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Introduction 

Natural languages are not context free. An example non-context-free phenomenon are cross-serial dependencies 
in Dutch, an example of which we show in Fig. 1. 

 

 
 
 Fig. 1.: cross-serial dependencies 

 
A concept motivated by the intention of characterizing a class of formal grammars, which allow the description 
of natural languages such as Dutch with its cross-serial dependencies was introduced in 1985 by Aravind Joshi. 
This class of formal grammars is known as the class of mildly context-sensitive grammar-formalisms. 
 
According to Joshi (1985, p.225), a mildly context-sensitive language L has to fulfill three criteria to be 
understood as a rough characterization. These are:  The parsing problem for L is solvable in polynomial time  L has the constant growth property   There is a finite figure n, that limits the maximum number of instantiations of cross serial dependencies 

occurring in a sentence of L 
 

A collection of mildly context-sensitive grammars formalisms is given by Joshi et al. (1991):  Tree Adjoining Grammars (TAGs)  Combinatory Categorial Grammars (CCGs)  Linear Indexed Grammars (LIGs)  Head Grammars (HGs)  Multicomponent TAGs (MCTAGs)  Linear Context-Free Rewriting Systems (LCFRSs) 
 
According to the string-languages they generate TAGs, CCGs, LIGs and HGs are equivalent. MCTAGs and 
LCFRSs subsume TAGs, CCGs, LIGs and HGs. 
 
In this paper I will concentrate on the grammar formalisms of TAG, CCG and LIG. I will present TAG, CCG, 
and LIG and further the proof of Vijay-Shanker and Weir, which shows that they are equivalent with respect to  
the string-languages they describe. In computational linguistics, TAG and CCG are the formalisms that are really 
used, LIG is used in a more theoretical way, e.g. for proofs and for parsing-algorithms. I will conclude by 
presenting LCFRS and MCFG by example. 
 
 

 

 

 

 

ik haar hem de nijlpaarden zag helpen voeren 



Tree Adjoining Grammars (TAGs) 

Tree Adjoining Grammars were developed by Aravind Joshi in the seventies and eighties. They consist of initial 
and auxiliary trees that can be combined by the operations of adjunction and substitution. The union of initial 
and auxiliary trees is called the elementary trees. 
 

Definition 
A tree-adjoining grammar (TAG) G is a quintuple {VN, VT, Tini, Taux, S}, where  
VN is a finite set of non-terminals 
VT is a finite set of terminals 
Tini is a finite set of labled trees, called the initial trees 
Taux is a finite set of labled trees, called the auxiliary trees 
and S  VN  is the start symbol. 

Initial trees are of the form as shown in Fig. 2.  

  A 

       

 
  
 

w 
     

Fig. 2.: initial tree, with root labeled with non-terminal A and 
yield labeled w, where w is a series of terminals and substitution-nodes. 

 
Auxiliary trees are of the form as shown in Fig. 3.  
             

 A  
 

 
 
 
 
 

w1        A*        w2 

 
Fig.3.: auxiliary tree, with root labeled with non-terminal A and yield labeled w1A*w2,  

where w1 and w2 are series of terminals and substitution-nodes and A* is a non-terminal.  
 

Trees can be derived from others by applying the structure building operations of substitution and adjunction. 
 
Definition substitution 

To replace a leaf of a labeled tree  with label A , where A  is a substitution node, by an initial tree  with root 
labeled A is a structure building operation called substitution. (see Fig. 4. ) 

 
Definition adjunction 

Let  be a labeled elementary tree, which contains a node labeled A for some A  VN. and  is a labeled 
auxiliary tree with root labeled A and it has a leaf labelled A*. The structure-building operation adjunction 
replaces the part of  below the node A by the labeled tree  and substitutes the node A* of  by the replaced 
part of  .  
(see Fig. 5. ) 
 
The operation substitution can be modeled by the operation adjunction. In that case the node A of the elementary 
tree  is on the yield of  and there is a tree which can derive the A* of   to . 

 
Definition string language L(G) 

The string language that is constructed by a TAG G = {VN, VT, Tini, Taux, S} is the closure of Tini and Taux under 
finitely many applications of substitution and adjunction. 
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Fig. 4.: Substitution 
 

 
 
 

        A 
 

                        A        
             
 
 
      A* 

 
 
 

 
 

      A 

 
 
 
 
   
       A          
 
 
Fig. 5.: Adjunction 

 

 
For example see the tree-adjoining-gramma

 
 
G = {VN, VT, Tini, Taux, S}, where 
VN  = {S, NP, V1, V2, V3} 
VT  = {ik, haar, hem, de nijlpaarden, helpen voeren} 
Tini ={ 1} 
Taux = { 1, 2} 
S  VN  start symbol 



             
              
 

  

         1: initial tree         1: auxiliary tree     2: auxiliary tree 

 

 

First step: Adjunction of 1 in 2: 

 
      1: result of adjunction 

 

 

Second step: Adjunction of 1 in 1: 
 

 
 

2: result of adjunction, derivation complete. 
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Combinatory Categorical Grammars (CCGs) 

CCG was developed by Mark Steedman in the early eighties. A CCG consists of a finite set of atomic categories, 
which can be combined by connectors / and \. By combining atomic categories with combinatory rules there will 
be generated complex categories. The lexicon of a CCG associates strings with categories. The connectors are 
used for some non-terminals A, B like: A / B or A \ B, where A / B means: To become an A, I need a B on the 
right, and A \ B means: To become an A, I need a B on the left. 
 

Definition CCG 
A CCG G is a quintuple {VN, VT, S, f, R} where 
VN = finite set of non-terminals, the atomic categories 
VT  = finite set of terminals, the lexical items 
S = start symbol 
f = function that maps terminals to non-terminals 
R = combinatory rules 
 

Definition combinatory rules 
There a four types of combinatory rules, namely: 
Application: 
 forward application:  x/y y  x  
 backward application:  y x\y  x 
Composition: 
 forward composition  x/y y/z  x/z  
 backward composition  x\y y\z  x\z 
 forward crossing composition x/y y\z  x\z 
 backward crossing composition x\y y/z  x/z 

\x 
Type-raising: 
 forward type-raising  x  y/(y\x)   
 backward type-raising  x  y\(y/x) 
 
Normal-form-CCGs only use the combinatory rules of application and composition. 
 

Example: 
 

G =  {VN, VT, s, f, R}, where 
VN = {np; vp\np; vp\np/vp; s\np\np/vp} 
VT = {ik, haar, hem, de nijlpaarden, zag, helpen, voeren} 
s = start symbol 
f =  
ik; haar; hem, the nijlpaarden := np 
zag := s\np\np/vp  
helpen := vp\np/vp  
voeren := vp\np  
R = {backward application (*1), forward crossing composition (*2)} 
 
Derivation: 
 

               helpen      voeren 
           zag                  vp\np/vp                 vp\np  *2 

            de nijlpaarden s\np\np/vp   vp\np\np   *2         
   hem    np     s\np\np\np\np *1       
         har   np    s\np\np\np  *1 

   ik         np    s\np\np  *1 

   np   s\np  *1 

         s 
 

ated from the resulting categories. So finally only the 
start symbol s remains. That means the sentence could be derived correctly. 
 



Linear Indexed Grammars (LIGs) 

Linear indexed grammars were developed by Gazdar (1988) and are a special case of indexed grammars, which 
were developed by Aho in 1968.  
LIGs are conform to context-free-grammars plus indices on the non-terminals, which describe the stack of the 
grammar. In contrast to IG,  LIGs pass the indices only to one non-terminal. In the productions of the grammar 
there can be items pushed on the stack, and items can be removed from the stack. 
 

Definition LIG 
A LIG G is a quintuple {VN, VT, VS , S, P} where 
VN = finite set of non-terminals 
VT = finite set of terminals 
VS = finite set of stack symbols 
S = start symbol 
P = finite set of productions like A [..x]  1 n  

 
The following example shows how a LIG-derivation works: 

 
Example 

Grammar G = {VN, VT, VS  
VN  = {S, A, B, C} 
VT  = {ik haar, hem, de nijlpaarden, zag, helpen, voeren, } 
VS  = {h, v, z} 
S = start symbol 
P = {S[..] ;   
        A[..] ;   
        B[..] ;  
        C[..z]  
        C[..h]  
        C[..v] ren,  
        C[ ]  } 
 
The rules 1-3 each push one item on the stack, the rules 4-6 each pop one item from stack, the last rule, maps 
empty stack to . 
 
Derivation: 
S[ ]  
        
        
        
        
        
        
 



Proof of equivalence of CCG, LIG and TAG 

CCGs and TAGs generate the same class of string-languages and can also be described by LIGs. That is, 
the three grammar formalisms are weakly equivalent. The proof of equivalence will be arranged by circular 
inclusion. First I will show that for each CCG there is a LIG that describes the same language, then that for each 
LIG there is a TAG that describes the same language and last that for each TAG there is  CCG that describes the 
same language. The proof is due to Vijay-Shanker and Weir (1994). 
 

Step 1: CCG  LIG 

The idea of the proof is, to interpret the CCG-categories as non-terminals plus stack, where the CCG-operation 
application corresponds to the stack operation push, the CCG-operation composition corresponds to the stack-
operation pop (e.g. S  S[ ], S\a  S[\a]). 
To construct a LIG for an existing CCG, every category of the CCG-lexicon and every CCG-rule must be 
transformed into a LIG-production. To this end, the CCG-rules must be turned around to become LIG-
productions. 
 

Example for the hippo-sentence 
Given CCG G 
G =  {VN, VT, s, f, R}, where 
VN = {np; vp\np; vp\np/vp; s\np\np/vp} 
VT = {ik, haar, hem, de nijlpaarden, zag, helpen, voeren} 
s = start symbol 
f =  
ik; haar; hem, the nijlpaarden := np 
zag := s\np\np/vp 
helpen := vp\np/vp 
voeren := vp\np 
 

-rules 
forward cross composition and backward application are used, therefore it is only necessary to show the 
transformation of these rules into LIG-productions. 
 
LIG-productions for the CCG-lexicon: 
np  np[] 
vp  vp[\np] 
vp  vp[\np/vp] 
S  S[\np\np/vp] 
 
LIG-productions for the CCG-rules: 
Backward application (shown for zag:= s\np\np/vp) 
CCG: np x\np    \np] 
Forward cross composition (zag:=s\np\np/vp) 
CCG: x/vp vp\ \(np/vp)  LIG: S[..\ \np/vp] 
 
 
 

 

 



 

The idea for the proof starts from a normalized LIG, where every rule pushes or pops at most one item on the 
stack or from stack. Every stack is born empty and dies empty. 
 
For the construction of the TAG the adjunction nodes are labeled with elementary stack operations:  input non-terminal  transition type  output non-terminal 

where the transition type models the stack operation: no operation, push or pop. 
 
For every combination of non-terminals, there must be constructed an initial tree of the form shown in Fig. 6, 
and for every rule of the form A [ ] Fig.7, 

where x' is obtained from x by removing the symbols representing the empty stack. 
with an initial tree, such as shown in Fig.6, ree such as shown in Fig. 7.. 
 
 
  A      
   |      
           [A, , B]/OA     A 
   |      | 
  B       
 
 Fig.6. initial tree for beginning  Fig.7. initial tree for ending 

            a derivation              a derivation 

 

 

For every combination of non-terminals and  symbol there must be constructed auxiliary trees to move between 
non-terminals, to do  operations or to represent a LIG with no derivations. 
The trees ensure that by moving between non-terminals the input-non-terminals are identical to the output-non-
terminals and that for a stack operation an item, that is pushed on stack will also be removed from stack. 
The auxiliary trees are shown in Fig. 8., Fig. 9. and Fig. 10.. 
Further auxiliary trees must be constructed to map the transition-types (no transition, push, pop). 
These auxiliary trees were connected to the auxiliary tress from Fig. 8., 9., 10., and are shown in Fig. 11-13. 
 

[A, , B]/NA 
                     | 

[A, +a, C]/OA   [A, , B]/NA 
                     |               | 

[C, , D]/OA   [A, , C]/OA 
                     |               | 

[D, -a, B]/OA   [C, , B]/OA 
                     |               | 

[A, , B]/NA   [A, , B]/NA   [A, , A]/NA 
 

Fig. 8. auxiliary tree to do        Fig.9. auxiliary tree to move        Fig.10. auxiliary tree for no 
stack operations         between non-terminals         derivation 
 
 
 
LIG:              A[..]  x B[..] y              A[..]    A[..a]  

 
 
   [A, , B]/NA   [A, +a, B]/NA      [A, -a, B]/NA 

TAG:            /             |           \             /              |             \   /              |            \ 
                      x   [A, , B]/NA   y             x    [A, +a, B]/NA    y             x     [A, -a, B]/NA   y 
 

          Fig. 11. auxiliary tree for no                  Fig. 12. auxiliary tree for push       Fig. 13. auxiliary tree for pop 
                        stack operation 
 
 



Example for a construction of a TAG to a given LIG  
Given a LIG for the language L = {anbncndn}. For every LIG-rule it will be constructed a corresponding TAG-
tree: 
 
LIG-rule:                    TAG-tree: 
 
1) S[..]  a S[..i] d      [S,+i,S]/NA 

                   /           |           \ 
                          a   [S,+i,S]/NA   d 

 
 
2) S[..] T[..]       [S, , T]/NA 
                            | 
        [S, , T]/NA 
 
 
3) T[..i]       [S,+i,S]/NA 
                           /             |            \ 
                         b   [S,+i,S]/NA    c 
 
 

                         T   
                            | 
                              
  
 
Next there will be constructed initial-trees for non-terminals S and T: 
 
 S   S   T   T  
  |    |    |    | 
     [S, , S]/OA       [S, , T]/OA          [T, , S]/OA       [T, , T]/OA 
  |    |    |    | 
 S    T    S    T
 
 
The auxiliary trees that must be generated are not shown, because there are too many possibilities to construct 
the auxiliary trees. E. g. for two non-terminals and one stack symbol there will be created 24 = 16 auxiliary trees. 
 
Derivation of the word aabbccdd  L. 
The derivation begins with the initial tree   
   

  S 
        | 
            [S, , T]/OA 
        | 
       T
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Now the auxiliary tree for stack operations will be adjoined into the initial tree, then the auxiliary tree for rule 1 
pushes an item on the stack and in the next step the auxiliary tree for rule 3 pops an item from the stack to derive 
abcd: 
 
 S                S             S  
 |      |                | 

[S, , T]/NA          [S, , T]/NA                 [S, , T]/NA 
 |                   |             | 

[S, +i, S]/OA          [S, +i, S]/NA                 [S, +i, S]/NA 
 |      /            |             \              /          |            \ 
    [S, , T]/OA     a   [S, +i, S]/NA   d           a   [S, +i, S]/NA   d   
              |                   |             | 

[T, -i, T]/OA         [S, , T]/OA                 [S, , T]/OA 
 |                   |                 | 

[S, , T]/NA         [T, -i, T]/OA                 [T, -i, T]/NA 
 |                   |             /          |             \ 
             T          [S, , T]/NA           b    [T, -i, T]/NA    c 
                    |             | 
                   T     [S, , T]/NA 
                   | 
                  T
 
 
 
Next three steps work analogue to the three steps before: we adjoin the auxiliary tree for stack operation, and 
then the auxiliary tree for rule 1 and then for rule 3, deriving aabbccdd. 
 
 

 
S    S    S 
 |     |     | 

     [S, , T]/NA        [S, , T]/NA        [S, , T]/NA 
 |     |     | 

     [S, +i, S]/NA        [S, +i, S]/NA        [S, +i, S]/NA 
  /            |            \   /             |            \   /             |            \ 
a   [S, +i, S]/NA   d  a   [S, +i, S]/NA   d  a   [S, +i, S]/NA   d 

 |     |     | 
     [S, , T]/NA        [S, , T]/NA        [S, , T]/NA 

 |      |     | 
     [S, +i, S]/OA        [S, +i, S]/NA        [S, +i, S]/NA 

 |    /             |            \   /             |             \   
     [S, , T]/OA   a   [S, +i, S]/NA   d  a   [S, +i, S]/NA   d 

 |     |     | 
     [T, -i, T]/OA        [S, , T]/OA        [S, , T]/OA 

 |     |     | 
     [S, , T]/NA        [T, -i, T]/OA        [T, -i, T]/NA 

 |     |         /            |            \ 
     [T, -i, T]/NA        [S, , T]/NA   b   [T, -i, T]/NA    c 
  /            |             \    |     | 
b   [T, -i, T]/NA    c       [T, -i, T]/NA        [S, , T]/NA 

 |    /             |             \    | 
     [S, , T]/NA                b    [T, -i, T]/NA    c       [T, -i, T]/NA 

 |     |       /            |            \ 
T           [S, , T]/NA   b   [T, -i, T]/NA    c 

      |     | 
     T         [S, , T]/NA 
          | 
         T
 
In the last two steps of the derivation, we adjoin the auxiliary tree for rule 2 and then the initial tree for rule 4.



 
 
 S     S 

 |      | 
      [S, , T]/NA         [S, , T]/NA 

 |      | 
      [S, +i, S]/NA         [S, +i, S]/NA 
   /           |             \                  /            |            \ 
 a   [S, +i, S]/NA   d   a   [S, +i, S]/NA   d 

 |      | 
      [S, , T]/NA         [S, , T]/NA 

 |      | 
      [S, +i, S]/NA         [S, +i, S]/NA 
 /             |             \     /  | \ 
a    [S, +i, S]/NA   d   a   [S, +i, S]/NA   d 

 |      | 
      [S, , T]/NA         [S, , T]/NA 

 |      | 
      [T, -i, T]/NA         [T, -i, T]/NA 
   /            |            \     /  | \ 
 b   [T, -i, T]/NA    c   b   [T, -i, T]/NA    c 
                |      | 
      [S, , T]/NA         [S, , T]/NA 

  |      | 
      [T, -i, T]/NA         [T, -i, T]/NA 
   /            |            \     /  | \ 
 b   [T, -i, T]/NA    c   b   [T, -i, T]/NA    c 
     |      | 
      [S, , T]/NA         [S, , T]/NA 
    |      | 
 T                  T
       | 
                   
 

Step 3: Proof TAG  CCG 

The basic idea here affects the correspondence between CCG- and TAG-operations. 
The TAG-operation adjunction corresponds to the CCG-function composition, the TAG-operation substitution 
corresponds to the CCG-function application. To construct a CCG to a given TAG, the TAG must be available in 
normal-form (all TAGs can be transferred to normal form).  
TAG in normal-form, means  at most binary branching  all internal nodes are either OA or NA  all OA-nodes are on the spine or are sisters of nodes of the spine, where the spine of a tree is the path from 

root A of the tree to the foot A of the tree: 

  
Normal form TAGs do not use substitution, but model substitution as we have described above by adjunction. 
 

A 

A 



To construct the CCG every TAG-auxiliary tree must be transferred by an algorithm to a CCG-category and in 
addition a CCG- ^ -category. The CCG-^-categories must be built because the original TAG distinguishes lexical 
trees and non-lexical-trees. Lexical trees can only be adjoined into sisters of the spine and thus model 
substitution, non-lexical-trees can be adjoined in both the sisters of the spine or the spine itself. In CCG, TAG-
adjunctions of non-lexical auxiliary trees into the spine of other non-lexical auxiliary trees are modeled by 
functional composition. The ^ - categories are used to forbid adjunction of lexical auxiliary trees into the spine of 
non-lexical trees. 
 

Algorithm for transferring TAG-auxiliary-trees to CCG-categories: 
Initialising:  pos = root (t) = A  c = A or c = Â 
until the foot of the tree is reached:  if the non-spine daughter of pos is a left daughter with label B/OA, add /B to c  if the non-spine daughter of pos is a right daughter with label B/OA, add \B to c  if the spine daughter of pos has label C/OA, add /^C to c  pos = spine daughter of pos 
 

Example for the algorithm 
 
  S/NA 
                           
  

   A/OA          S/NA 
           
   

     S/OA          D/OA 
                         
  

    B/OA             S/NA 
                            
   

                  S/NA           C/OA 
        | 
        
 
c = S\A/D/^S\B/C 
c = ^S\A/D/^S\B/C 
 
 
Construction of a CCG from a TAG in normal-form: 
Lexicon:  for every lexical auxiliary tree of the form               A/NA   construct an lexicon-item w := A 

 
 

                   w             A/NA 
  for every from a non-lexical auxiliary tree constructed category c, construct an lexicon-item  := c 

 
rules:  forward- and backward-application model adjunction of auxiliary trees into sisters of the spine (models 

substitution): 
x/A A  
A x\   composition models the adjunction of non-lexical trees into the spine: 
for every non-terminal A and i  n, with n = length of the longest spine in auxiliary tree of the TAG: 
x/Â Â|1z1|2 izi 1z1|2 izi  ( |  {/,\}  

 
The constructed CCG describes the same language as the TAG, and so it is shown that TAG, CCG and LIG 
describe the same string-languages by circular inclusion. 
 



Linear Context-Free Rewriting Systems (LCFRSs) 

 
Linear context-free rewriting systems arose from the observation that a number of grammatical formalisms share 
two properties:  Their derivation trees can be generated by a context-free grammar  Their composition operations are size-preserving, i.e., when two or more substructures are combined only a 

bounded amount of structure is added or deleted 
 

Definition LCFRS 
A linear context-free rewriting system G is a Quintuple {V, F, P, R, S}, with 
V = a finite set of non-terminals 
F = finite set of function symbols 
P = finite set of productions like A  f(A1 n), where n  0, f  F, A1 n  V 
S = start symbol 
R a regular and total function fG(<w1,1 1,k1 n,1 n,kn>) = <t1 k>, with n  0, every ti is a chain  
of wm,n and a fix amount of terminals 
 

Example 
 

V = { w1, w2} 
F = {start, addik, addhaar, addhem, addde nijlpaarden} 
R =  start() = < , >  addik (<w1, w2>) = <w1 ik, w2>  addhaar (<w1, w2>) = <w1 haar, w2 zag>  addhem (<w1, w2>) = <w1 hem, w2 helpen>  addde nijlpaarden (<w1, w2>) = <w1 de nijlpaarden, w2 voeren>  concatenate (<w1, w2>) = < w1w2> 
P =   S  start ()  S addik (S)  S addhaar (S)  S addhem (S)  S addde nijlpaarden (S)  S  
S = start symbol 
 
 
Derivation: 
S , >  
   > 
    
    
    
    
 
The given LCFRS derives the sentence. 

 



Multiple Context-Free Grammars (MCFGs) 

Multiple context-
linear context-free rewriting systems and other mildly context-sensitive formalisms, but still with a polynomial 
parsing algorithm. MCFG is an instance of generalized CFG, with the following restrictions on linearizations:  Linearization types are restricted to tuples of strings  The only allowed operations in linearization functions are tuple projections and string concatenations 
 

Definition MCFG 
A MCFG G is a quintuple {VN, VT, P, F, S} with 
VN = a finite set of non-terminals 
VT = a finite set of terminals 
P = a finite set of rules 
F = total, regular function, that derives strings to strings 
S = start symbol 
 

Example 
Grammar G = { VN, VT, P, F, S} for the  language L = {anbncndn} 
VN = {S, A} 
VT = {a, b, c, d} 
P = {S } 
F = {conc, f, g} 
         conc: <x1, x2>  x1x2>   
         f:       <x1, x2>  ax1b, cx2d> 
         g:     <x1,x2 > ,  > 
 
The given grammar describes the language L. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Conclusion 

Mildly context-sensitive grammar-formalisms are a weak extension of the context-free grammars, with the goal 
to describe non-context-free phenomenons like cross-serial dependencies, but still being efficiently, i.e., 
polynomially parsable. In this paper are shown TAG, CCG, LIG, LCFRS and MCFG. The languages that are 
described by TAG, CCG or LIG are a proper subset of the languages that are described by LCFRS or MCFG. 
The grammar formalisms TAG, CCG, LIG and LCFRS respectively MCFG are based on absolutely different 
kind of paradigms. TAG is a tree-substitution-system, CCG is a categorial grammar, LIG is a CFG with stack, 
LCFRS and MCFG are generalized CFGs. The proof of Vijay-Shanker and Weir (1994) shows, that TAG, CCG 
and LIG are equivalent according to the string languages they generate. 
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