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Abstract. Dominance constraints logically describe trees in terms of
their adjacency and dominance, i.e. reachability, relation. They have im-
portant applications in computational linguistics. Unfortunately, the sat-
isfiability problem of dominance constraints is NP-complete.
In this extended abstract we describe efficient algorithms for natural
subclasses of dominance constraints [BDNM03]. The instances of these
subclasses are more appropriately formulated as configuration problems
of so called dominance graphs. We show that for one particular subclass
satisfiability can be characterized in terms of forbidden subgraphs in the
corresponding dominance graph [ADKMNT]. These forbidden subgraphs
can be found in linear time [Th04].

1 Introduction

Dominance constraints are conjunctions of literals of the form Xi⊳(Xj1 , . . . , Xjk
),

Xi ⊳∗ Xj and Xi 6= Xj where X1, X2, . . . are variables.
A dominance constraint φ is said to be satisfiable if there exists a mapping α

from the variables to the vertices of a directed tree τ satisfing all literals of φ. A
labeling literal Xi ⊳ (Xj1 , . . . , Xjk

) is satisfied if α(Xj1 ), . . . , α(Xjk
) are exactly

the children of α(Xi) in τ . Similarly, dominance literals Xi ⊳∗ Xj are satisfied
if α(Xi) dominates α(Xj), i.e., vertex α(Xi) can reach α(Xj) in τ . Of course,
an inequality literal Xi 6= Xj is satisfied whenever Xi and Xj are mapped to
distinct vertices.

To test whether a given dominance constraint is satisfiable is provably hard.
Indeed, the set of satisfiable dominance constraints was shown to be NP-complete
in [Ko99].

Consider a dominance constraint φ that contains inequality literals for each
pair of distinct variables. It is known that deciding satisfiability of φ is linear-
time equivalent to deciding solvability of a dominance graph Gφ. Thus we turn
our attention to graphs.

Dominance graphs and their configurations are defined as follows.

Definition 1. A dominance graph is a directed graph G with

– tree arcs T (G) and
– dominance arcs D(G)

such that A(G) = T (G) ∪̇ D(G) are the arcs of G.

We denote the directed graph induced by the tree arcs of G by

GT := (V (G), T (G)).



Definition 2. A configuration of G is a directed graph C such that

– C is a rooted tree on the vertices of G,

– GT is a subgraph of C and

– the reachability relation of G is contained in the reachability relation of C.

A dominance graph that has a configuration is called solvable.

Observe that the third condition in the definition of configuration can be
replaced equivalently by the following.

∀(u, v) ∈ D(G). (u, v) ∈ ReachabilityH .

For convenience we will treat all arcs of a configuration of G that are con-
tained in GT as tree arcs. All other arcs of the configuration are considered to
be dominance arcs.

Example 1. Consider the following dominance graph G on the left and its unique
configuration C on the right.

Clearly, C is a tree and contains GT . The reachability condition can be
verified easily. We want to point out that by deleting arc (9, 5) we obtain a
dominance graph with exactly two configurations. One is identical to the con-
figuration above, the other has vertex 9 as its root. See figure below.



Problems From the definition of dominance graphs and configurations the
following two problems arise naturally.

Problem 1 (Dominance Graph Configuration Decision Problem, DGCDP).

Given a dominance graph G, decide if there exists a configuration of G.

The corresponding enumeration problem is even more important for the ap-
plications in computational linguistics. It is defined as follows.

Problem 2 (Dominance Graph Configuration Enumeration Problem, DGCEP).

Given a dominance graph G, enumerate all configurations of G.

Applications. Dominance constraints have important applications in compu-
tational linguistics, especially in the context of semantic underspecification. It is
often possible to consider dominance graphs instead of dominance constraints.
The following very simple example tries to illustrate the connection between
semantic underspecification, here underspecified quantifier scopes, and configu-
ration problems on dominance graphs.

Example 2. Consider the sentence “all scientists speak a language”. It has two
possibile meanings.

In the first case the sentence means quite tautologically that all scientists
speak a language but not necessarily the same. In the second case it means that
there exists an universal language, for example English, that all scientists can
speak.

Corresponding to these two meanings we can construct two trees as seen on
the left of the following figure.



It happens to be that these trees are exactly the configurations of the domi-
nance graph on the right of the figure above.

2 Algorithms for Dominance Graphs

The idea of the presented algorithm is as follows. First, it determines a set of
vertices, called free vertices, that are candidates for being a root in a configura-
tion. Then one of the free vertices, say u, is choosen to become the root of the
computed configuration. By this choice the “position” of all vertices reachable
from u within GT , denoted by tf(u), gets determined. Therefore we can focus
on the rest of the vertices. In other words, the algorithm deletes all the vertices
tf(u). It can happen that by deleting these vertices the dominance graph breaks
into parts, that are not connected in any way. For these parts we recursively
compute configurations. In the last step we have to assemble the configurations
of the parts and the tree induced by tf(u). In this step we have to make sure
that all the dominance arcs between the parts and tf(u) are satisfied. We show
that we can always do so. In this way we have computed a configuration of the
original dominance graph.

The algorithm will report the original dominance graph G unsolvable if it
encounters in some recursive step a subgraph of G exhibiting free vertices. We
show that this is correct.

We also show that for each minimal solved form S there exists a way to
choose free vertices such that the algorithm will output S. This implies that we
can solve the enumeration problem efficiently.

2.1 Solved Forms

Since enumeration of all configurations of G may be intractable, we first intro-
duce the more general concept of solved forms and then determine the important
solved forms, namely minimal solved forms.

We will use the following natural partial order on dominance graphs to define
both solved forms and minimal solved forms.

Definition 3. A dominance graph G is less specific than dominance graph G′

if GT = G′T and the reachability relation of G is properly contained in the
reachability relation of G′.



Example 3. If C is a configuration of G then C is more specific than G.

Example 4. If (u, w) is a dominance arc of G and v is a vertex that can be
reached from u in G by a path not containing (u, w) then replacing (u, w) by
dominance arc (v, w) yields a dominance graph that is more specific than G (cf.
Lemma 1.2).

We can now formulate a slight generalization of configurations in terms of
specificness.

Definition 4. A solved form of a dominance graph G is a directed forest, that
is more specific than G.

The next lemma shows that solved forms which are comparable by the partial
order defined above do not differ much with respect to two primitive transfor-
mations.

Lemma 1. From a solved form S any more specific solved forms S′ can be
generated by a sequence of O

(

n2
)

transformations of the following kinds.

1. For two distinct roots r, r′ in S we obtain a more specific solved form by
adding dominance arc e = (r, r′).

2. For an arc e = (u, v) and a dominance arc f = (u, w) we obtain a more
specific solved form when we replace f by f ′ = (v, w).

Proof. We do induction on the cardinality of ReachabilityS′\ReachabilityS .
If the difference set is empty then, since S � S′, both reachability relations

are identical. Therefore the solved forms are identical.



Suppose the difference set is non-empty. Let u be a vertex of minimal depth
in S, that can reach some vertex, v say, in S′ but not in S. If u is a root we can
simply connect u to the tree containing v by the first transformation.

Otherwise, if u is not a root then its parent w can reach v in S (since w

can reach u and therefore v in S′ and since w has smaller depth than u in
S). Let f = (w, w′) be the first arc on the path connecting w to v in S. If f

is a dominance arc we can apply the second transformation and replace f by
f ′ = (u, w′) to obtain a solved form that is more specific than S and at most
as specific as S′. Otherwise, if f is a tree arc then (w, u) must be a dominance
arc (else S′ would not be at least as specific as S). Again, we apply the second
transformation but replace (w, u) by (w′, u). This also yields a more specfic
solved form that is at most as specific as S′.

In all the cases we obtained a solved form Ŝ with S ≺ Ŝ � S′. Thus, we
can apply induction hypothesis on Ŝ. Since there are at most n2 pairs in the
reachability relation of S′, we can increase the reachability relation at most n2

times. ⊓⊔

Hence it suffices to look at solved forms that are minimal with respect to the
partial order defined above.

Definition 5. A minimal solved form of G is a least specific solved form of G.

The minimal solved forms are natural representatives of the equivalence
classes modulo the two primitive transformations of the lemma before.

We replace the enumeration problem DGCEP by the following more appro-
priate problem.

Problem 3 (Dominance Graphs Minimal Solved Forms (DGMSF)).

Given a dominance graph G, list all its minimal solved forms.

2.2 Basic Properties and Reductions

Within the algorithm we want to report the dominance graph G unsolvable as
soon as we encounter a subgraph of G that is unsolvable. The next lemma proves
this to be correct.

Lemma 2. If a subgraph H ⊆ G is unsolvable then so is G.

Proof. If G has solved form S then S[V (H)] is a forest that can be extended to
a solved form of H by adding appropriate dominance arcs.

For convenience we exclude some degenerate cases from our considerations.

Definition 6. A dominance graph G is well-formed if GT is a forest and only
roots of GT have incoming dominance edges.



We observe that we can assume G to be well-formed without loss of generality.
Let tf(v) denote the tree fragment of v, i.e. the set of descendants of v in GT.

Lemma 3. The problems DGCDP and DGMSF for general dominance graphs
and its restrictions to well-formed dominance graphs are linear time equivalent.

Proof. If GT is not a forest then G is clearly unsolvable.
Suppose v is a root in GT and there exists a nonroot u ∈ tf(v) with incoming

dominance arc (w, u). If w is contained in tf(v) then (w, u) is either implied by
the tree arcs or it contradicts the tree arcs. Therefore suppose w is not contained
in tf(v). Then, we can replace (w, u) by dominance arc (w, v) without changing
solvability or solved forms, since in every solved form of G vertex w has to reach
u through vertex v.

Thus, by scanning all the dominance arc we can get rid of all the dominance
arcs incoming to nonroot vertices.

⊓⊔

From now on we only consider well-formed dominance graphs.

2.3 Key Lemma

The following lemma is equally simple and powerful. The important concept of
free vertices that is introduced in the next subsection heavily relies on it.

Lemma 4 (Key Lemma).
If G′ is a solved form of G and P = 〈v1, . . . , vk〉 is a undirected path in G then
one of the vi is in G′ a (not necessarily proper) anchestor of both v1 and vk.

Proof. We do induction on the length of the path. Clearly, the statement holds
true for k = 1, 2. For k > 2 apply induction hypothesis on P1 = 〈v1, v2〉 and
P2 = 〈v2, . . . , vk〉. We obtain vertices vi1 and vi2 . Since vi1 and vi2 have common
descendant v2 and since G′ is a forest one of vi1 and vi2 must be an anchestor
of the other and this vertex is then a common anchestor of v1 and vk. ⊓⊔

When applying the Key Lemma the following terminology turns out to be
very convenient.

Definition 7. Vertices u and v are weakly connected in G if there is a undi-
rected path in G connecting them. The weakly connected components (wccs) of
G are the inclusionwise maximal weakly connected vertex sets.



From the Key Lemma we get the following easy fact.

Corollary 1. The weakly connected components of G and any minimal solved
form of G are the same.

2.4 Free Vertices

For computing solved forms of a dominance graphs it will be a crucial step to
determine the possible roots in the solved forms. It will turn out that we can
determine the set of possible roots efficiently, because there is a good character-
ization of possible roots captured in the definition of free vertices.

Definition 8. A root v in GT is free in dominance graph G, if

– v has no incoming dominance arc and
– for all distinct d, d′ ∈ tf(v) each undirected path connecting d and d′ in G

contains at least one anchestor of d or d′ in GT .

The following lemma enables us to exclude candidates for roots of minimal
solved forms. To prove it we need to apply the Key Lemma.

Lemma 5. Any root v in a solved form G′ of G is free in G.

Proof. Clearly, if v has any incoming arc then v cannot be a root in G′. Other-
wise, if two distinct descendants d and d′ of v are connected by a path P not
containing any anchestor of d or d′ in GT then by the Key Lemma in all solved
forms S of G a vertex uS ∈ P must be an anchestor of both d and d′.

Since uS 6∈ tf(v) it must be a proper anchestor of v in S. And therefore v

cannot be a root in S. ⊓⊔

Example 5. The following dominance graph has no free vertices. Thus it is un-
solvable and so are all its supergraphs.

On the other hand, if a vertex is free then we can delete its tree fragment and
recurse without getting troubles afterwards. Therefore it’s always safe to choose
a free vertex as root for a solved form. The following lemma shows that in the
graph without the tree fragment for each weakly connected componented there
is a unique way to connect the solved form of the component to the tree fragment
such that all dominance arcs between the tree fragment and the component are
satisfied.

We say a vertex dominates a vertex set C in G if it has a outgoing dominance
arc in G directed to a vertex of C.



Lemma 6. If u is free in G and C is a weakly connected component in G\tf(u)
then there is a unique vertex pu(C) := v ∈ tf(u) dominating C such that any
other vertex w ∈ tf(u), that dominates C, is a proper anchestor of v in GT .

Proof. Assume that there are distinct v, w ∈ tf(u) dominating C such that
neither is an anchestor of the other in GT . We have to prove that u cannot be
free in G. This is clearly the case. Since C is weakly connected in G\tf(u) and
since v and w dominate C there is a undirected path from v to w containing only
vertices of C besides v and w. This path obviously cannot contain an anchestor
of v or w. Thus u is not free. ⊓⊔

For further illustration see also the figure below.

msf(G) ≡
if G is not weakly connected then

recurse on G[Ci] for wccs Ci of G

else if there exists no free vertex in G then

print “G and all its supergraphs are unsolvable”
else

// m.s.f. of G must be a tree
choose some free vertex u

let C1, . . . , Cl be wccs of G\tf(u)
recursively compute minimal solved forms G′

i of G[Ci] with roots ri

return G′ with D(G′) =
S

i
D(G′

i)
S

i
{(pu(Ci), ri)}

Fig. 1. Generic algorithm for computing minimal solved forms of dominance graphs.

The following two lemmata establish the correctness of the algorithm.

Lemma 7. For each minimal solved form G′ of G there is a way to choose free
vertices such that msf(G) returns G′.



Proof. By Lemma 5 we can always choose the roots of G′ as free vertices. Then
we proceed recursively. In order to satisfy the dominance conditions between
component any Ci and the tree fragment tf(u) we have to add a dominance
arc from some descendant of pu(Ci) to the root ri of Ci. The dominance arc
(pu(Ci), ri) yields minimum possible specificness. Therefore it must be present
in the minimal solved form G′. ⊓⊔

Lemma 8. For each way to choose free vertices the dominance graph returned
by msf(G) is a minimal solved form of G. If there is no graph returned the input
dominance graph is unsolvable.

Proof. Clearly, unsolvability is reported correctly. Furthermore, by Lemma 6 all
dominance conditions between tf(u) and component Ci are satisfied when the
arc (pu(Ci), ri) is added. As seen in the proof of Lemma 7, adding these arcs also
yields the minimum possible specficness. Thus the output is a minimal solved
form.

Clearly, algorithm msf runs in polynomial time.

Corollary 2. The problems DGCDP and DGMSF can be solved in polynomial
time.

3 More Efficient Algorithms

In the section before we have seen that configuration problems on general dom-
inance graph indeed have polynomial time complexity in contrast to problems
on general dominance constraints.

Considering a important subclass of dominance graphs we can obtain al-
gorithms with running time O(nm) per solved form. Further restrictions even
enable us to test satisfiability in linear time.

Lemma 9. If the trees in GT have height at most 1 then a vertex v ∈ V (G) is
free in G if and only if

– v has no incoming arc in G

– all outgoing tree arcs of v are contained in pairwise distinct biconnected
components of the undirected graph underlying G.

Proof. We only have to consider the second condition.
If two tree arcs e, f of v are in the same biconnected component with respect

to the undirected graph underlying G then there is a simple undirected cycle C

in G containing both e and f . Of course, e and f are adjacent in C. Deleting e

and f from C yields a undirected path P connecting two distinct children of v

with v 6∈ P . Thus v is not free.
On the other hand, a simple undirected path connecting two distinct children

of v not containing v can be extended to a simple cycle by adding two tree arcs
of v. Now, these two tree arcs are contained in the same biconnected component.



Lemma 10. If trees in GT have height at most 1 then we can solve DGCDP in
time O(n · m) and DGMSF in time O(nm · #minimal solved forms).

Proof. In each recursive call of msf at least one vertex is deleted. Thus there are
O(n) recursive calls.

In order to find the free vertices we just have to compute the biconnected
components. This can be done in linear time. Also, all other steps in a recursive
call of msf can be done in linear time.

Therefore we have a running time of O(nm) per solved form. ⊓⊔

Remark 1. We can obtain running times O(m + n · polylog(n)) respectively
O(m + n · polylog(n) · #min. solved forms) if decremental biconnectivity algo-
rithms are used.

3.1 Linear Time Decision Algorithm for Normal Dominance Graphs

Definition 9. A well-formed dominance graph is normal if all trees in GT have
height 1 and the roots of GT have no outgoing dominance arcs.

For this class of dominance graph there exists a very nice charaterization for
solvability based on the following kind of cycle.

Definition 10. A harmful cycle in G is a undirected simple cycle not containing
a vertex and two of its outgoing dominance arcs.

One entailment is easy.

Lemma 11. A normal dominance graph G containing a harmful cycle is un-
solvable.

Proof. We show that a harmful cycle C has no free vertices. Let u be any vertex
in C with no incoming arc. By definition of a harmful cycle it cannot have two
outgoing dominance arcs. Since the host dominance graph G was normal it is
not possible that u has an outgoing tree arc and an outgoing dominance arc.
Thus u has two outgoing tree arcs directed to w1, w2. By deleting u from C

we obtain an undirected path connecting w1, w2 not containing anchestor u of
w1, w2. Therefore u is not free. Thus C is unsolvable and so is G.

The proof of the next lemma is more involved. Therefore we will omit it.

Lemma 12. If a normal dominance graph G is not solvable then it contains a
harmful cycle.

Proof. We will prove that a dominance graph G not containing free vertices
contains a harmful cycle.

The following three notions will be used. First, a undirected path is called
harmful if it does not contain two outgoing dominance arcs of a vertex. Second,
we define for all roots without incoming dominance arcs a maximal harmful walk.
Let u be a root in GT without incoming dominance arcs and (u, v) be a outgoing



tree arc of v. Since u is not free there is a simple undirected cycle C containing
two of its tree arcs. If C is harmful we are done. Suppose C is not harmful. Then
we can extract from C a harmful undirected path P (u; v) starting from u, not
containing tree arc (u, v) and ending with a dominance arc (x, y) such that leaf
x is the last vertex on P (u; v) (cf. figure below).

Third, we define maximal harmful paths for all leafs. Let x be a leaf in
GT . Then Q(x) is a path following incoming arcs until a root without incoming
dominance arc is reached. Clearly, Q(x) is harmful path (cf. figure below).

Note the following two facts. If x is the last vertex on P (u; v) then P (u; v) ◦
Q(x) is a harmful walk. Observe that adjacent arcs in P (u; v)◦Q(x) are distinct.
Similarly, if (u, v) is the last tree arc in Q(x) then Q(x) ◦ P (u; v) is a harmful
walk where adjacent arcs are distinct.

Therefore starting at a root without incoming dominance arcs we can con-
struct a harmful path until we reach a vertex, say w, which we already have seen
before. This will close a harmful cycle unless the walk contains two outgoing
dominance arcs of w (cf. figure below).



As shown in the picture, if two outgoing dominance arcs of w are contained
in our walk then a vertex z and two of its incoming arcs are contained in the
walk1. Thus we can continue constructing a harmful walk from z on. Note that
the tree arc of z was not used before in the walk

This process eventually terminates because every time we “restart” our con-
struction we see a new tree arc.

It is also easy to see that we found a harmful cycle when the process stops.
This is because we maintain the invariant that we can reach the last vertex of
the walk by a harmful path from all vertices seen so far in the process. ⊓⊔

Remark 2. Using a DFS-based cycle detection algorithm we can solve DGCDP
for normal dominance graphs in linear time.

4 Conclusion

Using Dynamic Programming one can derive an algorithm that is more efficient
in practice and solves the important problem of counting all minimal solved
forms of a dominance graph.

We can enrich dominance graphs by disjointness edges. Then a disjointness
edge (u, v) in G demands that in any configuration of G the subtrees rooted in u

and v must be disjoint. When we refine the freeness conditions appropriately we
can solve DGCDP and DGMSF for dominance graphs with disjointness edges
using similar algorithmic ideas.
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1 This is because we had to change the arc direction before we reached w the second
time. In a normal dominance graph this implies the situation


