The Alldifferent Constraint: a Systematic Overview. Submitted
manuscript, January 2005.

Mohr, R., Masini, G.: Good Old Discrete Relaxation. In European Conference on Ar-
tificial Intelligence (ECAI), pp. 651-656.

Régin, J.-C. (1994): A Filtering Algorithm for Constraints of Difference in CSPs. In
Proceedings of the Twelfth National Conference on Artifficial Intelligence (AAAI),
Vol. 1, pp. 362-367. AAAI Press.

Leconte, M.: A bounds-based reduction scheme for constraints of difference. In Pro-
ceedings of the Second International Workshop on Constraint-based Reasoning
(Constraint-96), Key West, Florida.

Puget, J.-F.: A fast algorithm for the bound consistency of alldiff constraints. In Pro-
ceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), pp.
359-366. AAAI Press / The MIT Press.

López-Ortiz, A., Quimper, C.-G., Tromp, J., van Beek, P.: A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI-03), pp. 245-250.
Morgan Kaufmann.

Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and
the alldifferent constraint. In Dechter, R. (Ed.), Proceedings of the Sixth Inter-
national Conference on Principles and Practice of Constraint Programming (CP
2000), Vol. 1894 of LNCS, pp. 306-319. Springer.

