
Integer Interval/Domain Constraints

Frank Kaufer

Department of Computer Science
Saarland University
kaufer@web.de

Abstract. This paper deals with integer constraints on a introductory
level. Nevertheless the reader should be familar with the basic notions of
Constraint Programming [1] [3]. After some simple examples we provide
some formalisations to define integer constraints. Then we discuss propa-
gation on a general level, before we look at some particular propagators.

1 Introduction

Integer constraints are a very elementary and well researched constraint domain.
Often they are referred to as Finite Domain constraints [3][4], where variables
ranging only over a finite set of nonnegative integers, i.e. a finite subset of the
natural numbers, instead of the whole infinite set of integers. We will also do so
in this paper. Further, we will only use nonnegative constants within the con-
straints. Nevertheless we well call constraints with such variables and constants
integer constraints, because negative polarity can be introduced by an unary
minus function.
At first we introduce two very simple examples (Fig. 1, 2), which show what
integer constraints basically are about.

Fig. 1. example: Send More Money



Fig. 2. example: safe with 9 nonzero digits satisfying some (in/dis)equations (Mozart
code [2])

As one can see, integer constraints are somehow relations about different
expressions containing integer constants and variables which are declared to be
values of an integer domain. In the next chapter we will formalise this more
exactly, before we will discuss how the method of constraint propagation (that
is narrowing down the domains for the declared variables) works for integer con-
straints in general. Finally we will look at some particular classes of propagators.

2 Constraints

We now introduce integer constraints more formally. Therefore we first have to
define the integer expressions we are dealing with.

Definition 1 (expression). Let ai be some constants, xj some variables
with respective domains Dj and F a set of functions in the form of f(y1 :
D1, ..., yk : Dk) : Df , where f is the function symbol, k the arity of the function,
yl(l ∈ [1, k]) the parameter values with respective domains Dl, and Df the do-
main of the return value.
We then call terms build of constants ai ∈ N, variables xj with domains Dj ⊆ N,
and functions of F with domains D ⊆ N integer expressions.
Integer expressions without constants, with B = {0, 1}, ∀xj : Dj ⊆ B and

F = {∧(y1 : B, y2 : B) : B,∨(y1 : B, y2 : B) : B,¬(y1 : B) : B}
we call boolean expressions.
Integer expressions with

F = {+(y1 : N, y2 : N) : N, ·(y1 : N, y2 : N) : N,
−(y1 : N, y2 : N) : N,−(y1 : N) : N}

we call arithmetic expressions.
Arithmetic expressions, where all multiplications have at least one constant as



argument are called linear (arithmetic) expressions.
�

Note 1. We write binary functions in infix notation. For example, +(2,x) would
be 2 + x.

Example 1 (expressions).
boolean expression: (x ∧ ¬y) ∨ (¬x ∧ y)
linear expression: −2 · x + 4 · y − 3 · z + 6
arithmetic expression: −x · y + 4 · y − 3 · z · z · z · z

�

Definition 2 (constraint). Let x,y be variables, D ⊆ N a domain, and s,t in-
teger expressions.
An expression x ∈ D is called domain (integer) constraint.
Domain constraints and simple variable equalities like x=y are called basic (in-
teger) constraints.
For ∼∈ {=, 6=,≤,≥, <, >} s ∼ t is called nonbasic (integer) constraint and
in particular

– s = t equality constraint,
– s 6= t disequality constraint,
– s ≤ t (s ≥ t) inequality constraint, and
– s < t (s > t) strict inequality constraint.

Further we call 〈Cnonbasic;Cbasic〉 for a set of nonbasic constraints Cnonbasic and
a set of basic constraints Cbasic (integer) constraint satisfaction problem
(CSP).

�

Note 2. If the expressions and relations of a (nonbasic) constraint are not of
interest, we can write it also C(x1, ..., xn), where x1, ..., xn are the contained
variables. If we then assign values to the variables we get an extensional view
on a constraint, whereas the version from the definition is intensional.

Definition 3 (solution). Let 〈C;x1 ∈ D1, ..., xn ∈ Dn〉 be a CSP. If for the
values s1, ..., sn with s1 ∈ D1, ..., sn ∈ Dn all constraints are satisfied, we call
(s1, ..., sn) a solution of the CSP.

Example 2 (constraints).
domain constraints: x ∈ [0, 9] , y ∈ {0, 9} , z ∈ N
equality constraint : 4 · x− 3 = z

inequality constraint : z + 1 ≤ 2 · y
�



3 Propagation

In a constraint programming system like Mozart [2] basic constraints are stored
in a so called constraint store, whereas each nonbasic constraint is represented by
an agent called propagator. By the variables contained in the nonbasic constraints
the propagators are connected to the constraint store and try to narrow down
their domains. The whole architecture is called constraint space (see Fig. 3).

Fig. 3. constraint space

For every nonbasic constraint declaration there is exactly one single prop-
agator. Even constraints with the same relation symbol and same expression
types have different propagators. Nevertheless the propagation they accomplish
would have the same operational semantics and so they would belong to the
same class. Such a common class of propagators we call generic propagator. A
generic propagator provides some propagation rules and is characterized by

– relation type
– functions / expression type
– propagation scheme

The propagation scheme constitutes the way, how we narrow down a domain
and has to be declared in addition to a constraint. Therefore we consider two
schemes:

1. bounds propagation
2. domain propagation



Bounds propagation (also known as interval propagation) tries to contract
an interval by increasing the lower bound and/or decreasing the upper bound,
while domain propagation also tries to cut out elements in between (see example
3).

Example 3 (domain/bounds propagation).
bounds propagation:

〈2 · x = y;x ∈ [1, 10], y ∈ [1, 7]〉
〈2 · x = y;x ∈ [1, 3], y ∈ [2, 6]〉

domain propagation:

〈2 · x = y;x ∈ [1, 10], y ∈ [1, 7]〉
〈2 · x = y;x ∈ [1, 3], y ∈ {2, 4, 6}〉

�

Although it seems that bounds propagation is only appropriate for con-
straints containing variables, which are declared to range over an interval and
domain propagation for those containing variables with arbitrary domain dec-
larations, the propagation scheme is independent from the manner of domain
constraints declarations. For exemplification see example 4 and compare with
example 3.

Example 4 (propagation scheme and domain constraint declaration).

bounds propagation for interval with holes:

〈2 · x = y;x ∈ [1, 10], y ∈ [1, 3] ∪ [5, 7]〉
〈2 · x = y;x ∈ [1, 3], y ∈ [2, 3] ∪ [5, 6]〉

�

In general propagation is not a complete solution method. That means a CSP
can have a unique solution, but propagation delivers a plenty of solutions or a
CSP has no solution but propagation doesn’t detect a failure. So propagation
needs to be complemented by search (splitting). Search is a topic of its own and
as a generic mechanism it isn’t bound to a certain type of constraints, so that
we don’t want to discuss it here (see for [1]). But nevertheless we need a goal
we want to reach with propagation. This goal is local consistency. There are
a lot of different definitions of consistency in the literature [1][5][6]. The notions
of bounds consistency (Def. 4) and domain consistency (Def. 5) are appropriate
for the mentioned respective propagation schemes. The intuitive idea is that for
achieving bounds consistency only the minimum and the maximum values of a
domain have to participate in a solution of a constraint, whereas in the case of
domain consistency every value of a domain has to participate in a solution.



Definition 4 (bounds consistency). Let x1 ∈ D1, ..., xn ∈ Dn be some do-
main constraints. A nonbasic constraint C(x1, ..., xn) is called bounds consis-
tent if for each variable xi and each value di ∈ {min(Di),max(Di)}, there exist
values d1 ∈ D1, ..., di−1 ∈ Di−1, di+1 ∈ Di+1, ..., dn ∈ Dn, such that d1, ..., dn is
a solution of C.

�

Definition 5 (domain consistency). Let x1 ∈ D1, ..., xn ∈ Dn be some do-
main constraints. A nonbasic constraint C(x1, ..., xn) is called domain con-
sistent if for each variable xi and each value di ∈ Di, there exist values d1 ∈
D1, ..., di−1 ∈ Di−1, di+1 ∈ Di+1, ..., dn ∈ Dn, such that d1, ..., dn is a solution
of C.
Domain consistency is also called hyper-arc consistency.

�

In general you can choose freely, if you want to use bounds or domain prop-
agation. This leads to a tradeoff between search space size on one side and
computation cost on the other. As domain propagation also cuts holes out of
a domain the search space it leaves is in the worst case as large as for bounds
propagation and often smaller. Therefore computation is cheaper for bounds
propagation as we only have to care about the bounds of an interval to check
consistency. This means if bounds propagation and domain propagation lead to
the same search space, bounds propagation is preferable. Schulte and Stuckey
[5] analysed some integer constraint propagators where this is the case.

Definition 6 (propagation rule). Let 〈C;D〉 and 〈C ′;D′〉 be two CSPs. If
a propagator infers 〈C ′;D′〉 from 〈C;D〉 by an inference rule R, we call R a
propagation rule and write

〈C;D〉
〈C ′;D′〉

R .

�

The operational semantics of a (generic) propagator is represented by its
propagation rules (Def. 6), which we can divide in two classes:

1. normalisation rules
2. domain reduction rules

Normalisation rules in general don’t change the domains of the variables and
only transform CSPs into a an appropriate form for the domain reduction rules
and often even introduce new variables and domains. Reducing domains, that is
the actual intention of propagation, is done by the domain reduction rules.

Example 5 (propagation rules).
a normalisation rule:

〈x1 ∧ x2 ∨ x3 = x4;x1 ∈ {0, 1}, ..., x4 ∈ {0, 1}〉
〈x5 = x1 ∧ x2 , x5 ∨ x3 = x4;x1 ∈ {0, 1}, ..., x5 ∈ {0, 1}〉

BooleanNormal



a domain reduction rule:

〈x = y;x ∈ Dx, y ∈ Dy〉
〈x = y;x ∈ Dx ∩Dy, y ∈ Dy ∩Dx〉

Equality

�

4 Generic Propagators

A generic propagator is a (template) class for propagators and provides propa-
gation rules for a whole family of constraints. Fig. 4 gives a taxonomy of some
generic integer propagators, out of which we want to discuss the rules of the
boolean propagators, the linear bounds propagators, and the linear domain prop-
agators. For the general arithmetic propagators see [1] [4].

Fig. 4. generic propagators taxonomy (∼∈ {=, 6=,≤,≥, <, >} , con ∈ {∧,∨,¬})

4.1 Boolean Propagator

Boolean propagators are also called 0/1-propagators and treat equalities over
boolean expressions and, according to this, only variables ranging over a subset
of B. The boolean constants true and false can be modeled by the following
variables with the respective domain constraints:

– xT := x ∈ {1}
– xF := x ∈ {0}



In the following we discuss three types of boolean propagators, one for every
connective out of ¬,∧,∨. Therefore we define a simple boolean constraint for
each connective:

– ¬x = y

– x ∧ y = z

– x ∨ y = z

One particular propagator will then provide propagation rules for every simple
boolean constraints. To transform arbitrary boolean constraints into simple ones,
we assume some general normalisation rules (examples 5, 6).

Example 6 (boolean normalisation rules).

〈(x1 ∧ x2) ∨ (x3 ∧ ¬(x1 ∨ x2)) = x4 ; D〉

(x1 ∧ x2︸ ︷︷ ︸
y1

) ∨ (x3 ∧ ¬(x1 ∨ x2)) = x4

y1 ∨ (x3 ∧ ¬(x1 ∨ x2︸ ︷︷ ︸
y2

)) = x4 , x1 ∧ x2 = y1

y1 ∨ (x3 ∧ ¬y2︸︷︷︸
y3

) = x4 , x1 ∧ x2 = y1 , x1 ∨ x2 = y2

y1 ∨ (x3 ∧ y3︸ ︷︷ ︸
y4

) = x4 , x1 ∧ x2 = y1 , x1 ∨ x2 = y2 , ¬y2 = y3

〈y1 ∨ y4 = x4 , x1 ∧ x2 = y1 , x1 ∨ x2 = y2 , ¬y2 = y3 , x3 ∧ y3 = y4 ; D′〉

�

Domain reduction rules for simple boolean constraints are very simple. For
disjunction and conjunction we have 6 rules, respectively, whereas for negation
we have 4 rules. All these rules are analogous to the known truth tables. For
example, if we look at conjunction and assume, that x and y are restricted to 1,
we can apply the following rule:

〈(x ∧ y) = z ; x ∈ {1}, y ∈ {1}, z ∈ Dz〉
〈∅ ; x ∈ {1}, y ∈ {1}, z ∈ Dz ∩ {1}〉

AND1

The only thing to note is that new domain of z is Dz ∩{1} and not just {1}.
The intersection is necessary to detect failure, if for example Dz = {0}.



4.2 Linear Bounds Propagator

Linear bounds propagators treat constraints of the form s ∼ t,∼∈ {=, 6=,≤,≥, <
,>} where s and t are linear expressions (see example 2). As propagation scheme
they use bounds propagation. Though not necessary, we want to assume for this
subsection, that every variable is declared to range over an interval. Further we
want to assume that we have some general normalisation rules, which transform
arbitrary linear expressions to sums in the normalised form

∑n
i=1 ai · xi ∼ b,

where all xi are pairwise different.
Although we have six relation types, we can reduce every constraint except a

disequality constraint to an inequality constraint by normalisation rules1. This
makes the domain reduction rule for inequality constraints most important for
these propagators. Because the formal description looks quite complicated and
hides a very simple idea, we first want to get an intuitive idea of that rule by an
example.

Therefore we take the following CSP:

〈3 · x + 4 · y − 5 · z ≤ 7 ; x ∈ [4, 10000] , y ∈ [2, 4] , z ∈ [0, 5]〉

If we want to reduce the domain of a variable by means of bounds propaga-
tion we have find out the maximum or minimum bounds, which are implicitly
contained in the inequality. For that reason, we separate each variable and get
for x :

x ≤ 7− 4 · y + 5 · z
3

If we now put in the highest possible values for all variables with positive
polarity and the lowest possible values for all variables with negative polarity,
i.e. the upper and lower bounds of the intervals, we get

x ≤ 7− 4 · ly + 5 · hz

3
Since we are interested in integer bounds we have to use the next integer

below that fraction. This we can achieve with the floor function:

x ≤
⌊

7− 4 · ly + 5 · hz

3

⌋
With all values put in we compute

x ≤
⌊

7− 4 · 2 + 5 · 5
3

⌋
= b8c = 8

and see that x can not be greater than 8. So we substitute the the domain
constraint of x and get the CSP

1 In general in an implementation it would not make sense to reduce all the relations
to inequality.



〈3 · x + 4 · y − 5 · z ≤ 7 ; x ∈ [4, 8] , y ∈ [2, 4] , z ∈ [0, 5]〉
We can now compute the implicte maximum upper bound of y analogous

and get

y ≤ 7− 3 · x + 5 · z
4

≤
⌊

7− 3 · lx + 5 · hz

4

⌋
= b5c = 5 .

But as y is already stronger restricted and has an upper bound of 4, the
computed information is useless and the old domain constraint will be preserved.

If we now look at z, we can see a difference to x and y. That is the negative
polarity. This entails a turnaround of the inequality symbol while we separate z,
because additionally we have to multiply the whole inequality with (-1). With
the turnaround we can not compute a maximum upper bounder any longer, but
a minimum lower bound. For that reason we now use the lowest possible values
for variables with positive polarity, the highest possible values if there were some
with negative polarity and the ceiling function to get next upper integer:

z ≥ −7 + 3 · x + 4 · y
5

≤
⌊
−7 + 3 · lx + 4 · ly

5

⌋
= d2.6e = 3 .

As 3 is higher than 0, we have a new domain constraint for y and the final CSP

〈3 · x + 4 · y − 5 · z ≤ 7 ; x ∈ [4, 8] , y ∈ [2, 4] , z ∈ [3, 5]〉 .

With this intuitive idea of the domain reduction rule for inequality constraints
it’s straightforward to the general case (Def. 7).

Definition 7 (LinearInequality). Let
∑n

i=0 ai · xi ≤ b be a normalised in-
equality constraint.

〈
∑n

i=1 ai · xi ≤ b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
〈
∑n

i=1 ai · xi ≤ b ; x1 ∈ [l′1, h
′
1], ..., xn ∈ [l′n, h′n]〉

LinearInequality

∀xj |aj > 0 :

xj ≤

⌊
b−

∑n
i=1,i 6=j,ai>0 ai · li +

∑n
i=1,ai<0 ai · hi

aj

⌋
= xj

h′j = min(xj , hj), l′j = lj

∀xj |aj < 0 :

xj ≥

⌊
−b +

∑n
i=1,ai>0 ai · li −

∑n
i=1,i 6=j,ai<0 ai · hi

aj

⌋
= xj

h′j = hj , l
′
j = max(xj , lj)

�



Constraints with the other inequality relation symbol can be reduced to the
one already known be a normalisation rule (Def. 8), an equality constraint can
transformed to two inequality constraints (Def. 9).

Definition 8 (InequalityNormalisation). Let
∑n

i=0 ai · xi ≥ b be a nor-
malised inequality constraint.

〈
∑n

i=1 ai · xi ≥ b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
〈
∑n

i=1 −ai · xi ≤ −b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
InequalityNormalisation

�

Definition 9 (EqualityNormalisation). Let
∑n

i=0 ai ·xi = b be a normalised
equality constraint.

〈
∑n

i=1 ai · xi = b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
〈
∑n

i=1 ai · xi ≥ b,
∑n

i=1 ai · xi ≤ −b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
∗

*EqualityNormalisation
�

For disequality constraints we can’t do very much. A disequality propagator
in Mozart waits until at most one variable of a constraint is undetermined and
then cuts out the apposite values. For some simple cases we can do even more
(Def. 10).

Definition 10 (SimpleDisquality).

〈x 6= y ; x ∈ [a, b], y ∈ [c, d]〉 (b < c ∨ d < a)
〈∅ ; x ∈ [a, b], y ∈ [c, d]〉

SimpleDisequality 1

〈x 6= y ; x ∈ [a, b], y ∈ [a, a]〉
〈∅ ; x ∈ [a + 1, b], y ∈ [a, a]〉

SimpleDisequality 2

〈x 6= y ; x ∈ [a, b], y ∈ [b, b]〉
〈∅ ; x ∈ [a, b− 1], y ∈ [b, b]〉

SimpleDisequality 3

�

Strict inequalities constraints can either be reduced analogous to inequality
or they can be transformed to inequality and disequality constraints (Def. 11).

Definition 11 (StrictInequalityNormalisation).
Let

∑n
i=0 ai · xi < b,

∑n
i=0 ai · xi > b be normalised strict inequality constraints.

〈
∑n

i=1 ai · xi < b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
〈
∑n

i=1 ai · xi ≤ b,
∑n

i=1 ai · xi 6= −b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
∗

*StrictInequalityNormalisation 1

〈
∑n

i=1 ai · xi > b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
〈
∑n

i=1 ai · xi ≥ b,
∑n

i=1 ai · xi 6= −b ; x1 ∈ [l1, h1], ..., xn ∈ [ln, hn]〉
∗

*StrictInequalityNormalisation 2
�



4.3 Linear Domain Propagator

The linear domain propagator has the same setting as the linear bounds prop-
agator with the difference that the propagation scheme is domain propagation.
Furthermore we now also want to admit arbitrary domains (i.e intervals with
holes). For the definition of the linear domain propagators we only have to make
some extensions to the linear bounds propagators, i.e. to their rules, namely:

– modification of the LinearInequality rule (Def. 12)
– relaxation of the SimpleDisequality rules (Def. 13)
– modification of the Equality rule (see example 5)

Definition 12 (DomainInequality). Let
∑n

i=0 ai · xi ≤ b be a normalised
inequality constraint, Di some arbitrary integer domains, li its minimum value
and hi its maximum value.

〈
∑n

i=1 ai · xi ≤ b ; x1 ∈ Di, ..., xn ∈ Dn〉
〈
∑n

i=1 ai · xi ≤ b ; x1 ∈ D1 ∈ D′
n〉

DomainInequality

∀xj |aj > 0 :

xj ≤

⌊
b−

∑n
i=1,i 6=j,ai>0 ai · li +

∑n
i=1,ai<0 ai · hi

aj

⌋
= xj

h′j = min(xj , hj), l′j = lj

D′
j = [l′j , h

′
j ] ∩Dj

∀xj |aj < 0 :

xj ≥

⌊
−b +

∑n
i=1,ai>0 ai · li −

∑n
i=1,i 6=j,ai<0 ai · hi

aj

⌋
= xj

h′j = hj , l
′
j = max(xj , lj)

D′
j = [l′j , h

′
j ] ∩Dj

�

Definition 13 (DomainSimpleDisquality).

〈x 6= y ; x ∈ Dx, y ∈ Dy〉 (Dx ∩Dy = ∅)
〈∅ ; x ∈ Dx, y ∈ Dy〉

DomainSimpleDisequality 1

〈x 6= y ; x ∈ Dx, y ∈ {a}〉
〈∅ ; x ∈ Dx − {a}, y ∈ {a}〉

DomainSimpleDisequality 2

�



5 Outlook

This paper dealt with integer constraints on a very basic level with the intention
to get an idea how propagation works in principle and how to define propagation
rules for these constraints. Therefore we simplified some aspects like the propa-
gation rules for some constraints over linear expressions and omitted other things
like general arithmetic constraints. The latter one can be read in [1], where also
an extension to real numbers can be found.

Integer constraints are the essence of many higher level constraints, as finite
domains can be mapped to an integer domains. Such higher level constraints
with specialised higher level propagators are for example planning/scheduling
constraints or global constraints like alldifferent [6].

As already mentioned an important task in the field of integer constraints
is the analysis of propagators, whether they lead to the same search space for
domain and bounds propagation [5].

References

1. Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

2. Mozart Consortium. The Mozart programming system, 1999.
Available from www.mozart-oz.org.

3. Christian Schulte and Gert Smolka. Finite Domain Constraint Programming in Oz.
A Tutorial. In Mozart Documentation, June 17th, 2004.

4. Denys Duchier, Leif Kornstaedt, Martin Homik, Tobias Mller, Christian Schulte and
Peter Van Roy. System Modules - Constraint Programming. In Mozart Documen-
tation, June 17th, 2004.

5. C. Schulte and P.J. Stuckey. When do bounds and domain propagation lead to the
same search space. In 3rd International Conference on Principles and Practice of
Declarative Programming, pages 115-126, 2001.

6. W.J. van Hoeve. The Alldifferent Constraint: a Systematic Overview. Submitted
manuscript, January 2005.


