
Set Constraints Representation using ROBDDs

Mathias Möhl

Seminar Constraint Programming WS 0405
Department of Computer Science

Saarland University
Saarbrücken, Germany

Abstract. The efficiency of constraint solvers depends heavily on the
representation that is used for the constraint variables. Concerning set
constraints this point becomes central because naive exact representa-
tions have exponential size and are therefore in most cases only approxi-
mated. Since this approximation always comes along with weaker propa-
gation it is desirable to have a representation that is as precise as possible
but has still a handable size. Reduced ordered binary decision diagrams
ROBDDs can be used as such a representation which is exact in all cases
and claims to be tractable in practical applications. In cases where this
representation is still to large ROBDDs can also be used to obtain a
representation with guaranteed linear space bound but weaker propa-
gation as a trade-off. Another advantage of the ROBDD representation
is its modularity which offers an easy and efficient way to specify new
constraints reusing existing ones. This extended abstract basically sum-
marizes the work by V. Lagoon and P. Stuckey published in [7] and [6].

1 Introduction

Set constraints are constraints whose variables do not have integers or real num-
bers as values but sets of them. In this report we restrict our self to sets ranging
over a finite set of integers. Many practical problems can be encoded as a set
constraint satisfaction problem. Grouping people according to certain conditions
could be such an example: Each person is identified by an integer and the groups
are represented by variables ranging over sets of them. Typical constraints re-
strict the cardinality of these sets, enforce the exclusion or inclusion of some
elements or specify subset relations among different variables.

While integer constraint solver usually represent a variable by the set of all
possible values that the variable can take, this leads immediately to an expo-
nential size for set constraints: A set variable over integers 1, ..., n could have
any subset of {1, ..., n} as value and the set of possible values would thus be
the power set of {1, ..., n} which has 2n elements. The way out of this trouble
that most current approaches take, is to replace the exact representation by an
approximated one. But the guaranteed linear space of these approximated repre-
sentations does not come for free: Propagation on approximated representations
can never be as strong as a propagation that benefits from all details of an exact

II

representation. Since weaker propagation usually involves more search, the size
of the search tree may dominate the space consumption of the constraint solver
and eliminate the efficiency gain.

As an alternative, reduced ordered binary decision diagrams (ROBDDs) can
be used as an exact representation for set variables. ROBDDs as a restriction of
BDDs (C.Y.Lee 1959 [8], S.B.Akers 1978 [1]) are first mentioned by S.Fortune
[5]. R.E.Bryant [3] describes ROBBDs as directed acyclic graphs which represent
boolean formulas in a very efficient way and discusses several application areas
for ROBBDs. He also mentions that they can be used to represent sets. Since
variable domains are sets, one can use ROBBDs to represent them. Because
this representation is exact one can build strong, namely domain consistent,
propagators based on it. As each exact representation the ROBDDs may have
exponential size in worst case, never the less there are evidences that the size
of the ROBDDs is tractable in practical applications and that the small search
tree causes an over all efficiency gain compared to approximating bounds repre-
sentations.

A further advantage of the ROBDD is based on the fact that ROBDDs are
nothing else than efficient structures to represent boolean formulae. The fact
that a boolean formula can be composed out of smaller ones can be lifted to
constraints such that the development of new constraints is reducible to their
specification as conjunction, disjunction, negation or even existential quantifica-
tion of existing constraints. This does not only offer an easy interface to specify
new constraints which hides all implementation details, but also leads to effi-
cient implementations of the constraints specified in that way. One important
aspect for this efficiency is for example, that intermediate variables for existential
quantification are compiled away.

The constraint solver implemented by Lagoon and Stuckey shows that all
these benefits of the ROBDD representation for set constraints are not only
theoretical advantages, but also better results in practice. With the set solver
based on ROBDD representation the computation is not only much faster than
in concurrent approaches, but also problem instances are tractable on which
other solvers run out of space.

The remainder of this extended abstract is structured as follows. In chapter
(2) we will explain the basic concepts and structures involved in set constraint
solving, in particular set variables, domains, set constraints and propagators.
In chapter (3) we will define ROBDDs and show that variable domains and
constraints can by represented by them. In chapter (4) we describe different
types of propagators that work on ROBDD representations and in chapter (5)
we show other benefits that come with the ROBDD representation. In chapter
(6) we finally present some experimental results which reflect all advantages of
the ROBDD representation that were explained in the previous chapters.

III

2 Set Constraints

This chapter will give a short overview over important concepts related to the
idea of set constraints. After making precise what constraint satisfaction prob-
lems, set variables and set constraints are, we explain how propagators work with
these structures and which types of propagators are used for set constraints.

2.1 Constraint Satisfaction Problems for Set Constraints

In [2] Apt defines a constraint satisfaction problem (CSP) as a tuple (C, v1 ∈
D1, ..., vn ∈ Dn) where C is a set of constraints and v1, ..., vn are variables which
could take any value of their respective domains D1, ..., Dn. A constraint c ∈ C
is just a subset of Di(1) × ... × Di(m), where i(1), ..., i(m) is a subsequence of
1, ..., n. A constraint c is interpreted such that the variables vi(1), ..., vi(m) satisfy
c iff (vi(1), ..., vi(m)) is an element of c. The variables which are constraint by c,
namely { vj | j ∈ {i(1), ..., i(m)} }, are denoted by V (c) in the following.

Finding a solution for a CSP is basically the process of narrowing the domains
D1, ..., Dn such that all constraints c ∈ C are satisfied. Each variable assignment
in such a final domain is called a solution of the CSP. The process of narrowing
the domains splits up in two parts: Propagation is a technique that uses one
propagator for each constraint c to remove variable constellations that do not
satisfy c. Since propagation is normally not complete, distribution is used to split
up the CSP in smaller ones and to search for solutions in the smaller CSPs.

CSPs whose variables do not represent integer or real numbers but sets of
integers are called set constraint satisfaction problems. In real constraint pro-
gramming interfaces the user does not have to specify the constraints directly as
subsets of D1 × ... × Dn but is rather provided some operators which generate
these sets if they are applied to some constraint variables and constants. Typical
such operators for set variables u, v, w, the constant set d and constant integer
k are k ∈ v (element), k /∈ v (not element), v = w (equality), v ⊆ w (subset),
u = v ∪ w (union), u = v ∩ w (intersection), u = v − w (subtraction), v = w
(complement), v 6= w (disequality), v 6= d(disequality constant), |v| = k (cardi-
nality equals), |v| ≤ k (cardinality upper bound) and |v| ≥ k (cardinality lower
bound). A simple constraint satisfaction problem formulated with some of these
operators is the following:

(1) V ar v ∈ {1, 2, 3, 4}
(2) 3 /∈ v
(3) |v| = 2
(4) v 6= {1, 4}
(5) v 6= {2, 4}

IV

In line (1) a set variable v ranging over {1, 2, 3, 4} is introduced, in lines (2)
to (5) constraints on this variable are imposed using the operators mentioned
above. The only solution to this example is v = {1, 2}.

A set constraint solver is a program that finds (one or all) solutions of such
a set CSP. Set constraint solver use different methods to internally represent
the domains of set variables of the CSP they try to solve. The main challenge
in finding a suitable representation is the fact that exact representations have
exponential size in worst case. While integer variable domains are usually rep-
resented by the set of all elements in the domain, this is intractable for set
variables: The set of the initial domain of a set variable ranging over 1, ..., n
is the power set of {1, ..., n} and thus has size 2n. Most systems therefore use
approximated representations which do not store all possible values but only an
upper and a lower bound with respect to a certain order, usually set inclusion.
These bounds are then interpreted such that the variable may take any value
that is not smaller than the lower and not bigger than the upper bound. Such an
approximation adds all elements to a domain D, which are in the convex closure
of D abbreviated with conv(D).

The bounds representation can be made more precise by adding an upper
and a lower bound for the cardinality of the set, another approach shown in
[9] improves the approximation by adding bounds with respect to the lexico-
graphic order as additional information. The lexicographic bounds are usefull in
particular if the set variables are constraint to represent singleton sets.

2.2 Propagators

Constraint solver use propagators to narrow the domains of the variables. For
each imposed constained one propagator is generated. A propagator for a con-
straint c of a CSP (C, v1 ∈ D1, ..., vn ∈ Dn) computes new domains D

′

i(1), ..., D
′

i(m)

for the variables in V (c) such that the new domains contain only elements that
satisfy certain consistency requirements. The minimal requirement for a propa-
gator is that the new domain of a variable contains no elements that were not in
it’s old domain. This property is even fullfilled by the propagator which does not
change the domains at all; it only ensures, that the propagator does not make
the problem even harder. To make sure that the propagators really narrow the
domains as much as possible, most propagators fullfill stronger requirements,
they are bounds consistent or even better domain consistent.

2.3 Bounds and Domain Consistency

A propagator for a CSP C and a constaint c is domain consistent iff for each
variable v ∈ V (c) a value is only in the narrowed domain of v if there exists
a solution of the constraint c where v has this value. This means that any fur-
ther narrowing would lead to the loss of a solution. Systems which use bounds
representations for the domains of the variables can not have domain consistent

V

propagators, because the approximated domains do not contain enough infor-
mation to ensure this property. Bounds consistency is intuitively the best consis-
tency that a propagator working on variable domains in bounds representations
can obtain. A domain consistent propagator narrows Di(1), ..., Di(m) down to

conv(D
′

i(1)), ..., conv(D
′

i(m)) iff the corresponding domain consistent propagator

narrows conv(Di(1)), ..., conv(Di(m)) down to D
′

i(1), ..., D
′

i(m).

3 ROBDDs

3.1 Formalization of ROBDDs

A ROBDD is formally just a representation for a boolean formula F or the
corresponding boolean function . ROBDDs are acyclic directed graphs with a
root node and (at most) two terminal nodes. The terminal nodes are labeled with
1 and 0 and all other nodes are labeled with a variable from F . Each non-terminal
node has two outgoing edges, a 0-edge and a 1-edge. The value of F is calculated
in the ROBDD by starting at the root node and taking the 0-egde out of a node
if the corresponding variable has value 0 an taking the 1-edge otherwise. The
label of the terminal node, where this traversal ends, represents the value of the
boolean expression. ROBDDs should be small and unique in the sense that for
each boolean formula there exists exactly one corresponding ROBDD and vice
versa. To reach this goal, ROBDDs are restricted by the following conditions:

1. The variables are ordered by some ordering ≺ such that if a node w is
reachable from a node v then v ≺ w.

2. There are no nodes with the same variable label and 1- and 0-branches.
3. Each non-terminal node has different 1- and 0-branches

Condition 1 breaks symmetries, condition 2 avoids the existance of dublicated
subtrees and condition 3 disallows for redundant tests.

3.2 ROBDD Representation of Set Variable Domains

Since ROBDDs are just an efficient way to represent boolean formulas, one can
represent set variable domains with ROBDDs if one can encode the possible
values of a set varible as the solutions of a boolean formula. This can be done
as shown in the following.

Each set variable v with domain D ⊆ {1, ..., n} is associated with boolean
variables V ars(v) := v1, ..., vn and a boolean formula F containing (at most)
these variables. Each solution of the formula F represents one possible element
of D, namely the set { i ∈ {1, ..., n} | vi = 1 in this solution }. If v would range
over {1, 2, 3} and D would be {{1, 2}, {1, 3}, ∅}, then this could be represented
as the boolean formula (v1 ∧ v2 ∧ ¬v3) ∨ (v1 ∧ ¬v2 ∧ v3) ∨ (¬v1 ∧ ¬v2 ∧ ¬v3),
where each of the three parts in brackets represents one of the three elements of
D. The ROBDD corresponding to this formula is shown in Figure 1. 0-edges are
represented as dotted lines in the figure , 1-edges are solid. Since each solution

VI

of F corresponds to a path from the root node of the ROBDD to the 1-node,
for each element of D there exists such a path. The ROBDD corresponding to a
variable v with domain D will be denoted as R(v) or R(D) in the following.

Fig. 1. A ROBDD representing the set {{1, 2}, {1, 3}, ∅}

3.3 ROBDD Representation of Constraints

ROBDDs can not only be used as a representation for the variable domains, but
also as a representation for the constraints. Since constraints are just subsets
of the domains they can be represented in the same way. The only difference
between constraints and variable domains is that domains range over one variable
while constraints (in most cases) range over several variables. The ROBDDs
representing constraints thus have nodes labeled with the boolean variables of
all set variables that they constrain. Each path from the root node to the 1-
node represents a variable assignement that satisfies the constraint, each path
from the root to the 0-node corresponds to a variable assignment which does not
satisfy it.

Fig. 2. A ROBDD representing the constraint v ⊆ w for variables v, w ranging over
{1, 2}.

VII

A ROBDD for the constraint v ⊆ w where v and w range over {1, 2}, is
shown in Figure 2. If we want to check, weather v ⊆ w holds for v = {1, 2} and
w = {1} we follow the corresponding path from the root and land at the 0 node.
The constraint is thus not satisfied for this assignment. A ROBDD representing
a constraint c will be denoted R(c), overloading this operator for both variables
and constraints.

4 Propagators for ROBDD Representations

4.1 A Domain Propagator for ROBDD Representations

A propagator that works on variable domains and constraints in ROBDD rep-
resentation has to somehow compute with these structures. There are efficient
algorithms to construct new ROBDDs out of existing ones that can be used
for this purpose. In particular one can easily build ROBDDs that represent the
conjunction (r1 ∧ r2), disjunction (r1 ∨ r2) or negation (¬r1) of ROBDDs r1,r2

and r, where the semantic of these operations is exacly the same as with their
corresponding boolean formulas. Further more one can also existentially quan-
tify over a boolean variables of a ROBDD (∃v.r). The semantic of r1 = ∃v.r2

is that the variable v does not occur in r1 anymore, and each assignment of
the remaining variables of r2 which can be extended to a solution of r2 by an
assignment of v is a solution of r1. The existential quantification over a set of
variables will be denoted as ∃V .r where V is a set of variables. This is well de-
fined as ∃{v1,...,vn}.r = ∃v1

. ... ∃vn
.r since the order of existential quantifications

does not matter.
For a ROBDD R(c) of a constraint c one can use the above mentioned op-

erations to compute r = R(c)∧ (∧v∈V (c))R(v). The ROBDD r now contains the
boolean variables corresponding to all set variables that c constraints. The solu-
tions of r are exactly the variable assignments that are licensed by the repsective
domains of the variables and also satisfy the constraint c, or in other words: The
solutions of r are exactly the solutions of the constraint c under the current vari-
able domains. If we now choose one set variable v and existentially quantify over
all variables of r but V ars(v), we get a ROBDD r′ that contains only the boolean
variables V ars(v). A variable assignement for V ars(v) is then a solution of r′ iff
there exists a solution of the constraint where v has this value. Thus r′ represents
a narrowed domain of v which satisfies all requirements of domain consistency.
A domain propagator for a constraint c and a variable v is hence defined by the
following formula: dom(c)(v) = ∃V ars(V (c)\{v}).R(c) ∧ (∧v∈V (c))R(v)

4.2 Space Consumption of ROBDDs

While a strong (domain consistent) propagation can be guaranteed for set con-
straints in ROBDD representation, the size of them is claimed to be small in
practical applications, but there is no guarantee for that. Since ROBDDs for
variable domains are no approximations but have a one to one correspondence

VIII

to their domains, they may have exponential size (in the number of integers over
which they range), since there are 2n different possible domains ranging over
integers 1, ..., n.

The big difference to naive representations with exponential size is that
ROBDD’s for the initial domains have a small (even constant) size. Initial do-
mains, which contain all values of 2{1,...,n} have a corresponding ROBDD which
consist of just one node, the 1-node. The exponential size of ROBDDs of variable
domains thus may only appear after complex propagation operations.

Since constraints are also represented as ROBDDs, one also needs to answer
the question, whether the size of these ROBDDs lies within desirable bounds.
The good news here is that ROBDD representation for most basic constraints
have linear or even constant size, only constraints involving the cardinality of
a set have quadratic size. The sizes of ROBDDs for the basic constraints are
shown in detail in the following table:

Constraint c size of R(c)

k ∈ v O(1)
k /∈ v O(1)
v = w O(n)
v ⊆ w O(n)
u = v ∪ w O(n)
u = v ∩ w O(n)
u = v − w O(n)
v = w O(n)
v 6= w O(n)
|v| = k O(k(n − k))
|v| ≤ k O(k(n − k))
|v| ≥= k O(k(n − k))

Summarizing the space issue one can say that as in every exact representation
there is only an exponential space bound for ROBDDs, but at least the problem
specifications (consisting of initial variable domains and constraints) are at most
quadratic if only basic constraints are used.

4.3 ROBDDs and Bounds Representation

If one aims to develop a system with better than exponential bounds on the
sizes of the domain representations, there is no other way than to approximate
the real domains in the representation: Since there are exponentially many (2n)
possible domains ranging over {1, ..., n}, a representation must have exponential
size if no two domains are represented by the same structure (and hence if
it is exact). Approximated representations map different domains to the same
representation, bounds representation for example maps all domains which have
the same convex closure to the same structural representation.

IX

The idea of bounds representation can also be realized with ROBDD repre-
sentation by representing domains D1, ..., Dk with the same convex closure all
with the same ROBDD. The ROBDD that is chosen to represent them all is
the smallest ROBDD of R(D1), ..., R(Dk) and that is always the ROBDD of the
domain Dj with Dj = conv(Dj). Such domains are called convex and the cor-
responding ROBDDs have linear size. Further more the ROBDD of the convex
closure of a domain can be calculated in linear time.

Systems which use bounds representation can’t use the same propagators as
systems with the exact ROBDD representation. Surely domain consistent prop-
agators can take the convex closures of ROBDDs as input, but this has two
consequences: First the result is no more domain consistent and second the re-
sulting ROBDDs are not necessarily ROBDDs of convex domains. The second
consequence does not harm since one can easily (in linear time) compute the
corresponding convex closure after running the propagator to get back to the
approximated representation. The first consequence comes with every approxi-
mated representation, but happily the propagator is at least bounds consistent
as one can easily verify looking at the definition of bounds consistency, which
involves a domain consistent propagator in the same way as our construction.

4.4 Split Domain Representation

Yet another representation off set variable domains which is based on ROBDDs is
called split domain representation. The idea behind it is basically to combine the
small size of the bounds representation with the benefits of exact representations.
A domain is no more represented by just one exact ROBDD r but by a pair
(r1, r2) of two ROBDDs. r1 is exactly the approximated ROBDD of the bounds
representation and r2 is the remainder which makes the representation exact
again in the sense that the exact ROBDD r can be obtained as r = r1 ∧ r2. r2

again may have exponential size in worst case, the motivation for this splitting
is that the size of (r1, r2) is smaller than r in many cases. A very encouraging
result that supports this hope is that the size of (r1, r2) is never bigger that the
size of r, i.e. splitting never makes the situation worse. There is also evidence
that the split representation is not that sensitive to a bad variable ordering:
While reordering the variables may cause a large blow-up of the size of r, this is
not the case for (r1, r2).

Domain propagators working on split domain representations are a little bit
more complex, since they have to transform two ROBDDs into two new ones.
However in practical applications, this does not seem to lead to an efficiency
loss.

5 Modularity as Further Benefits

Another advantage of the ROBDD representation results from the fact that con-
straints are not only implicitly defined by the implementation of a corresponding
propagator but are given as explicit (ROBDD-) structures. Operations on these

X

structures allow to build new constraints reusing existing ones. As mentioned
before, conjunction, disjunction, negation and existential quantification are op-
erations that can efficiently be computed on ROBDDs. Hence also constraints
represented by ROBDDs can be defined as the conjunction, disjunction, nega-
tion or existential quantification of other constraints. This induces an interface
to specify new constraints that hides all the implementation details to the user.
The user only specifies the semantic of a new constraint as a logic formula, the
system constructs a domain consistent propagator that implements this seman-
tic.

While the conjunction of two constraints c1 and c2 can also be realized in
other set constraint systems by just running the propagators for both c1 and c2,
there is no obvious way to model disjunction and negation of constraints, if c1

and c2 are only implicitly defined by their propagators. Further more the con-
junction modelled as parallel application of several domain consistent constraint
propagators is no more domain consistent in general. Existential quantification
of constraints can also be modelled by systems without ROBDD representation,
but again the ROBDD realization leads to better efficiency: While the standard
way to existentially quantify over a variable v is to introduce v as an intermediate
variable that is no further constrained outside the constraint, ROBDD existen-
tial quantification makes use of this locality of v and just compiles it away. Hence
v does not have to be represented explicitly in the memory and no distribution
over v is necessary during search.

An easy constraint which shows most aspects of the above mentioned modu-
larity is the constraint |v∩w| ≤ 1. It can be definded by the formula ∃u.u = v∩w∧
|u| ≤ 1. The ROBDD induced by this formula has variables V ars(v)∪V ars(w),
the variable u is compiled away and is no more visible in the resulting ROBDD.
The size of the ROBDD for the constraint |v ∩ w| ≤ 1 is quadratic, since the
constraints for v ∩ w and |u| ≤ 1 have linear size, their conjunction at most
multiplies their sizes and the existential quantification never increases the size.
The same constraint realised in the usual way by introducing a variable u and
posting two constraints u = v∩w and |u| ≤ 1 has a weaker propagation and the
search for a solution is more complex, since a concrete assignment for u must be
determined for each solution.

Also global constraints with strong propagation can be build using this tech-
nique. Global constaints are large conjunctions of similar basic constraints. The
constraint disjoint(v1, ..., vn) is an example for such a global constraint, its se-
mantic is that the sets v1, ..., vn are disjoint. This can be expressed as the fact
that |vi ∩ vj | = 0 for each pair vi, vj ∈ {v1, ..., vn}. The constraint |vi ∩ vj | = 0
can be defined analogue to the constraint |vi ∩ vj | ≤ 1 described in the previ-
ous paragraph, the conjunction ∧i,j∈{1,...,n},i6=j |vi ∩ vj | ≤ 0 defines the global
constraint. For global constraints the fact that the constraint propagator for the
conjunction of constraints is stronger than setting up constraint propagators for
each part of the conjunction is extremely important. Global constraints can al-
ways be simulated by a series of elementary constraints, but due to the much

XI

stronger propagation one should always prefer global constraints where they are
available.

6 Experimental Results

A set domain solver using ROBDD representation has been implemented by
Lagoon and Stuckey[6]. This solver can be configured such that is uses either
the normal exact ROBDD domain representation, the ROBDD bounds repre-
sentation or the split domain representation. The advantages and disadvantages
of these representations and the corresponding propagations can thus be easily
compared. Additional effects caused by different implementations or different
programming languages are minimized in that way. The solver was also com-
pared to the ECLiPSe solver as an example for a set constraint solver using
set bounds representation. However the interpretation of this comparison it a
little bit difficult, since differences in the speed of the solving process are not
only caused by the different representations that the solvers use but also by their
implementation. There are set bounds solver which are faster than ECLiPSe,
so outperforming the ECLiPSe system does not directly mean to outperform
all solvers based on bounds representation.

6.1 The Social Golfers Problem

The social golfers problem is a common set constraint benchmark. The task is
to group N = g × s players in g groups of size s for each of w weeks such
that no two players are in the same group more than once. The problem is
easy to encode using a global constraint partition(v1, ..., vn) which says that the
sets v1, ..., vn are a partition of {1, ..., n}. In the solver by Lagoon and Stuckey
this constraint can easily be defined, in ECLiPSe it has to be simulated using
several basic constraints. The time needed to solve different problem instances
are shown in Figure 3. Also the number of fails during search and the memory
consumption are shown there. The lather is not available for ECLiPSe and the
sizes shown for the solver by Lagoon and Stuckey are only crude estimates, since
the work of a garbage collector influences the shown values and may lead to an
over estimation.

Comparing the bounds representation and the exact domain representation
one can see that the guaranteed space bounds of bounds representation are
clearly outperformed by the strong propagation of the domain consistent variant.
The memory needed to solve a problem instance in bounds representation is in
most cases much higher than in the exact representation. This a little surprising
fact is caused by the much weaker propagation and the huge search space that is
caused by it. The search space seems to be the dominating factor in the memory
consumption of the whole process. Traversing the search space also needs so
much time, that the domain consistent solver is clearly faster in most cases.
The few cases (e.g. the 5-8-3 instance) were the bounds solver is faster can be
explained in the way that in these cases a solution was by accident found very

XII

Fig. 3. Results of the social golfers benchmark

XIII

fast in the search space. Large instances that are still feasible for the domain
consistent solver lead to a run out of memory for the bounds solver.

The ECLiPSe system behaves in most cases even worse than the bounds
solver using ROBDD implementation. The reason (in addition to the fact that
they are implemented in different programming languages) for this is that the
bounds solver can benefit from the global partition constraint. The stronger
propagation that it offers result in faster solving and a smaller search tree.

The improvements that should be obtained by the split domain representa-
tion seem to have almost no effect in this benchmark. The split domain propa-
gator behaves almost equal to the domain propagator that uses one ROBDD for
exact representation. There are even instances (like 5-4-3) where the standard
domain consistent solver is faster than the one using split domain representation.
However on average the split domain solver is a little bit faster.

The advantage of the strong propagation of both domain consistent solvers is
best visible for the largest instance (7-5-5). The bounds consistent solvers search
in a more and more growing search tree without finding a solution until they
run out of space. The domain consistent propagators narrow down the initial
domains already in the beginning such that the system recognizes that there is
no solution without doing any search at all.

7 Conclusion

We have given an overview over set constraints and in particular we made the
difference between domain propagation and bounds propagation precise. We
then defined ROBDDs and demonstrated how to represent set variable domains
and constraints using these structures. We also showed how to build a domain
constistent propagator for this representation and gave two alternative variable
domain representations resulting in ROBDDs with smaller size. We then men-
tioned further benefits emerging from the explicit representation of constraints
as ROBDDs. Finaly we presented some experimental results which give evidence
that the theoretical benefits also pay off in practice.

Summarizing one can say that ROBDDs are an efficient structure to repre-
sent the domains of set variables. Their worst case exponential size is in real
applications more than compensated by the small search trees that result from
the strong propagation. Further (minor) improvements can be made by using the
split domain representation. In addition to the efficiency resulting from ROBDD
representations, with the existence of boolean operations on ROBDDs there
comes a canonical interface to specify a lot of efficient constraints, for example
many global constraints. This interface abstracts away all implementation details
while guaranteeing a maximal degree of consistency for a strong propagation.

A topic for future work could be the investigation of new domain approxima-
tions between exact and bounds representation. The goal should be to have as
much propagation power as possible with a representation of still handable size.
The realization of some more complex set constraints in ROBDD representation,
for example selection constraints [4], is another open issue.

XIV

References

1. Sheldon B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers,
C-27(6):509–516, June 1978.

2. Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

3. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24(3):293–318, 1992.

4. Denys Duchier. Configuration of labeled trees under lexicalized constraints and
principles. To appear in the Journal of Language and Computation, December
2000.

5. Steven Fortune, John E. Hopcroft, and Erik Meineche Schmidt. The complexity
of equivalence and containment for free single variable program schemes. In Gior-
gio Ausiello and Corrado Böhm, editors, ICALP, volume 62 of Lecture Notes in

Computer Science, pages 227–240. Springer, 1978.
6. Peter Hawkins, Vitaly Lagoon, and Peter J. Stuckey. Set bounds and (split) set

domain propagation using robdds. In Geoffrey I. Webb and Xinghuo Yu, editors,
Australian Conference on Artificial Intelligence, volume 3339 of Lecture Notes in

Computer Science, pages 706–717. Springer, 2004.
7. Vitaly Lagoon and Peter J. Stuckey. Set domain propagation using robdds. In

Wallace [10], pages 347–361.
8. C.Y. Lee. Representation of Switching Circuits by Binary-Decision Programs. Bell

Systems Technical Journal, 38:985–999, July 1959.
9. Andrew Sadler and Carmen Gervet. Hybrid set domains to strengthen constraint

propagation and reduce symmetries. In Wallace [10], pages 604–618.
10. Mark Wallace, editor. Principles and Practice of Constraint Programming - CP

2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 -

October 1, 2004, Proceedings, volume 3258 of Lecture Notes in Computer Science.
Springer, 2004.

