
Seminar on Constraint Programming

April 2005 Daniel Schreck
Supervisor: Guido Tack

Seminar Constraint Programming
Winter semester 2004/2005
Programming System Lab

Department of Computer Science
Universität des Saarlandes



Table of Contents

Seminar on Constraint Programming

Propagator Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Daniel Schreck (B. Sc., Universität des Saarlandes)



Propagator Scheduling

Daniel Schreck

Universität des Saarlandes, Saarbrücken, Germany
s9daschr@stud.uni-saarland.de

Abstract. This paper is about efficiently implementing propagation,
which is the key component of a solver for constraint satisfaction prob-
lems (CSPs). We first show how propagation algorithm and constraint
solver could be implemented and then enhance this proposed model in
order to save propagation time. This is on one hand achieved by reason-
ing and bookkeeping about the propagators that are at a fixpoint. On the
other hand we show how to run propagators prioritized, in an order that
quickly leads to solution or failure. The content of this paper is based
on one by Schulte and Stuckey [SS04b] and covers the same topics, but
tries to present them in a manner more suitable for readers with little
previous knowledge.

1 Introduction

Constraint satisfaction problems (CSPs) can be formulated from many different
application domains. According to Apt [Apt03] these include optimization prob-
lems in operations research, business applications, the construction of efficient
parsers for natural language processing, the solving of equations in computer
algebra and many more often hard combinatorial problems. Constraint solvers
can solve CSPs of all these domains, although for the hard and complex prob-
lems it may take hours or days or even longer. Thus it is important to build
constraint solvers that are fast, thereby increasing the number of problems that
can be solved in reasonable time and enabling simple problems to be solved in-
stantly. Note that there are techniques to speed up solvers for specific problems,
but they are not topic of this paper.

In this first section we introduce the basic concepts of constraint program-
ming. We will define necessary terms including the notion of a propagator for
a constraint. In the following section we present a model of a constraint solver
and especially of the propagation algorithm that is responsible for the execution
of the propagators. The third section “Fixpoint reasoning” deals with avoiding
unnecessary calls to propagators, thereby speeding up propagation. After that
we will see how changes in the order of execution of the propagators can be
beneficial. The fifth and last section will provide a summary of the paper.

A CSP consists of a set of variables V and constraints on those variables.
Each variable also has a domain, which we here assume to be a finite set. It is
the set of possible values the variable can have. If there is a solution to the CSP
each variable can only have a value from it’s domain. In the examples given in
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this paper the domains of all variables will be integer sets. We define D, the
domain of a CSP, to be the mapping that assigns to each variable x a domain
D(x).

A simple example for a CSP: Two variables x and y with domains D(x) =
{1, 2} and D(y) = {2, 3} and a constraint “x < y”. This means that in a solution
of the CSP x ∈ {1, 2} and y ∈ {2, 3}. By looking at this very simple problem
we find the (only possible) solution x = 2 and y = 3. Actually when we are
“looking”, we can either reason about what is possible, or just try out every
combination of values for x and y. A constraint solver is capable of both. It
uses reasoning and inference during propagation phases and search whenever
propagation alone gets stuck. The propagation is the difference to a brute-force-
approach. In general having strong yet effective propagation, that leaves as little
work as possible to be done by search, is the key ingredient to any fast constraint
solver. Propagation is realised by running propagators for each of the declared
constraints.

We say that a propagator implements a constraint and denote the set of
propagators for a constraint c by prop(c). More precisely propagators are func-
tions that try to modify the domain of the CSP by infering that certain variable
assignments are impossible and removing those values from the respective vari-
ables domain. In that way an old domain is replaced by a new, narrower domain.
This process is sometimes called a narrowing conversion, as in [SS04a].

More formally: We define a domain D1 to be narrower or stronger than
another domain D2 (D1 v D2) iff ∀x ∈ V : D1(x) ⊆ D2(x) and require of every
propagator to satisfy the following statement: ∀D : f(D) v D. So a propagator
either leaves the domain unchanged or it removes some possible values. If the
propagator removes values from a certain domain D, we say that it contributes.
If the propagator cannot contribute in D (f(D) = D), we say that it is at a
fixpoint in D.

We now give a simple example for a propagator. Assume we are given the
constraint c =“x < y”. A propagator for c could be f(D), defined as

D(x) := {u ∈ D(x)|u < max{D(y)}}
D(y) := {w ∈ D(y)|w > min{D(x)}}

If we apply this propagator to an inital domain D with D(x) = D(y) = {1, 2, 3},
it will remove the “3” from D(x) and the “1” from D(y). The former is done
because the currently know maximum value for y is 3 and so all values that are
possible for x must be smaller than 3. The latter is just the inverse case. We
could say that the first line imposes c onto x and the second line imposes c onto
y. To clear things up, we can also achieve the same effect with two propagators.
Then prop(c) = {g(D), h(D)} with

g(D) defined as D(x) := {u ∈ D(x)|u < max{D(y)}} and
h(D) defined as D(y) := {w ∈ D(y)|w > min{D(x)}}

We will discuss the pros and cons of the aprroach with two propagators later.

Although we pass the whole domain to every propagator for the reason of
easy interchangeability, we say that the input variables of a propagator are only
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those on which it’s behaviour depends. In this case both g and h depend only
on x and y and not on any other variables that may exist in the CSP’s domain.

When the domain of variable contains only a single possible value (| D(x) |=
1), we say that the variable is determined (or fixed). A CSP is solved as soon as
all variables are determined. It is failed when a propagator infers that there is no
possible value for at least one variable of the CSP. Goal of propagation is to arrive
at a domain D which is a common fixpoint of all propagators (∀f : f(D) = D).
Of course a failed CSP’s domain is a fixpoint, too.

For most problems propagation alone does not suffice to find a solution. If no
propagator can contribute any more, the principle of trial and error is used in a
search. Several CSPs are derived from the original one, each is augmented with
a new constraint. The new constraints must result in a partition of the original
CSP. Therefore this step is called splitting. The constraint solver then tries to
recursively solve each of the new CSPs, possibly splitting each of them again et
cetera. When one of the new CSPs is solved, a solution of the original one has
been found. When all of the new CSPs fail, the original CSP can not have a
solution, because the newly introduced constraints formed a partition thus not
ommiting possible solution paths.

A simple search is illustrated in figure 1. Propagation happend in the nodes
of the tree. Diamonds indicate a failure. Boxes indicate a solution. The circles
inidicate propagation phases that neither reduced in failure nor a solution, but
instead in splitting of the CSP.

Fig. 1. A search tree (Taken from [SS04a])

2 Constraint Solver

Knowing which propagators are at a fixpoint and which are not is essential
to achieve high levels of efficiency. Thus the constraint solver and constraint
propagation algorithm we are going to present now subdivide the propagators
into two disjoint sets. The set Ffixpoint contains the propagators that are known
to be at a fixpoint in the current domain. The other set Fnew contains those that
are expected to make new contributions when run. First the pseudo code for the
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main function, into which search and propagation are embedded. It will initially
be called with “search(∅, F, D)” where F is the set of all propagators of the
CSP and D is the initial domain.

@invariant: all propagators in Ffixpoint have a fixpoint in D
search(Ffixpoint, Fnew, D) { // Ffixpoint ∩ Fnew = ∅

D := isolv(Ffixpoint, Fnew, D); // propagation

if (∃x ∈ V : D(x) = ∅) return false;

if (all variables in D are determined) return true;

choose new (‘‘splitting’’-) constraints {c1, . . . , cm}
forall(i ∈ {1..m}) {

if (search(Ffixpoint ∪ Fnew , prop(ci), D)) return true;

}
return false;

}

The code is pretty self-explanatory. The propagation happens inside the
isolv function. Search begins when propagation does not find a solution. Then
the original CSP is split up into several ones as described above and each of
those is searched for a solution recursively.

The search function returns a boolean value that indicates whether there
exists a solution for the CSP given by the propagators and the intial domain
(value is true) or not (value is false). In case a solution was found, the current
domain contains the variable assignment. The mechanism for the retrieval of the
current domain by the caller was omitted from this pseudo code.

Note that splitting is realized by posting special constraints and not by mod-
ifying the domain directly. The new CSPs differ from the original only in the ad-
ditional propagator(s) for the newly introduced constraints. This way all changes
on the domain happen in the propagation function isolv, where the propaga-
tors are executed. So it is easier to keep track of the propagators at fixpoint, at
least from the presentation point of view. The pseudo code of the propagation
function isolv is below.

The propagation algorithm works it’s way through an agenda of possibly
contributing propagators stored in the set Q. Initially Q contains the propagators
from Fnew. In each iteration of the main loop, a propagator f is chosen from Q by
means of the -yet unspecified- function choose. f is removed from Q and applied
to the domain D. Although not stated in the pseudo code, the propagator flags
if it made the CSP fail by removing all values from a variables’ domain and in
this case isolv returns immediately. Otherwise, to maintain the loop invariant
that Q contains all possibly contributing propagators, we call the method new.

new checks which of the propagators that where at a fixpoint in D are no
longer at a fixpoint in the new domain resulting from the application of f to
D. This is a crucial task, because if we miss any propagators that are not at
a fixpoint any more, the propagation algorithm may miss possible chances for
inference. The overall correctness of the constraint solver will be maintained, but
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@invariant: again D is fixpoint of all propagators in Ffixpoint

isolv(Ffixpoint, Fnew, D) { // Ffixpoint ∩ Fnew = ∅
F := Ffixpoint ∪ Fnew;

Q := Fnew;

while (Q 6= ∅) {
f := choose(Q); // selects a propagator to apply

Q := Q \ {f}
D′ := f(D);

// find out which propagators are no longer at a fixpoint

// and add them to Q
Q := Q∪ new(f, F, D, D′);

D := D′;

}
return D;

}

propagation is weaker than possible. Thus the runtime will increase with high
probability because of the need to search more. If, on the other hand, we add a
lot of propagators that are still at a fixpoint, then all these propagators will be
run although they do not contribute. Thereby we will loose time as well, and in
the worst case the algorithm will not terminate.

We can ensure termination by checking if a propagator that has just been
executed did change the domain. If not, we do not need to add any propagator to
Q. Together with the fact that propagators perform narrowing conversions and
thus always return stronger domains, we can prove termination. Proof sketch:
If a propagator f removes values from the domain, the domain gets stronger;
if it does not, we know that f is at a fixpoint and do not run it again until
another propagator has removed a value from the domain. In that way we never
run a propagator twice on the same domain. As the propagators are sort of
monotoncially decreasing functions, the current domain will be strengthened
until either the CSP fails or a common fixpoint of all propagators is reached.

Obviously propagators whose input variables have not been changed by the
latest propagator’s run can not have changed their fixpoint state. Thus the fol-
lowing implementation of new will ensure termination of the propagation algo-
rithm:

newinput(f, F,D,D′) = {e ∈ F |∃x ∈ input(e) : D(x) 6= D′(x)}

Read: we need to add all propagators to Q where the domain has changed on at
least one of the input variables.

On the following pages we will explore how to speed up the basic constraint
propagation algorithm just presented. We will discuss possibilities for improving
newinput by doing some fixpoint reasoning. After that we will investigate in what
way the choice for the next propagator should be made by the function choose.
The effectiveness of the presented techniques will be illustrated by results from
the evaluation of Schulte and Stuckey.
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3 Fixpoint reasoning

Improving newinput to requires a closer look at the properties of the propagators.

3.1 Idempotence

One important issue is idempotence, the abillity of a propagator to make an
immediate re-execution of itself obsolete. We define a propagator f to be idem-
potent iff ∀Df(f(D)) = f(D). Thus for any domain f arrives at a fixpoint after
one execution. This is also called static idempotence. If we know the propagator
just executed is idempotent, we do not have to add it to Q immediately after
it’s execution, even if it has changed it’s input variables’ domain. So we improve
new:

newsidem(f, F,D,D′) = newinput(f, F,D,D′) \ {f |f idempotent}

This should have quite some impact, because many of the common propaga-
tors are idempotent and these would often be re-inserted into the queue when
using just newinput. For example g, one of our propagators for “x < y”, would,
after we applied it to D(x) = D(y) = {1, 2, 3}, be re-added to the queue. This
is because it changed D(x) to D′(x) = {1, 2} and thus also changed one of it’s
own input variables’ domain. Nevertheless it will not contribute anything when
run on D′, as it is an idempotent propagator. The idempotence of g can be seen
as it does narrow the domain of x depending on the maximum value in D(y),
which it does not change itself.

There are of course propagators that are not idempotent. Consider the equa-
tion constraint c2=“3x = 2y”. A propagator for this equation is k(D) defined as

D(x) := D(x) ∩ [d(2 min y)/3e..b(2 maxy)/3c]
D(y) := D(y) ∩ [d(3 min x)/2e..b(3 maxx)/2c]

When run once on the initial domain D with D(x) = [0 . . . 3] and D(y) = [0 . . . 5],
it will change the domain of y to D′(y) = [0 . . . 4] and leave D(x) unchanged
(D′(x) = D(x)). When run again imediately afterwards it will leave D′(y) un-
changed but will change D′(x) to D′′(x) = [0 . . . 2]. Thus this propagator, called
the bounds propagator, is provably not idempotent.

Note that every propagator can be made idempotent by running it in a loop
until a fixpoint is reached. The constraint solver in Mozart uses this and forbids
non idempotent propagators altogether. This simplifies the engine design, but
in my opinion it is questionable as there may be circumstances where time is
wasted in a loop that could be better invested into running other constraints’
propagators inbetween iterations.

Idempotence can be handled dynamically, that is depending on the current
domain. To make use of dynamic idempotence, we just need to provide means for
a propagator to flag when the domain it returns is a fixpoint. For example k(D)
when run on D′′ above will change D′′(y) to D′′′(y) = [0 . . . 3] and there will be
no rounding involved then. According to theorem 8 in [HS98] we then know that
this propagator is at a fixpoint (i. e. D(4) = D′′′). So under these circumstances,
we can do without re-adding k to Q. We call this strategy newdidem.
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Evaluation Schulte and Stuckey evaluated the improvements achievable through
consideration of idempotence on eleven examples, most of them standard ones.
For the implementation they used the Gecode C++ library. It turns out that
newsidem uses only 79.0% of the propagation steps of newinput on the most
favourable problem. Due to the higher overhead for checking the knowledge base
whether a propagator is statically idempotent or not, the runtime in Schulte’s
and Stuckey’s implementation improves to just 90.3% in the best case and 104.3%
in the worst case. On most problems a little improvement can be noticed. Thus
the consideration of statical idempotence brings the chance of reduction of the
runtime with a tolerable risk of increasing it.

Dynamic idempotence (newdidem) behaves very similar to the static case. The
runtime ranges from 90.4% to 102.6% of that of newinput. newdidem is never more
than 3.6 percentage points better or worse than newsidem. So the difference is
negligible.

3.2 Events

Another very promising approach is to investigate the actual changes in the
domain that must happen before a propagator changes it’s fixpoint state. We
call a change in the domain of a variable x an event. Typical events are:

det(x) x becomes determined; ( | D′(x) |= 1 and | D(x) |> 1 )
lbc(x) lower bound of x changes (min{D′(x)} > min{D(x)})
ubc(x) upper bound of x changes (max{D′(x)} < max{D(x)})
dmc(x) domain of x changes

Of course these events overlap e.g.: det(x) ⇒ dmc(x) and lbc(x) may coincide
with det(x).

Static event sets We store for each propagator a set of events es(f) on which
the propagator’s fixpoint state depends, and only add a propagator to Q if at
least one of the events has happened. We also bear in mind idempotence, thus
making the function newsevents an improvement of newdidem.

As an example we can again use g ∈ prop(“x < y”) which we defined as
D(x) := {u ∈ D(x)|u < max{D(y)}}. It turns out that it only depends on the
event ubc(y), because it only removes values from x according to the current
maximum value of y. When x changes, g will not be able to infer anything and
the same holds for any change on D(y) that is not a change of the upper bound.
By splitting up the original f above into g and h, we can avoid unnecessary
execution of code. Because es(f) = {ubc(y), lbc(x)}, if only ubc(y) occured and
f is run subsequently, the second line of f , which checks the lower bound of x
is executed needlessly. This is a pro for the two-propagator approach – we will
see the cons later.
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Dynamic event sets We can achieve even better results by handling the event
sets dynamically, removing events from es(f) as more information on the vari-
ables becomes available. This can be used to remove propagators from the prop-
agation process when they are entailed, meaning that ∀D′ v D : f(D′) = D′.
We can then set es(f) := ∅ and f will never be added to Q again.

Here is an example using g again: Consider the domain D with D(x) = {1, 2}
and D(y) = {4, 5, 6}. Obviously any change on the upper bound of y can not
lead to any contribution of g because even the smallest value in D(y) is still
greater than any value in D(x). If we realise this, for example during the first
call to g we can remove ubc(y) from es(g). Then the event set of g is empty and
we find it is entailed.

In this case having one propagator f for “x < y” can be advantageous,
because g and its twin h are entailed at the same time. f can just set es(f) := ∅,
but making g care about h and letting it access the event set of h is at least very
difficult. In fact in real constraint solvers one uses only a single propagator for
this simple kind of constraints. This is because of the advantages when dealing
with entailment and also more importantly because every propagator uses quite
some amount of storage. As there will be a lot of simple constraints halving the
number of propagators for them can reduce memory footprint a lot.

Entailment is not the only case where dynamic event sets are useful. Consider
a propagator for the exactly constraint, which enforces that exactly m of n
variables are equal to a value k. As soon as k is removed from the domain of one
of the said variables, all events considering that variable can be ignored.

We call this new implementation newdevents and let it take into account
dynamic event sets as described, as well as dynamic idempotence, like explained
for newdidem.

Evaluation The evaluation shows significant improvements in runtime. Com-
pared to newinput, newsevents uses only 74.2% of the time in the best case and
102.4% in the worst case. It seems especially strong for problems with prop-
agators that depend on det(x) events. newdevents even achieves 28.1% on one
problem and 102.5% in the worst case. Notably neither of the two is signifi-
cantly slower than both newinput and newsidem/newdidem on any problem. Also
the dynamic event sets are never significantly slower than the static ones. So the
implementation using dynamic event sets dominates all others, which should not
be a big surprise since it incorporates the strategies from all others.

Static event sets and handling of entailment are common features of current
constraint solvers, while dynamic event sets, despite their apparent strengths,
have not been widely adopted yet.
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4 Choosing a propagator to execute next

In the previous section we discussed how to avoid adding propagators to the set
Q which cannot contribute. This section is primarily concerned with the question
how we should choose the next propagator that is to be removed from Q and
applied to the domain.

The name Q indicates that when actually implementing, we probably will
use a queue. A simple and fair policy would be FIFO. This has been used in the
evaluation so far. Yet a FIFO queue has the disadvantage that it may delay the
detection of a close failure or solution.

For example assume we are in the mid of a propagation phase. Several prop-
agators have been run. Several are not at a fixpoint any more and are now
queuing for beinging run: Q =< d, a, b, f >. Next the propagator d is run and
it determines the domain of variable x to be D(x) = {42}. This event triggers
propagator c which depends on the events dmc(x) and dmc(y). c is inserted into
Q. Say running c will make the CSP fail. But because we have a FIFO queue,
c is inserted after the last element in the queue and it will be run only after all
the other, maybe very time-consuming propagators have been run. So in this
case it would be better to favour cheap propagators by prioritising them. So our
Q becomes a priority queue and the evaluation will show if it generally leads to
faster results.

4.1 Priorities

We assign a static priority n ∈ {1, . . . , k} to each propagator. The priority should
reflect the cost of applying the propagator. By “cost” we mean time in this case.
Using heuristics tailored to the application domain, we could also try to let the
priority reflect the expected impact, that it’s execution will have. But the latter
idea shall not be topic of this paper, as it is an open research field.

For example we assign priorities imitating complexity classes for algortihms
e.g. (CONST, LOGARITHMIC, LINEAR, QUADRATIC, EXPONENTIAL).
To get finer granularity on the CONST class, we could differentiate according to
the number of variables involved in a propagator’s inference process (UNARY,
BINARY, TERNARY, LINEAR, QUADRATIC, VERY SLOW). We could also
keep it simple (FAST, SLOW). Most of the current constraint solvers like SIC-
Stus and Mozart stick with the simple variant, while Choco has seven priority
levels.

Our example propagators g and h could have priority BINARY. A propagator
for “x > 42” could have priority UNARY. More complex propagators like Régin’s
for the alldifferent constraint [Rég94] would have lower priorities, in this case
QUADRATIC.

Once a variable has been determined, propagators may be able to execute
faster. Sometimes we can also switch the implementation of the propagator to a
faster one in that case. Then of course the priority should be adjusted. We speak
about dynamic priority.
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4.2 Multiple and staged propagators

With a priority queue we can use multiple propagators with different complexity
and propagation strength for one constraint. Assume we have two propagators
r and p with cost(r)�cost(p), but r(D) v p(D) for many D. Then we would
assign p a higher priority, thereby letting it be executed before r. r and p could
be two different propagators for alldifferent, e.g. Régin’s and Puget’s [Pug98]
which have complexity O(n2.5) and O(n · logn) respectively.

The advantage of multiple propagators is that we can feed other propagators
with the results of p. When r is finally run, it can benefit of the propagation
that has happened already, including that of p. Thus we may be able to save
executions of the costly propagator r.

To make multiple propagators more efficient and reduce management over-
head, we can combine them into one staged propagator. The staged propagator
has an internal “stage” variable which indicates the algorithm that is to be used
when the propagator is invoked next.

Figure 2 illustrates how staged propagators work. Call the staged propagator
q and let it use one fast but comparatively weak algorithm, call it g, and another
slow but strong one (h). Those two algorithms correspond to two propagators
when using a multiple propagator approach. On the first run of q, we will execute
the cheaper algorithm g (from state B). Then q sets the internal stage variable to
use the costlier algorithm h when invoked next (State C). If the current domain
is no longer a fixpoint of g, although h may not have been called yet, we set the
stage variable to use g when executed next (State B again). If a fixpoint of h is
reached, then g is at a fixpoint, too (State A).

Fig. 2. The stages/states of a staged propagator

If the system supports dynamic priorities, we can adjust the priority of q
according to the current stage. If the cheaper algorithm g is going to be run
next, we give q a higher priority. This would happen upon entering state B in
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the diagram. When h is the next to be run, q should have a lower priority. So
we set the priority to a low value, corresponding to the cost for running h, upon
entering state C.

Apart from the reduced administration effort needed because of fewer prop-
agators, staged propagators are also superior to multiple propagators because of
their better handling of entailment. Assume g knows after it’s execution that h
is entailed. Then it can remove the whole propagator q from the queue. With
multiple propagators this would not be possible.

4.3 Evaluation

Schulte and Stuckey again compared the runtime of the resulting new propaga-
tion algorithms to that of the simple newinput without priorities. They tested
simple, multiple and staged propagators, with and without static and dynamic
priorities on fifteen benchmarks. We try to summarise the 135 single results into
a few rules of thumb.

The introduction of priorities is nearly always beneficial. In the best case
they achieve a reduction to 51.8%, but in the worst case the time needed grows
to 125.5%1. For each static and dynamic priorities there were just five bench-
marks for which the runtime decreased. When combining priorities with staged
propagators, there was only one problem remaining where the runtime stayed
at 108.8% with dynamic priorities. It is difficult to decide whether the static or
the dynamic priority approach is better. Combined with staged propagators the
runtime of both is often very similar although the difference between the two
goes up to 25%.

Staged propagators as well as multiple propagators need priorities to work
well. Nevertheless staged propagators could even without priorities reduce the
runtime in the best case to 82.2% without inceasing the runtime in the worst case.
When using priorities and staged propagators are applicable to the problem, they
are never worse and often better than simple propagators (best case: 46.4%, worst
case: 99.6%). Multiple propagators are never significantly better than staged
propagators, while staged propagators strictly dominate multiple propagators
on some problems.

Schulte and Stuckey claim in their summary of the measured data that “dy-
namic priorities are slightly advantageous over static priorities in most cases”,
yet their measured data seems to suggests that neither one is superior to the
other. The interested reader may see for herself in [SS04b].

1 both with static priorities (dynamic very similar)
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5 Summary

After some introductory words and terminology we have presented a model of
a constraint solver. We looked in detail at the constraint propagation algorithm
and demonstrated that it does find a common fixpoint of all propagators. We
saw how to speed up propagation by keeping track of the propagators’ fixpoint
state and trying to only execute those propagators currently not at a fixpoint
with the help of a queue.

After that we identified the two main starting points for performance im-
provements, the choice of the next propagator to execute and the addition of
only the necessary propagators to the queue. We reasoned about when propaga-
tors are no longer at a fixpoint, as well as we introduced and used the concepts
of idempotence and propagator’s dependence on events. The evaluation done by
Schulte and Stuckey showed us that both are useful tools to save propagation
steps and time. For choosing the next propagator for execution we assigned prior-
ities to the propagators and showed that it is very often beneficial to run cheap-
est propagators first. Staged propagators were introduced as a useful method for
speed-up, provided that the problem structure allows having them.

As seen in the evaluation the techniques covered can sometimes reduce the
number of steps drastically, although the best improvement we saw is a reduction
of the runtime by factor four. So no miracles should be expected, even though it
surely makes a big difference whether one has to wait one or four hours for the
solution to a CSP.
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