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Abstract. The essence of this paper is an introduction into the the-

ory of scheduling and the presentation of constraint-based scheduling as

a viable solution method for the combinatorial hard scheduling prob-

lems occuring in this research area. The paper covers a de�nition and

a standard classi�cation for scheduling problems, their encoding into a

constraint satisfaction problem as well as the de�nitions and propaga-

tion rules for specialised global scheduling constraints lying at the heart

of constraint-based scheduling.

1 Introduction

The framework of constraint programming (CP) provides a viable approach for
modeling and solving hard combinatorial problems. In this context, the notion
of a combinatorial problem denotes \the problem of �nding an object with some
desired property among a �nite set of possible alternatives"[vH05]. Various com-
binatorial problems occur in di�erent real-life applications of scheduling and are
called scheduling problems. In fact, it is not straightforward to solve these be-
cause the majority of them turns out to be NP -hard [Sha05a,LdB04], i.e. there
exists no polynomial time algorithm in the size of the problem speci�cation
to solve the problem. Nevertheless, constraint-based scheduling (CBS) provides
an e�cient CP-based method to solve scheduling problems. In order to explain
the basics of CBS, the paper is split up in three parts: the �rst part of the
paper focuses on scheduling in general, where sections 1.1 and 1.2 provide an
overview and a de�nition of scheduling. Subsequently the sections 1.3 and 1.4
describe the basic concept of an activity in scheduling and introduce the stan-
dard �j�j-classi�cation for scheduling problems. The second part of the paper
covers essential parts of CBS, where section 2.1 describes the basic components
of CBS. The last two sections in this part, section 2.2 and section 2.3 explain
the encoding of a scheduling problem as a constraint satisfaction problem (CSP)
and furnish de�nitions as well as formal propagation rules for the global schedul-
ing constraints lying at the heart of CBS. Finally, the paper's last part focuses
on specialised branching strategies for CBS in contrast to standard branching
schemes commonly used in CP.
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1.1 Scheduling - A brief overview

To get a clear idea of what CBS is dealing with, this section provides a brief
overview of scheduling theory and application. Scheduling theory �rst appeared
in the early 1950s and is embedded in three di�erent research areas. Since Op-
erations Research (OR) is one of these, scheduling problems can be found in
many real-life applications like timetabling at university, determining an e�cient
execution order of processes in operating - or computer systems, sta� assign-
ment in hospitals, vehicle routing in transport or developing e�cient production
schedules in manufacturing. As a sub�eld of Mathematical Programming (MP),
scheduling problems imply the problem of minimising or maximising a function
ranging over variables being constrained to ful�ll prede�ned conditions. In ad-
dition to that, scheduling is also a sub�eld of combinatorial optimisation (CO).
Hence, scheduling problems not only deal with an e�cient allocation of limited
resources, but also try to �nd the best optimal solution(s) from a �nite set of
feasible solutions. These relations to other research areas provide a good intu-
ition of scheduling as an e�cient allocation of activities to resources, that has
to be optimised with respect to an objective function. In order to clarify, what
scheduling actually does, �gure 1 gives a schematic trace of the use of scheduling
in the context of an advanced planning and scheduling system (APSS). Initially,
there is a user desiring a product like a sta� assignment, a plan for a pizza
delivery or a timetable for lectures at a university. The planner determines a se-
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Fig. 1. APSS-scheme [Fro01]

quence of actions, a plan p, satisfying this
custom order and producing the desired prod-
uct, i.e. planning maps products to plans.
The developed plan p is passed on to a sched-
uler, who decides at what time which re-
sources are used to perform the activities of
p, i.e. scheduling maps activities and their
respective operating times to resources. Af-
ter having transfered the determined points
in time for execution to the executor, the sys-
tem is �nally able to send the resulting prod-
uct back to the user.

1.2 De�nition of Planning and Scheduling

From the context of this traditional APSS-scheme we learn, that the only appli-
cation areas for CP are the planning- and scheduling-phases.

De�nition 1 (Planning). Planning is the process of �nding a sequence p of
actions ai, such that an initial state s0 is transfered into a goal state sg (the
custom order) [Bar04]. The resulting sequence p:=< s0; a0; : : : ; an; sg > is called
a plan. Thus, planning is de�ned as a mapping P from a set Pr of products
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(custom orders or desired world states) to a set Pl of plans as activity lists
producing the desired states (P: Pr7! Pl).

In [Bar04], planning is considered a dynamic problem, because the activities ai
transfering s0 into sg are unknown in advance. However, it is possible to reduce
the dynamic planning problem to a static one by assuming, that only plans of
a certain length n are taken into account [Bar04] providing static information
about the activities. Hence, it becomes possible to model such a planning prob-
lem as a constraint satisfaction problem (CSP). In addition to the embedding
in other research areas, the application of scheduling in an APSS (cf. �gure 1)
underlines, that scheduling is a mapping from activities to resources. Together
with the brief characterization of scheduling as a special branch in OR, MP and
CO, this observation is congruent with the following de�nition of scheduling,
given in the relevant technical literature.

De�nition 2 (Scheduling). Scheduling is the allocation of scarce resources
over time. [Bak74] Let Act denote the set of available activities, that have to be
performed, Res denote the set of available limited resources on which the activities
are executed, and T a set of points in time describing when the activities start
their execution on the respective resources. Then, a schedule S: Act�T7!Res
maps activities ai 2 Act together with their respective starting times 2 T to
limited available resources Rj 2 Res. Thus, scheduling determines exactly, what
activities are performed on which resource and at which time.

In contrast to planning, scheduling is a static problem [Bar04], because the ac-
tivities ai subject to a schedule S are known in advance, i.e. informations about
their start, processing and end times are already provided. Therefore it is possi-
ble to model each scheduling problem as a constraint satisfaction problem (CSP).
Although CP is applicable in both areas, the following sections only focus on the
scheduling component as background for CBS and the scheduling constraints.

1.3 From Activities to Jobs

According to de�nition 2, scheduling is a mapping from a set of activities to a
set of resources.

This implies that both concepts,
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Fig. 2. Early Activity [BLPN01]

activities and resources, repre-
sent the fundamental components
of the CSP-encoding for a schedul-
ing problem. Since the charac-
teristics of an activity are not
only an essential part of the CSP-
model, but also of the standard
classi�cation for scheduling prob-
lems (cf. section 1.4), they are
explained in detail in this sec-

tion. Consider an activity ai, which has to be scheduled on a resource Rj . Such
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an ai is determined by the following quantities shown in �gure 2 and �gure 3:
ri speci�es the release date of the activity, i.e. the time, at which, ai can start,
di speci�es the deadline of the activity, i.e. the time, before or at which ai must
have ended, si speci�es the start time of the activity, i.e. time, at which ai actu-
ally starts, and ei(= Ci) speci�es the end time (completion time) of the activity,
i.e. the time, at which ai actually ends. Fi = Ci � ri speci�es the ow time,
i.e. how long the activity stays ready in the system until it �nishes execution.
Li = Ci � di describes the lateness, i.e. in case of violation of the activity's
deadline the lateness denotes the time from deadline to completion time of the
activity, whereas �Li denotes the di�erence between deadline and completion
time if ai �nishes before its deadline. Di = maxf0; Lig speci�es the tardiness
of an activity (cf. �gure 3), i.e. whether an activity is late (Di = Li) or not
(Di = 0) and Ei = maxf0;�Lig speci�es the earliness of an activity (cf. �gure
2), i.e. whether an activity is early (Ei = �Li) or not (Ei = 0).

The concept of activities, that
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Fig. 3. Late Activity [BLPN01]

is used throughout scheduling
theory can be extended to jobs.
If we consider activities
fa1; : : : ; ang as depicted in �g-
ure 2 or �gure 3, a job Jm is
de�ned as the rearrangement of
these activities into a strongly
related subset Jm = fa1; : : : ; akg
[BLPN01]. If n = 1 the terms
job and activity are used syn-

onymously. Furthermore, the activities in Jm are linked by a set of precedence
constraints, whereof the most common form is a chain-like routing on the activ-
ities,

a1 ! : : :! ak

Finally, as a job consists of a set of activities, each job can be determined by
release date, deadline, start and end times.

1.4 �j�j-Classi�cation of Scheduling

As stated in [Sha05b], scheduling theory covers more than 10.000 di�erent prob-
lem types and is characterised by a \virtually unlimited number" [Bru98] of
them. Because of the lack of a uniform description for scheduling problems,
in 1979 Graham et al. introduced a formal classi�cation system to describe
scheduling problems. With respect to further extensions, the �j�j-classi�cation
they introduced is widely used as standard classi�cation for scheduling prob-
lems [BLPN01,Sha05b,LdB04,Kri04,Leg04] and bases on a three-�eld-descriptor
�j�j. This section describes the original classi�cation without extensions. If �
denotes the absence of a symbol, we obtain the following properties for the �, �
and  parameters:
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Resource Environment �

Instead of resource environment, in the literature the �-descriptor is often
referred to as machine enviroment or processor environment. The �rst �eld

� := �1; �2

consists of two further sub�elds and denotes the machine environment of a
scheduling problem. In this context, �1 2 f�; P;Q;R; F;O; Jg speci�es the ma-
chine type (cf. table 1) and �2 denotes the number of machines in the problem,
which varies between � for an arbitrary number of machines and k � 1 for a
�xed number k of machines.

If �1 2 fF;O; Jg all machines are dedicated, i.e.
� = single resource
P = parallel resources
Q = uniform resources
R = unrelated resources
F = Flow-Shop system
O = Open-Shop system
J = Job-Shop system

Table 1. Values for �1

each machine services one primary function or
task [Kri04]. If �1 = F , then each job Jl fol-
lows the same routing, i.e. each job Jl executes
its activities al;i on a �xed machine order F =<
ma; : : : ;mb >. In case, that �1 = J , each job Jl
has its on machine routing. If �1 = O, the ma-
chine routing can be arbitrary [Sha05b].

Activity and Resource Characteristics �

The second �eld
� = independent activities
prec = directed acyclic graph
uan = uniconnected

= activity networks
tree = tree structure
chains = set of chains

Table 2. Values for �3

� := �1; �2; �3; �4; �5; �6; �7; �8

has 8 sub-categories and represents the
activity and resource characteristics,
which is also referred to as job character-
istics [BLPN01] or task and resource en-
vironment [Kri04].
The �rst sub�eld �1 indicates, whether
activities are preemptive (�1 = pmtn) or not (�1 = �). In this case, the property
of preemption means, that the execution of an activity can be interrupted, e.g.
by the execution of an other activity on the same resource. �2 states, whether
there are additional resource constraints (�2 = res�; �; �) or not (�2 = �).
According to [?] �; �; rho denote the number of resource types(�), resource
limits(�) and the resource requirements(�). These values either can be arbitrary
(�; �; � = �) or �xed to some k � 1, stating that there are k resources types
in the system (� = k), each resource in the system has a maximal capacity
ofk (� = k) and each activity demands c � k units of a resource (� = k).
�3 2 f�; prec; uan; tree; chainsg illustrates the kind of precedence between tasks
and indicates the structure of the precedence graph (cf. table 2), if there is any
precedence relation on the activities in focus. �4 shows, whether the ready times
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of all activities are zero (�4 = �) or whether there are di�erent ready times for
an activity aj (�4 = rj). The �fth sub�eld indicates, if the activities have arbi-
trary processing times (�5 = �), if all activities have the same processing time
p (�5 = (pj = p)) or if every processing time is bounded by the interval [p; p]
(�5 = p � pj � p).
Parameter �6 describes whether 1

n
�
Pn

j=1 Fj = mean ow time F

P
n

j=1
wj �FjP

n

j=1
wj

= mean weighted

ow time Fw

maxfLjg = maximum lateness Lmax
1
n

Pn

j=1Dj = mean tardiness D

P
n

j=1
wj �DjP

n

j=1
wj

= mean weighted

tardiness Dw
1
n

Pn

j=1Ej = mean earliness E

P
n

j=1
wj �EjP

n

j=1
wj

= mean weighted

earliness Ew

Uj =

�
1, if Cj > dj
0, otherwisePn

j=1 Uj = # tardy tasks UPn

j=1 wj � Uj = weighted #

of tardy tasks Uw

� = testing for feasibility

Table 3. Values for 

there are no deadlines imposed
on the activities (�6 = �) or
whether deadlines are imposed
on the performance of some ac-
tivities (�6 = ~d). In case of a
job-shop system (�1 = J), �7
denotes the maximal number of
activities forming a job, which
can be either arbitrary (�7 = �)
or bounded by some �xed k for
each job (�7 = nj � k). The
last parameter �8 denotes the
no-wait-property, i.e. indicates,
whether bu�ers of unlimited ca-
pacity are assumed (�8 = �) or
whether bu�ers between machines
have zero capacity, that is, a job
�nishing on one machine must
immediately start on the next
machine.

Optimality Criterion 

The -�eld represents the optimality criterion for the scheduling problem. Thus,
 2 fCmax; F ; Fw; Lmax; D;Dw; E;Ew; U; Uw;�g is a measure for the quality
and the performance of the schedule and contains the objective function of prob-
lem structure, which has to be optimised. The most common optimisation criteria
are the maximum completion time,

Cmax = maxj2f1;:::;ngfCjg

(cf. section 1.3), which equals the maximum schedule length or which is also
referred to as maximum makespan, the total completion time,

nX
j=1

Cj
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or the weighted total completion time,

nX
j=1

wj � Cj

An overview of other optimality criteria occurring as values for  can be found
in table 3.
The systematic notation of the complete �j�j-classi�cation as stated above
serves as standard classi�cation for scheduling. This classi�cation scheme not
only generalises the problem structure of scheduling problems, but for the �rst
time allows a discussion of these problems by o�ering a uniform notation han-
dling di�erent scheduling problems. Further examples can be found in [cla,ORc]
With this standard notation and the basic knowledge and speci�cations about
scheduling from the sections 1.1 to 1.4 at hand, the next step is to describe the
components of CBS.

2 Constraint-Based Scheduling

In this part of the paper we concentrate on the integral components of CBS like
the CSP-model for scheduling problems and specialised scheduling constraints,
and we trace the origins of CBS. Therefore, the following section takes a closer
look at the development of CBS.

2.1 Components of CBS

CBS originates from four di�erent research areas. One of these four components
of CBS is OR, which is outlined in section 1.1. In order to solve scheduling prob-
lems, the OR-approach focuses exclusively on simple mathematical and statisti-
cal models by heavily exploiting the combinatorial problem structure [BLPN01].
Using these models the OR-method often has to discard side constraints and
degrees of freedom. Although this modus operandi does not loose solutions, it
works on a simpler form of the original problem. Thus a solution to this simpler
problem may either be just a local optimum and hence not the optimal solution of
the orginal problem or is not practicable in real-life applications of the problem.
Notwithstanding, this mathematical approach yields e�cient algorithms, which
are used in specialised global constraints presented in section 2.3. In contrast to
OR, arti�cial intelligence (AI), another component of CBS, concentrates on more
general models for scheduling problems without discarding any side-constraints.
Thus, the AI-approach yiels algorithms that apply on more scheduling problems
because, but as AI takes all side-constraints of the problem into consideration,
the AI-algorithms only come up with a poor performance in comparison to the
faster OR-algorithms. In spite of the computational power of OR and the general
model of AI, neither OR, nor AI as \stand-alone-approaches" are able to handle
scheduling problems, because OR-algorithms may perform only local optimisa-
tion and AI-algorithms are too slow. Together with CP as a third component
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of CBS however, OR and AI are �nally able to tackle the problems occuring in
scheduling theory, which forms the fourth and last component of CBS. Thus,
the possibility of CP to compile scheduling problems into a CSP enables CBS
to handle the N P -hard scheduling problems. In addition to that, the applied
constraint solving techniques of constraint propagation and constraint distri-
bution are enhanced with OR-algorithms forming specialised global scheduling
constraints and with-AI heuristics for the distribution part.

2.2 CSP-Encoding [BLPN01]

In this section we will describe the encoding of a scheduling problem as a con-
straint satisfaction problem (CSP). As the classi�cation mentionned in section
1.4 confronts us with a rather large number of problem variations, we restrict the
CSP-model in focus to a CSP-model for non-preemptive scheduling problems,
i.e. problem formulations where �1 = � holds. In order to compile a scheduling
problem into a CSP, we use the de�nition of a CSP as it is stated in [Apt03],
where a CSP is de�ned as a tuple <X , D , C >, with X as the set of variables,
D as the set of their respective domains and C as the set of constraints over
variables xi 2 X . Hence, the resulting encoding looks as follows:

Variables X [BLPN01]

As activities are the main concept of schedul-

t
ai

s(ai) e(ai)

p(ai)=e(ai)�s(ai)z }| {

Fig. 4. Encoding an Activity
[BLPN01]

ing, the set of variables X denotes the avail-
able informations about the activities ai of
the scheduling problem. Taking only care of
non-preemptive problems (�1 = �) leads us
to the following formulation: For each ac-
tivity ai in the problem de�nition, we in-
troduce 3 variables s(ai); e(ai) and p(ai) as
is depicted in �gure 4. The �rst variable,
s(ai), denotes analogously to section 1.3
the starting time of an activity ai. Further,
the second variable, e(ai), denotes the end of

an activity ai. The third an last variable p(ai) denotes the processing time of an
activity ai that is �xed in the problem description and de�ned as

p(ai) = e(ai)� s(ai), s(ai) + p(ai) = e(ai)

As this equation holds, changing the domain of the s(ai)-variable is coupled with
changing the domain of the e(ai)-variable and increases the propagation power of
the posted constraints (cf. section2.3). Apart from the variables for the activities,
an additional variable varof is introduced that encodes the objective function
in the problem structure and is used as optimality criterion during branch and
bound -search (cf. section 3).
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Domains D [BLPN01]
The domain modeling for the X -variables is essential for the constraints to
follow and it reects the restriction to �1 = �. Since we �nd ourselves in the
non-preemptive case, the variables in X range over a time-window

w = [ri; di]

where ri and di are de�ned as in section1.3. The de�nition of w indicates that an
activity ai is only allowed to execte between its release in the system and its spe-
ci�c deadline. Consequently, the variables in our model range over the following
domains: The domain bounds for the respective variables de�ned above are ini-
tialised as follows: Di(s(ai)) = [ri; lsti], Di(e(ai)) = [eeti; di] and Di(p(ai)) = vi.
vi is a �xed known in advance value for the processing time of ai, i.e. p(ai) is
already determined by initialisation. lsti denotes the latest starting time of an
activity ai and is de�ned as the maximal value in w that can be assigned to s(ai)
without violating the deadline di. Similarly, eeti denotes the earliest end time of
an activity ai and is de�ned as the minimal value in w that can be assigned to
e(ai), i.e.

e(ai) = eeti , s(ai) = ri

The domain of varof is initialised with the respective minimal and maximal
value the objective function speci�ed by the -descriptor can take with respect
to the intial domain bounds of s(ai); e(ai) and p(ai).

Constraints C [BLPN01]
The most important part of the CSP-tuple in CBS is the constraint set C , incor-
porating the specialised global scheduling constraints. Essentially, the constraints
of a scheduling problem can be split up into temporal constraints, resource
constraints and the constraint, that the optimality criterion from the objective
function is met. As it comes to temporal constraints, common constraints are
precedence constraints like precedence between two activities (e(ai) � s(aj)) or
precedence between two jobs (e(ji) � s(jj)). In addition to those precedence
constraints, C also contains linear equations s(ai) + p(ai) = e(ai) which are
due to non-preemption and increase propagation power since changing D(s(ai))
implies changing D(e(ai)) and vice versa. (cf. Variables X ). Apart from the
temporal constraints the set C also contains resource constraints. Resource con-
straints model the fact, that an activity ai requires k units of a resource Rj

at some time t, which is denoted by cap(ai; t; Rj). If time t is not important,
the resource usage of ai is also denoted by cap(ai; Rj). Since this case is the
most common for non-preemptive scheduling problems, we restrict the resource
amount an activity uses to be cap(ai; Rj) = 1. In the context of resource us-
age there is another important property, that has to be modeled, namely the
capacity of a resource Rj described by cap(Rj). The capacity of a resource indi-
cates, how many activities ai can be scheduled simultaneously on that resource.
There is either the case, that only one activity can use the resource Rj at time
t (cap(Rj) = 1) or that the number of activities using resource Rj is bound
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from above by cap(Rj), i.e. n � cap(Rj) activities can use Rj simultaneously.
Obviously, the �rst case is a special case of the latter for cap(Rj) = 1. These two
restrictions to the resource usage yield the most important constraints in CBS,
the unary resource constraint

8t 2 [0; Tmax] :
X
ai

cap(ai; t; Rj) � 1

and the cumulative constraint

8t 2 [0; Tmax] :
X
ai

cap(ai; t; Rj) � cap(Rj)

stating that at each time t either only one activity (unary resource) or at most
cap(Rj) activities (cumulative) may use Rj , where t ranges over [0; Tmax] =
[0; n �maxi2f1;:::;ngpi] according to the general concept of an activity (cf. section
1.3).

2.3 Scheduling Constraints

In this section we focus on scheduling constraints and on constraint propagation
rules for them. The term scheduling constraints describes all constraints in C
in the CSP-encoding of a scheduling problem. As we have seen, C includes two
types of constraints, temporal and resource constraints. Temporal constraints ex-
press local properties. A precedence constraint denotes a local non-overlapping
property e(ai) < s(aj) and a linear constraint denotes local duration property
s(ai) + p(ai) = e(ai). Therefore, temporal constraints can be propagated locally
using linear equations for the duration property and inequalities for the non-
overlapping property. The propagation of equations and inequalities is in O(1)
since for a temporal constraint, there are at least two and at most three variables
involved. Without any precedence constraint, the linear constraints for all con-
sidered activities can be propagated in O(n). Yet, taking precedence constraints
into account, there can be at most

�
n
2

�
of them resulting in a propagation com-

plexity of O
��

n
2

��
= O

�
n�(n�1)

2

�
= O(n2) for all temporal constraints. This

means we have to post at most quadratically many local constraints to meet
all temporal constraints. In contrast to the temporal constraints, resource con-
straints express the global property that for all time t the resource capacity is
never exceeded [BLPN01]. For propagation of this property, four global prop-
agation algorithms are proposed in the literature [Bar04,LN02,BLPN01]. They
are based on the time-window notation w introduced in section 2.2 and im-
pose bounds consistency on the variable domains, i.e. prune the upper and lower
bounds of the variable domains. Let � = fa1; : : : ; ang denote a set of all available
activities for a resource Rj with j� j = n and lsti,eeti as de�ned as in section
1.3.
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De�nition 3 (timetable [BLPN01]).
timetable(� ) =̂ lookup in an explicit global data-structure called time-table,

whether at any time t 2 [0; Tmax] only c = cap(Rj) activities ai 2 � are scheduled
on Rj:

eeti > lsti ) 8t 2 [lsti; eeti] : X(ai; t) := 1 (1)

(X(ai; t) = 0) ^ (t � eeti) ) (s(ai) � t) (2)

(X(ai; t) = 0) ^ (lsti � t) ) (e(ai) � t) (3)

X(ai; t) = 1
def:
, s(ai) � t � e(ai)

The above de�nition of the timetable-constraint includes the unary case for
cap(Rj) = 1 as well as the cumulative case for 1 � n = cap(Rj) and imposes
bounds consistency on

8t 2 [0; Tmax] :
X
ai

cap(ai; t; Rj) � cap(Rj)

Further, X(ai; t) is an implicit boolean variable denoting that ai is scheduled
at time t in the global timetable. Assuming that a test for <;=; > as well as
updating the variable domains Di is performed in O(1), the propagation rules
(1-3) are constant time operations. By de�nition of Tmax (cf. section 2.2) the
global timetable can be setup incrementally in O(n) using rule (1). Hence, the
timetable constraint can be implemented in O(n), which is given as worst-case
complexity in [Bar04], where it is considered \a very fast algorithm" in practice.

De�nition 4 (disjunctive [BLPN01]).
disjunctive(� ) =̂ ensures that there is no overlap in time between any 2

activities in � and that cap(Rj) is not exceeded:

:A ^ eeti > lstj ) e(aj) � s(ai) (4)

:A ^ eetj > lsti ) e(ai) � s(aj) (5)

A = cap(ai; Rj) + cap(aj ; Rj) � cap(Rj)

The above de�nition imposes bounds consistency on the formula

cap(ai; Rj) + cap(aj ; Rj) � cap(Rj) _ e(ai) � s(aj) _ e(aj) � s(ai)

which shows that the disjunctive constraint easily extends to the cumulative case.
Furthermore, the propagation rules (4-5) state the denotational semantics of this
constraint formulating the local non-overlapping property that ai precedes aj or
vice versa. Regarding the unary case, this local property can be stated using the
disjunction

e(ai) � s(aj) _ e(aj) � s(ai)

As j� j = n, a naive implementation of the disjunctive constraint would consider�
n
2

�
disjunctions resulting in posting O(n2) local constraints. Clearly, this is not

the desired result, that we expect from global propagation. In fact, the literature
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[LN02] provides a worst-case complexity of O(n) for the disjunctive constraint
based on the above rule set, but as there is no algorithm given, the use of
the propagation rules (4-5) cannot be guaranteed. Nevertheless, the disjunctive
constraint outlines the advantage of global constraint propagation: one single
constraint considering all problem variables at once, i.e. the variables encoding
the set � , yields a more e�cient algorithm (O(n)) than mimicking a global
constraint using local propagation for each of the local properties (O(n2)).

De�nition 5 (edge�nding [BLPN01]).
edge�nding(� ) =̂ determines, whether an activity ai 2 � can be scheduled

�rst (ai � 
) or last (
 � ai) among 
 � � :

8
 : 8ai 62 
 : [d
 � r
[faig < p
 + pi] ) 
 � ai (6)

8
 : 8ai 62 
 : [s(ai) � max;6=
0�
(r
0 + p
0)]
def:
, 
 � ai

8
 : 8ai 62 
 : [d
[faig � r
 < p
 + pi] ) ai � 
 (7)

8
 : 8ai 62 
 : [e(ai) � min;6=
0�
(d
0 � p
0)]
def:
, ai � 


where r
 = mini2f1;:::;ng^ai2
ri denotes the minimum release date of an ai 2

, d
 = maxi2f1;:::;ng^ai2
di denotes the maximum deadline of an ai 2 
,
and p
 =

Pn

i=1^ai2

pi is the sum over all processing times of all activities

in 
. Propagation is done by checking, whether the execution of ai and 
 in
the interval [r
[faig; d
 ] (in [r
 ; d
[faig] respectively) violates the deadline of
some activity av 2 
. If so, rule (6) deduces that 
 � ai (ai � 
 by rule
(7) respectively). The edge�nding constraint extends to the cumulative case by
checking additionally that cap(Rj) is not violated in the intervals de�ned as
above (rules 8-9). Formally, this is done by introducing the notion of the energy
of ai, eni = cap(ai; Rj) � pi, and of the energy of 
, en
 =

P
ai
eni instead of

the respective processing times pi and p
 :

8
 : 8ai 62 
 : en
[faig > cap(Rj) � (d
 � r
[faig) ) 
 � ai (8)

8
 : 8ai 62 
 : max�max� (r
0 + drest(
0; ci)=cie) � s(ai)
def:
, 
 � ai

� := 
 � fa1; : : : ; ang : ai 62 
 ^ cap(Rj) � (d
 � r
[faig) < en
[faig

� := 
0 � 
 : 
0 6= ; ^ rest(
0; ci) > 0

8
 : 8ai 62 
 : en
[faig > cap(Rj) � (d
[faig � r
) ) ai � 
 (9)

8
 : 8ai 62 
 : min�min� (d
0 � drest(
0; ci)=cie) � e(ai)
def:
, 
 � ai

� := 
 � fa1; : : : ; ang : ai 62 
 ^ cap(Rj) � (d
[faig � r
) < en
[faig

� := 
0 � 
 : 
0 6= ; ^ rest(
0; ci) > 0

where ci = cap(ai; Rj) and rest(
; ci) = en
 � (cap(Rj)� ci)(d
 � r
) denotes
the remaining energy in 
 that can be scheduled without making the values in
D(s(ai)) inconsistent. Whereas the implementations in [BLPN01] are running
in O(n2) or even O(n3), the best propagation algorithm for the edge�nding
constraint in the literature is given by Carlier and Pinson and runs in O(n �
log(n)) time and O(n) space.
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De�nition 6 (not�rstnotlast [BLPN01]).
not�rstnotlast(� ) =̂ deduces, whether an activity ai cannot be scheduled �rst
(:ai � 
) or last (:
 � ai) among a set of activities 
 � � :

8
 : 8ai 62 
 : [d
 � ri < p
 + pi]) :(ai � 
) (10)

8
 : 8ai 62 
 : :(ai � 
)) s(ai) � eetmin


8
 : 8ai 62 
 : [di � r
 < p
 + pi]) :(
 � ai) (11)

8
 : 8ai 62 
 : :(
 � ai)) e(ai) � lstmax


where eetmin
 = mini2f1;:::;ng^ai2
eeti denotes the smallest of the earliest end
times in 
 and lstmax
 = maxi2f1;:::;ng^ai2
lsti denotes the greatest of the
latest start times in 
. Propagation of the abvove rule set checks, whether the
execution of ai and 
 in the interval [ri; d
 ] (in [r
 ; di] respectively) violates
the deadline of some activity as 2 
. Thereof it follows from rule (12), that
:(ai � 
) (:(
 � ai) follows from rule (13) respectively). Like the edge�nd-
ing constraint, the extension of the not�rstnotlast constraint to the cumulative
case is straightforward. We just check that neither the deadlines are violated
nor the maximum resource capacity cap(Rj) is exceeded, which is realised by
using the energy notion en
 as for the cumulative edge�nding constraint and
considering the resource usage of ai over the interval [r
 ;min(eeti; d
)] in rule
(12) ([max(lsti; r
); d
 ] in rule (13)respectively) and by taking into account the
available energy of Rj over the interval [r
 ; d
 ]:

8
 : 8ai 62 
 : � ) :(ai � 
) (12)

� := [r
 � ri < eetmin
 ] ^ [en
 + cap(ai; Rj)(min(eeti; d
)� r
)

> cap(Rj)(d
 � r
)]

8
 : 8 : ai 62 
 : :(ai � 
)
def:
, max
�fa1;:::;ang:�eetmin
 � s(ai)

8
 : 8 : ai 62 
 : � ) :(
 � ai) (13)

� := [lstmax
 < di � d
 ] ^ [en
 + cap(ai; Rj)(d
 �max(lsti; r
))

> cap(Rj)(d
 � r
)]

8
 : 8 : ai 62 
 : :(
 � ai)
def:
, min
�fa1;:::;ang:�lstmax
 � e(ai)

As mentionned in [Bar04], a propagation algorithm for the not�rstnotlast con-
straint runs in O(n2).

3 Specialised Branching

Usually, when it comes to constraint distribution in CP, it is clear, that stan-
dard branching and search techniques yield the desired result of a naive dis-
tribution or a �rst-fail distribution, i.e. to �nd the earliest possible branch in
the search tree, that is a failure state and as a such can be omitted. Typi-
cally is the use of a naive distribution, i.e. select always the leftmost undeter-
mined variable next, or the use of �rst-fail strategies like minimal size, mini-
mal di�erence between domain bounds, the most constrained variable or other
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strategies. As far as it comes to the CSP-formulation of a scheduling prob-
lem, these standard branching schemes are insu�cient, if they apply at all. Just
like scheduling problems demand specialised scheduling constraints (cf. section
2.3), they also demand specialised branching schemes [LN02]. As the CSP-model
for scheduling problems focuses on activities, so do the branching methods,
that are being applied. One branching possibility is �rst/last-branching. This
scheme takes on activity ai from an unordered set of activities 
 and branches
on [first(ai)] _ [:first(ai)] or [last(ai)] _ [:last(ai)]. A di�erent possibility of
branching is the so-called activity pair ordering. In this branching, two unordered
activities ai and aj on the same resource Rj are selected and the branching is
performed on: [e(ai) � s(aj)] _ [e(aj) � s(ai)] A further branching method is
the minimal slack - or resource slack -heuristic. In this context, the notion of a
slack is de�ned as follows:

slack(ai � aj) = max(end(aj)�min(s(ai))� p(fai; ajg)

i.e. a slack denotes the amount of free resource between the earliest end time and
the latest starting time of two succeeding activities. To choose a minimal slack is
important, since a minimal slack indicates, that there are minimal combinatorial
possibilities to order these two activities, hence this is a critical position in the
whole schedule. This heuristic for a pair of two activities easily extends to sets:

slack(
) = max(end(
)�min(s(
))� p(
)

where the focus lies on the resource with minimal slack.

4 Summary

In this paper we introduced and de�ned the domain of scheduling and gave a for-
mal classi�cation of scheduling problems. Furthermore we introduced constraint-
based scheduling as a solution method for those scheduling problems incorporat-
ing techniques of constraint programming. In this context an encoding of non-
preemptive scheduling problems into a constraint satisfaction problem was pre-
sented and we provided a formal insight into the propagation rules of specialised
global scheduling constraints being a fundamental part of this CSP-model. In
combination with specialised branching strategies we actually saw that schedul-
ing constraints are powerful global specialised constraints and that there are ef-
fcient global propagation algorithms implementing the presented rule sets. Thus
we can conclude that based on those scheduling constraints, CBS is a highly
e�cient and very useful tool to solve combinatorial hard scheduling problems.
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