
Programming Constraint Services

Konstantin Halachev

Universität des Saarlandes, Saarbrücken 66123, Germany
halachev@mpi-sb.mpg.de

Abstract. The goal of this paper is to introduce the oz approach of modeling search
and exploration strategies in constraint based problems.Oz space based model is
introduced as a solution to restrictions of older constraint programming systems.
The oz model is based on two main ideas. Spaces as a notion of capsulation and
abstraction of the constraint computations and recomputation reconstruction model
as an alternative to the widely used trailing.

1 Introduction

Constraint programming has become the method of choice for modeling and solving
many types of problems in a wide range of areas: artificial intelligence,databases,
combinatorial optimization, and user interfaces, just to name a few.In this paper we
shortly introduce the basic methodology of constraint programming system (CPS).
Chapter 1 shows a summary of the main problems of the older CPS and the Oz approach
of tacking them. Chapter 2 makes a short introduction of how CPS work. Chapter 3
introduces the notion of spaces with some examples how they can be used. Chapters 4 and
5 focus on the reconstruction methods, starting with the naïve and trailing and then
presenting the recomputation approach and some of its modifications.

1.1 Problem Overview

A cornerstone for the initial success of constraint programming has been the availability
of logic programming systems. All today’s systems evolved from them and inherited their
problems and restrictions. The main ones are formulated in the following paragraphs.

Search: All these systems have small fixed number of search strategies. They do not
allow search to be programmed and search is usually hard-wired to depth-first
exploration. Lack of high-level programming support for search is an impediment to the
development of new strategies and the generalization of the existing ones.

Concurrency: Integration of CPS into today’s concurrent computing is made difficult
or even impossible. This is because the backtracking model inherited from Prolog is
incompatible with concurrency.

mailto:halachev@mpi-sb.mpg.de

2 Konstantin Halachev

Programming backtracking: Each node in a search tree represents an abstract node, but
also it is a process. This process consists of set of propagators and a constraint store that
change each other until the node reaches a ‘stable’ state. However using backtracking
reconstruction model we have the need to be able to restore the initial state of the node.
This requirement becomes harder to program the more complex the problems are.

1.2 Outline of Oz approach

The approach taken by Oz is to devise simple abstractions for the programming of
constraint services that are concurrency-enabled to start with and overcome the problems
discussed in the previous section.
Oz introduces first-class computation spaces which are responsible to handle and
encapsulate constraint-based computations thus providing object-oriented abstraction.
Spaces are applied to state-of-the-art search engines, such as plain, best-solution and best-
first search. Programming techniques for space-based search are developed and applied to
new and highly relevant search engines. Given that search engines and search strategies
are now programmable, developers may choose or develop a specific search engine best
matching their problem.
In order to be expressive and compatible with concurrency, reconstruction is based on
copying rather than on trailing.

2 Introductions to Constraint Programming

In this chapter we overview the CPS process from scratch.

2.1 How constraint programming systems works?

It all starts with some problem to be solved. In order to use constraint programming
system we fit this problem in a model consisting of set of variables and a set of constraints
for these variables. Constraints are mainly divided in two types: basic and non-basic.

Basic constraints evaluate some variable domain .They are of the kind x ∈ D .The set of
all basic constraints forms the constraint store.

Non-basic constraints express relation between two or more variables and are
computationally involved. Each non-basic constraint is imposed by a propagator.
Propagator expressing specific constraint has the role to narrow the variables domains to
only the domains subset fulfitting the constraint. Whenever a constraint can be propagated
in order the solution set to be narrowed, the propagator relevant to this constraint takes the
appropriate action by telling the constraint store some relevant basic constraint. A
propagator becomes ‘entailed’ if it detects that the constraint it expresses is always

relevant in the constraint store values domains. It becomes ‘failed’ if the constraint is
inconsistent with the store.

Fig. 1. Constraint store and propagators

A space S is called ‘stable’ if no propagation can further modify the constraint store. A
stable space S is called ‘failed’, if S contains failed propagator. A stable space S is
‘solved’ if S does not contain any propagators. However a space may become stable but
be neither solved nor failed. This space is called distributable.

Fig. 2. Distributable space

2.2 Distribution

If a space reaches distributable state ‘distribution’ has to be made. ‘Distribution’ is the
action of processing to easier to solve spaces but retaining the same solution set. Common
distribution strategy is dividing the domain space into two new spaces by introducing a
new basic constraint β. Distribution of spaces with respect to β results in two new spaces
(S ^ β) and (S ^ ¬β).It is crucial to choose β so that further propagation is triggered. β and
¬β are called alternatives. ‘Distribution’ is also known as labeling or branching.
Popular distribution strategy is to select a variable with non-singleton domain and split its
domain into two distinct parts. However even in this simple distribution strategy there are
still refinement decisions that affect its usefulness like which variable to choose ,how to
split the domain and so on.
In the general case distribution uses set of constraints to create alternatives. Iterating
constraint propagation and distribution lead to a tree of spaces called search tree. The
distribution strategy chosen in a problem defines fully its search tree. This tree is then
independent on the exploration strategy.

4 Konstantin Halachev

Fig. 3. A possible search tree as a result of specific distribution strategy

2.3 Exploration

Search tree is defined entirely by the distribution strategy. An orthogonal issue in finding
problem solution is how to explore the search tree. A program that implements
exploration is called search engine. A strategy for exploration is referred to as search
strategy.
Some of the most common search strategies are depth-first and breadth-first exploration.
However there are many more advanced search strategies.
Besides of different strategies engines can offer a great variety of functionality, like:

--search for single, several or all solutions.
--interactive or visual search.
--search in parallel

2.4 Best Solution Search

For a large class of application only the best solution with respect to some criterion is
needed. The naïve way for solving such problem is finding all solutions and then choosing
the best one. However constraint programming systems provide a better and faster way of
solving this class of problems. The idea is to use the currently computed solutions to
reduce the search space. This is done by injecting a new constraint into the problem which
states that the next solution found should be better than the current best one. In this
manner the next solution found will be better than the current one and due to the increased
number of constraints the search space is reduced. In this solution the order of exploration
influences the search tree and it is no longer independent of the exploration strategy.

2.4.1 Branch and bound Best Solution Search Example
Here we present an example of how branch and bound BSS works.

Fig. 4. The problem for which we search for a solution where z is largest

Fig. 5. After exploring the left branch a new constraint ‘z > 1’ is introduced to the right branch

Fig. 6. After second (best) solution found

3 Introduction to spaces in Oz

In this chapter we introduce the spaces notion. Why do we need spaces, how are they
implemented and other questions are answered.

6 Konstantin Halachev

3.1 Need for spaces

When we represent the search tree corresponding to a problem, each node is viewed as an
abstract point for which we ignore the computations and the data structures that it
contains. But as we have already seen each node is a process of propagators triggering and
changing variable domains until this node reaches stable state. The computations that are
executed and take place in this node are important part of the process of computing
solution of the problem. The top level process need to be protected from possible
speculative calculations in these nodes and also must not influence them. The approach to
that comes with the notion of spaces, where space is used to encapsulate all these
speculative node computations thus making the system safe, easier to program and
providing possibilities for concurrency.

3.2 Oz light

Computation in Oz takes place in computation space. A computation space features
multiple threads computing over a shared store. The constraint store contains information
about possible values of the variables represented by a conjunction of basic constraints.
For the purpose of this paper it is sufficient to regard a propagator as a thread that
implements constraint propagation.

Fig. 7. Oz computation space

3.3 Spaces in Oz

Computation spaces have been introduced as a central mechanism for search. Here the
integration of spaces into Oz in order to program search engines is shown.
A local computation space (LCS) encapsulates speculative constraint computations. The
execution in LCS resembles the execution in the top-level space. However the LCS does
not have any access to the variables of the top level thus ensuring that after the initial
setup the computation is independent of the top-level space. Next we show the basic
operations on spaces which Oz implements so that spaces are made powerful enough
abstraction.

3.3.1 Operation on spaces

Space Creation - {NewSpace x y}
This operator creates a space y which executes the procedure x.

Merging Spaces – {Merge x y}
This operator merges space x with the top level one and returns the result from space x in
variable y.This functionality is required for two reasons. First, accessing the result of
speculative computation and second accessing the entire computation by removing the
encapsulation barrier.

Injection into Spaces - {Inject x y}
This adds some new computations y to the space x. Spawning new computation in a space
is useful to achieve more powerful programming techniques. An example is the best-
solution search or the case when we need to kill a space without waiting its computation
to end.

Status Access – {Ask x y}
This operation blocks until space x becomes stable and then returns the status of the
space. The status of space x is returned in variable y.It can be:
--‘failed’, if space x failed
--the solution reached if the space is solved
--‘alternatives(n)’ where n is the number of possible branching alternatives if the space is
distributable.

Choose possible alternatives – {Choose x y}
Blocks until x is determined to a natural number n, and then expects ‘Commit’ to choose
alternative.

Committing to alternative – {Commit x y}
Commits the space x to the alternative with number y from the possibilities defined by the
Choose operation.

Clone Space – {Clone x y}
Creates a full copy of space x in variable y.

8 Konstantin Halachev

3.4 Depth first search – explanation and code

Fig. 8. Programming depth-first search in the terms of spaces.DFS is a procedure which takes a
script as input creates a new space to execute the script, and then applies DFE to the newly created
space, finally returns the result from DFE. DFE is a procedure which takes a space as input and tries
to solve it using depth-first strategy. If the space becomes distributable, then the procedure creates a
clone of the space and runs the procedure for the first alternative. If this branch does not result in
solution then the saved clone of the space is committed to the second alternative. This procedure can
be easily changed to calculate all solutions. A better implementation idea is to raise exception
whenever a solution is found so that the canceling process up the tree is omitted.

4 Naïve and Backtracking approach

In this chapter we present the naïve and backtracking approach for reconstruction during
search and the problems they encounter.

4.1 Naive Approach

The naïve approach of searching through a search tree is to keep in memory the states of
all the traversed nodes and the ones, which are about to be traversed. This approach is
simple to program. However, the problem is that even in not so large problems the amount
of space required for these node states to be kept in the memory is much. Much unused
and redundant information is saved. A possible improvement to not keep in the memory

the nodes which are fully traversed. But again the memory needed is at least linear in the
depth of the tree.

Fig. 9. The blue circles represent spaces that are ept in the memory. On the left we see the full

4.2 Backtracking approach – trailing

The trailing approach was implemented in Prolog to handle the memory problem of the

S and it is

Fig. 10. The blue circ is the current state, the only one which is kept explicitly in the memory. The

 k
naïve approach and on the right we see if we use the improvement to not save the spaces which are
fully traversed.

naïve approach. It allows a tradeoff between computation time and memory used. The
idea is to keep in memory only the state of the current node and the information needed to
backtrack it to the previous state. However in more complex problems where node
structures may have internal states, retrieving the state of the preceding node can be hard
problem. For each branch we keep information for the differences between the two nodes
so that later by using this information the previous node state is reconstructed.
The problems with this approach are as follows: Trailing is hardwired with DF
hard to be used with another search strategy. It cannot be integrated for concurrent search.
The undo operation becomes time consuming in more complex problems.

le
red points represent the difference information between the states and are used for the undo
operation when we backtrack.

10 Konstantin Halachev

5 Recomputation

5.1 Recomputation basic introduction

There are two basic techniques for reconstruction of a node state: trailing and
recomputation.Trailing is based on undo operation and backtracking to the previous
state.Recomputation is based on copy operation. Main idea of recomputation is that any
node can be computed without search from the root node and the description of its path.
For recomputation only two nodes are needed to be saved in the memory. These are the
current node and the root node. Whenever we need to explore a new node for which we
know the path, we start with the root node we clone it and commit it consecutively to an
alternative which form the path to the desired node. This approach uses only small amount
of memory. On one hand it can be time consuming ,but on the other hand copying is a
simpler than operation undo and thus recomputation can be much faster than trailing for
complex problems.

Fig. 11. The recomputation path of a node

However it might be the case that full recomputation requires many exploration steps and
involves much computation so there are some modifications and optimizations of this
technique.

Fig. 12. On the left is the code for recomputing a state using the root and the path and on the right a
search tree is shown with example runnings of the recomputation procedure for three nodes
Fig. 12. On the left is the code for recomputing a state using the root and the path and on the right a
search tree is shown with example runnings of the recomputation procedure for three nodes

5.2 Last Alternative Optimization 5.2 Last Alternative Optimization

Last alternative optimization uses the observation that when all but one alternative A of
the root node N are explored, all other recomputation will start with recomputing the
branch between N and A. In order to save resources computing this move for each node,
we can switch the root node to be A and mark N as fully traversed.

Last alternative optimization uses the observation that when all but one alternative A of
the root node N are explored, all other recomputation will start with recomputing the
branch between N and A. In order to save resources computing this move for each node,
we can switch the root node to be A and mark N as fully traversed.

N

A

Fig. 13. When the left branch of N is traversed the only possible not traversed alternative A of N
becomes root.
Fig. 13. When the left branch of N is traversed the only possible not traversed alternative A of N
becomes root.

5.3 Fixed and adaptive recomputation 5.3 Fixed and adaptive recomputation

Another modification of the full recomputation is if we explicitly ensure that each
recomputation will not have more than a fixed number of steps called maximum
recomputation distance (MDR). We achieve this by saving additional nodes for each path
at distance equal to MDR from the last saved node. This consumes more memory
resources but achieves constant recomputation time independent of the search tree. This
modification allows a tradeoff between memory and computational resources.

Another modification of the full recomputation is if we explicitly ensure that each
recomputation will not have more than a fixed number of steps called maximum
recomputation distance (MDR). We achieve this by saving additional nodes for each path
at distance equal to MDR from the last saved node. This consumes more memory
resources but achieves constant recomputation time independent of the search tree. This
modification allows a tradeoff between memory and computational resources.

12 Konstantin Halachev

Fig. 14. This picture is an example of a search tree when using fixed recomputation.The black nodes
are the ones which are kept explicitly in the memory.

Another modification of full recomputation is if during recomputation from N to A,
additional copy is saved of the space which is in the middle of the path between N and A.
These techniques provide flexible possibilities for flexible adjustable tradeoff between
additional memory used and computational time.

Fig. 15. Additional saved space in adaptive recomputation

5.3 Batch Recomputation [Henz 2001]

Batch recomputation is recently invented technique which shows better results then the
recomputation modifications of which were mentioned above. In recomputation process at
each step we introduce some new constraints to the node and we run the propagation step
until we compute a stable space and. But given that the final state is known, we can run
the propagation process only once after having included all the constraints which will be
introduced for the target node. In this manner a lot of computations might be saved
because of the larger number of constraints which are introduced at the same time.
Condition for correctness of this method is the monotonicity of constraints.

Fig. 16. The red line represents how the normal recomputation is executed and the green line shows
how batch recomputation is executed

6 Advantages of Oz space based model

To recapitulate the main advantages of Oz space based model are:
1. Oz encapsulates constraint computation in spaces thus providing a safe way to handle

speculative calculations
2. Oz model is easier to program no matter how complex the internal structures of a space

are because no support for the undo operation is needed
3. Oz allows programmers the freedom to program every aspect of the solution finder so

that it solves the problem better and faster. Oz provides possibility to develop problem
dependant search engines.

4. Oz model allows computing in distributed and concurrent environment, which is the
basic way of tackling larger problems.

The new ideas and possibilities which came with Oz space based model gave an
incitement of programming systems, which were considered old fashioned and no longer
effective. Constraint programming systems are again a research field which attracts many
people’s interest and efforts in exploring the newly discovered horizons.

References

[Schulte 2002] Christian Schulte. Programming Constraint Services : High-Level Programming of
Standard and New Constraint Services, LNAI 2302 Springer-Verlag, 2002.

[Henz 2001] Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state restoration in
tree search. LNCS 2239, Springer-Verlag, 2001

!

C0

C1

C2

C0 ^ C1 ^ C2

C0,C1,C2 - Constraints

http://link.springer.de/link/service/series/0558/tocs/t2302.htm
http://www.comp.nus.edu.sg/%7Ehenz/publications/ps/components.ps

