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Abstract. The goal of this paper is to introduce the oz approach of modeling search 
and exploration strategies in constraint based problems.Oz space based model is 
introduced as a solution to restrictions of older constraint programming systems. 
The oz model is based on two main ideas. Spaces as a notion of capsulation and 
abstraction of the constraint computations and recomputation reconstruction model 
as an alternative to the widely used trailing. 

1 Introduction 

Constraint programming has become the method of choice for modeling and solving 
many types of problems in a wide range of areas: artificial intelligence,databases, 
combinatorial optimization, and user interfaces, just to name a few.In this paper we 
shortly introduce the basic methodology of constraint programming system (CPS). 
Chapter 1 shows a summary of the main problems of the older CPS and the Oz approach 
of tacking them. Chapter 2 makes a short introduction of how CPS work. Chapter 3 
introduces the notion of spaces with some examples how they can be used. Chapters 4 and 
5 focus on the reconstruction methods, starting with the naïve and trailing and then 
presenting the recomputation approach and some of its modifications. 

1.1 Problem Overview 

A cornerstone for the initial success of constraint programming has been the availability 
of logic programming systems. All today’s systems evolved from them and inherited their 
problems and restrictions. The main ones are formulated in the following paragraphs. 

Search: All these systems have small fixed number of search strategies. They do not 
allow search to be programmed and search is usually hard-wired to depth-first 
exploration. Lack of high-level programming support for search is an impediment to the 
development of new strategies and the generalization of the existing ones.  

Concurrency: Integration of CPS into today’s concurrent computing is made difficult 
or even impossible. This is because the backtracking model inherited from Prolog is 
incompatible with concurrency. 
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Programming backtracking: Each node in a search tree represents an abstract node, but 
also it is a process. This process consists of set of propagators and a constraint store that 
change each other until the node reaches a ‘stable’ state. However using backtracking 
reconstruction model we have the need to be able to restore the initial state of the node. 
This requirement becomes harder to program the more complex the problems are. 

1.2 Outline of Oz approach 

The approach taken by Oz is to devise simple abstractions for the programming of 
constraint services that are concurrency-enabled to start with and overcome the problems 
discussed in the previous section. 
Oz introduces first-class computation spaces which are responsible to handle and 
encapsulate constraint-based computations thus providing object-oriented abstraction. 
Spaces are applied to state-of-the-art search engines, such as plain, best-solution and best-
first search. Programming techniques for space-based search are developed and applied to 
new and highly relevant search engines. Given that search engines and search strategies 
are now programmable, developers may choose or develop a specific search engine best 
matching their problem. 
In order to be expressive and compatible with concurrency, reconstruction is based on 
copying rather than on trailing. 

2 Introductions to Constraint Programming 

In this chapter we overview the CPS process from scratch. 

2.1 How constraint programming systems works? 

It all starts with some problem to be solved. In order to use constraint programming 
system we fit this problem in a model consisting of set of variables and a set of constraints 
for these variables. Constraints are mainly divided in two types: basic and non-basic. 

Basic constraints evaluate some variable domain .They are of the kind x ∈ D .The set of 
all basic constraints forms the constraint store. 

Non-basic constraints express relation between two or more variables and are 
computationally involved. Each non-basic constraint is imposed by a propagator. 
Propagator expressing specific constraint has the role to narrow the variables domains to 
only the domains subset fulfitting the constraint. Whenever a constraint can be propagated 
in order the solution set to be narrowed, the propagator relevant to this constraint takes the 
appropriate action by telling the constraint store some relevant basic constraint. A 
propagator becomes ‘entailed’ if it detects that the constraint it expresses is always 



relevant in the constraint store values domains. It becomes ‘failed’ if the constraint is 
inconsistent with the store. 

 

 
Fig. 1. Constraint store and propagators 

A space S is called ‘stable’ if no propagation can further modify the constraint store. A 
stable space S is called ‘failed’, if S contains failed propagator. A stable space S is 
‘solved’ if S does not contain any propagators. However a space may become stable but 
be neither solved nor failed. This space is called distributable. 

 
Fig. 2. Distributable space 

2.2 Distribution 

If a space reaches distributable state ‘distribution’ has to be made. ‘Distribution’ is the 
action of processing to easier to solve spaces but retaining the same solution set. Common 
distribution  strategy is dividing the domain space into two new spaces by introducing a 
new basic constraint  β. Distribution of spaces with respect to β results in two new spaces 
(S ^ β) and (S ^ ¬β).It is crucial to choose  β  so that further propagation is triggered. β and 
¬β are called alternatives. ‘Distribution’ is also known as labeling or branching. 
Popular distribution strategy is to select a variable with non-singleton domain and split its 
domain into two distinct parts. However even in this simple distribution strategy there are 
still refinement decisions that affect its usefulness like which variable to choose ,how to 
split the domain and so on. 
In the general case distribution uses set of constraints to create alternatives. Iterating 
constraint propagation and distribution lead to a tree of spaces called search tree. The 
distribution strategy chosen in a problem defines fully its search tree. This tree is then 
independent on the exploration strategy. 
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Fig. 3. A possible search tree as a result of specific distribution strategy  

2.3 Exploration 

Search tree is defined entirely by the distribution strategy. An orthogonal issue in finding 
problem solution is how to explore the search tree. A program that implements 
exploration is called search engine. A strategy for exploration is referred to as search 
strategy. 
Some of the most common search strategies are depth-first and breadth-first exploration. 
However there are many more advanced search strategies. 
Besides of different strategies engines can offer a great variety of functionality, like:  

--search for single, several or all solutions. 
--interactive or visual search. 
--search in parallel  

2.4 Best Solution Search 

For a large class of application only the best solution with respect to some criterion is 
needed. The naïve way for solving such problem is finding all solutions and then choosing 
the best one. However constraint programming systems provide a better and faster way of 
solving this class of problems. The idea is to use the currently computed solutions to 
reduce the search space. This is done by injecting a new constraint into the problem which 
states that the next solution found should be better than the current best one. In this 
manner the next solution found will be better than the current one and due to the increased 
number of constraints the search space is reduced. In this solution the order of exploration 
influences the search tree and it is no longer independent of the exploration strategy. 

2.4.1 Branch and bound Best Solution Search Example 
Here we present an example of how branch and bound BSS works. 

 



 
Fig. 4. The problem for which we search for a solution where z is largest 

 
Fig. 5. After exploring the left branch a new constraint ‘z > 1’ is introduced to the right branch 

 

 
Fig. 6. After second (best) solution found 

3 Introduction to spaces in Oz 

In this chapter we introduce the spaces notion. Why do we need spaces, how are they 
implemented and other questions are answered. 
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3.1 Need for spaces 

When we represent the search tree corresponding to a problem, each node is viewed as an 
abstract point for which we ignore the computations and the data structures that it 
contains. But as we have already seen each node is a process of propagators triggering and 
changing variable domains until this node reaches stable state. The computations that are 
executed and take place in this node are important part of the process of computing 
solution of the problem. The top level process need to be protected from possible 
speculative calculations in these nodes and also must not influence them. The approach to 
that comes with the notion of spaces, where space is used to encapsulate all these 
speculative node computations thus making the system safe, easier to program and 
providing possibilities for concurrency. 

3.2 Oz light 

Computation in Oz takes place in computation space. A computation space features 
multiple threads computing over a shared store. The constraint store contains information 
about possible values of the variables represented by a conjunction of basic constraints. 
For the purpose of this paper it is sufficient to regard a propagator as a thread that 
implements constraint propagation. 

 
Fig. 7. Oz computation space 

3.3 Spaces in Oz 

Computation spaces have been introduced as a central mechanism for search. Here the 
integration of spaces into Oz in order to program search engines is shown. 
A local computation space (LCS) encapsulates speculative constraint computations. The 
execution in LCS resembles the execution in the top-level space. However the LCS does 
not have any access to the variables of the top level thus ensuring that after the initial 
setup the computation is independent of the top-level space. Next we show the basic 
operations on spaces which Oz implements so that spaces are made powerful enough 
abstraction. 



3.3.1 Operation on spaces 
 
Space Creation - {NewSpace x y} 
This operator creates a space y which executes the procedure x. 
 
Merging Spaces – {Merge x y} 
This operator merges space x with the top level one and returns the result from space x in 
variable y.This functionality is required for two reasons. First, accessing the result of 
speculative computation and second accessing the entire computation by removing the 
encapsulation barrier. 
 
Injection into Spaces -  {Inject x y} 
This adds some new computations y to the space x. Spawning new computation in a space 
is useful to achieve more powerful programming techniques. An example is the best-
solution search or the case when we need to kill a space without waiting its computation 
to end. 
 
Status Access – {Ask x y} 
This operation blocks until space x becomes stable and then returns the status of the 
space. The status of space x is returned in variable y.It can be: 
--‘failed’, if space x failed 
--the solution reached if the space is solved 
--‘alternatives(n)’ where n is the number of possible branching alternatives if the space is 
distributable. 

 
Choose possible alternatives – {Choose x y}  
Blocks until x is determined to a natural number n, and then expects ‘Commit’ to choose 
alternative. 
 
Committing to alternative – {Commit x y} 
Commits the space x to the alternative with number y from the possibilities defined by the 
Choose operation. 
 
Clone Space – {Clone x y} 
Creates a full copy of space x in variable y. 
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3.4 Depth first search – explanation and code 

 
Fig. 8. Programming depth-first search in the terms of spaces.DFS is a procedure which takes a 
script as input creates a new space to execute the script, and then applies DFE to the newly created 
space, finally returns the result from DFE. DFE is a procedure which takes a space as input and tries 
to solve it using depth-first strategy. If the space becomes distributable, then the procedure creates a 
clone of the space and runs the procedure for the first alternative. If this branch does not result in 
solution then the saved clone of the space is committed to the second alternative. This procedure can 
be easily changed to calculate all solutions. A better implementation idea is to raise exception 
whenever a solution is found so that the canceling process up the tree is omitted. 

4 Naïve and Backtracking approach 

In this chapter we present the naïve and backtracking approach for reconstruction during 
search and the problems they encounter. 

4.1 Naive Approach  

The naïve approach of searching through a search tree is to keep in memory the states of 
all the traversed nodes and the ones, which are about to be traversed. This approach is 
simple to program. However, the problem is that even in not so large problems the amount 
of space required for these node states to be kept in the memory is much. Much unused 
and redundant information is saved. A possible improvement to not keep in the memory 



the nodes which are fully traversed. But again the memory needed is at least linear in the 
depth of the tree. 

 
Fig. 9. The blue circles represent spaces that are ept in the memory. On the left we see the full 

4.2 Backtracking approach – trailing 

The trailing approach was implemented in Prolog to handle the memory problem of the 

S and it is 

 
Fig. 10. The blue circ  is the current state, the only one which is kept explicitly in the memory. The 

 

 k
naïve approach and on the right we see if we use the improvement to not save the spaces which are 
fully traversed. 

naïve approach. It allows a tradeoff between computation time and memory used. The 
idea is to keep in memory only the state of the current node and the information needed to 
backtrack it to the previous state. However in more complex problems where node 
structures may have internal states, retrieving the state of the preceding node can be hard 
problem. For each branch we keep information for the differences between the two nodes 
so that later by using this information the previous node state is reconstructed. 
The problems with this approach are as follows: Trailing is hardwired with DF
hard to be used with another search strategy. It cannot be integrated for concurrent search. 
The undo operation becomes time consuming in more complex problems. 

le
red points represent the difference information between the states and are used for the undo 
operation when we backtrack. 
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5 Recomputation 

5.1 Recomputation basic introduction 

There are two basic techniques for reconstruction of a node state: trailing and 
recomputation.Trailing is based on undo operation and backtracking to the previous 
state.Recomputation is based on copy operation. Main idea of recomputation is that any 
node can be computed without search from the root node and the description of its path. 
For recomputation only two nodes are needed to be saved in the memory. These are the 
current node and the root node. Whenever we need to explore a new node for which we 
know the path, we start with the root node we clone it and commit it consecutively to an 
alternative which form the path to the desired node. This approach uses only small amount 
of memory. On one hand it can be time consuming ,but on the other hand copying is a 
simpler than operation undo and thus recomputation can be much faster than trailing for 
complex problems. 

 
Fig. 11. The recomputation path of a node 

However it might be the case that full recomputation requires many exploration steps and 
involves much computation so there are some modifications and optimizations of this 
technique. 



 
Fig. 12. On the left is the code for recomputing a state using the root and the path and on the right a 
search tree is shown with example runnings of the recomputation procedure for three nodes 
Fig. 12. On the left is the code for recomputing a state using the root and the path and on the right a 
search tree is shown with example runnings of the recomputation procedure for three nodes 

5.2 Last Alternative Optimization 5.2 Last Alternative Optimization 

Last alternative optimization uses the observation that when all but one alternative A of 
the root node N are explored, all other recomputation will start with recomputing the 
branch between N and A. In order to save resources computing this move for each node, 
we can switch the root node to be A and mark N as fully traversed. 

Last alternative optimization uses the observation that when all but one alternative A of 
the root node N are explored, all other recomputation will start with recomputing the 
branch between N and A. In order to save resources computing this move for each node, 
we can switch the root node to be A and mark N as fully traversed. 

  

N

A

Fig. 13. When the left branch of N is traversed the only possible not traversed alternative A of N 
becomes root. 
Fig. 13. When the left branch of N is traversed the only possible not traversed alternative A of N 
becomes root. 

5.3 Fixed and adaptive recomputation 5.3 Fixed and adaptive recomputation 

Another modification of the full recomputation is if we explicitly ensure that each 
recomputation will not have more than a fixed number of steps called maximum 
recomputation distance (MDR). We achieve this by saving additional nodes for each path 
at distance equal to MDR from the last saved node. This consumes more memory 
resources but achieves constant recomputation time independent of the search tree. This 
modification allows a tradeoff between memory and computational resources. 

Another modification of the full recomputation is if we explicitly ensure that each 
recomputation will not have more than a fixed number of steps called maximum 
recomputation distance (MDR). We achieve this by saving additional nodes for each path 
at distance equal to MDR from the last saved node. This consumes more memory 
resources but achieves constant recomputation time independent of the search tree. This 
modification allows a tradeoff between memory and computational resources. 
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Fig. 14. This picture is an example of a search tree when using fixed recomputation.The black nodes 
are the ones which are kept explicitly in the memory. 

Another modification of full recomputation is if during recomputation from N to A, 
additional copy is saved of the space which is in the middle of the path between N and A. 
These techniques provide flexible possibilities for flexible adjustable tradeoff between 
additional memory used and computational time. 

 
Fig. 15. Additional saved space in adaptive recomputation 

5.3 Batch Recomputation [Henz 2001] 

Batch recomputation is recently invented technique which shows better results then the 
recomputation modifications of which were mentioned above. In recomputation process at 
each step we introduce some new constraints to the node and we run the propagation step 
until we compute a stable space and. But given that the final state is known, we can run 
the propagation process only once after having included all the constraints which will be 
introduced for the target node. In this manner a lot of computations might be saved 
because of the larger number of constraints which are introduced at the same time. 
Condition for correctness of this method is the monotonicity of constraints. 



 
Fig. 16. The red line represents how the normal recomputation is executed and the green line shows 
how batch recomputation is executed 

6 Advantages of Oz space based model 

To recapitulate the main advantages of Oz space based model are: 
1. Oz encapsulates constraint computation in spaces thus providing a safe way to handle 

speculative calculations 
2. Oz model is easier to program no matter how complex the internal structures of a space 

are because no support for  the undo operation is needed 
3. Oz allows programmers the freedom to program every aspect of the solution finder so 

that it solves the problem better and faster. Oz provides possibility to develop problem 
dependant search engines. 

4. Oz model allows computing in distributed and concurrent environment, which is the 
basic way of tackling larger problems. 

The new ideas and possibilities which came with Oz space based model gave an 
incitement of programming systems, which were considered old fashioned and no longer 
effective. Constraint programming systems are again a research field which attracts many 
people’s interest and efforts in exploring the newly discovered horizons. 
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