
Multiple Context-Free Grammars

Daniel Norbert Götzmann

Saarland University

Abstract. Multiple context-free grammar (MCFG) is a weakly context-
sensitive grammar formalism that deals with tuples of strings. An MCFG
is called m-MCFG if all tuples have at most m components. In this
summary I will outline that the expressivity of m-MCFG’s increases with
the parameter m and that the class of tree-adjoining languages is properly
included in the class of 2-multiple context-free languages. In addition, I
will give a brief overview over the parsing complexity of m-MCFG’s.

1 Generalized context-free grammars

Multiple context-free grammars are a restricted form of generalized context-free
grammars. Generalized context-free grammar is a grammar formalism that deals
with tuples of strings. Rewriting rules in generalized context-free grammars have
the form

A → f [B(1), B(2), . . . , B(q)]

where A and B(1), . . . , B(q) are nonterminal symbols and f is a partial func-
tion whose arguments and function values are tuples of strings. Formally, a
generalized context-free grammar is defined as follows.

Definition 1. A generalized context-free grammar (GCFG) is a 5-tuple
G = (N,O,F, P, S).

– N is a finite set of nonterminal symbols.
– O is a set of n-tuples (n ≥ 1) over a finite set of symbols.
– F is a finite set of partial functions from O × · · · ×O to O.
– P is a finite set of rewriting rules.
– S ∈ N is the start symbol.

The rewriting rules contained in P are written as

A → f [B(1), B(2), . . . , B(q)]

where A ∈ N and B(1), B(2), . . . , B(q) ∈ N are nonterminal symbols and f ∈ F
is a function from Oq to O. A rewriting rule is called terminating rule, if q = 0
holds, i.e. there is no terminal symbol in the right-hand side of this rewriting
rule. In this case, the rewriting-rule is written as

A → θ

where θ ∈ O.

A → ga[A] B → gb[B] S → f [A, B]

ga[(x1)] = (x1a) gb[(x1, x2)] = (bx1, bx2) f [(x1), (y1, y2)] = (y1c
|x1|2y2)

A → θa B → θb

θa = (ε) θb = (ε, ε)

LG(A) LG(B) LG(S)

= {(am)|m ∈ N} = {(bn, bn)|n ∈ N} = {(bncm2
bn)|m, n ∈ N}

Table 1. Rewriting rules, functions and derivations of Example 1

In context-free grammars, for each nonterminal there exists a set of words
that can be derived from that nonterminal. Similarly, in generalized context-free
grammars, for each nonterminal A ∈ N there exists a set LG(A) which contains
exactly those tuples that can be derived from A in G.

Definition 2. For each nonterminal A ∈ N the set LG(A) is defined as the
smallest set that satisfies the following two conditions:

1. For each terminating rule A → θ ∈ P , θ ∈ LG(A).
2. For each nonterminating rule A → f [B(1), B(2), . . . , B(q)] ∈ P and for each

θi ∈ B(i)(1 ≤ i ≤ q), if f [θ1, θ2, . . . , θq] is defined, then f [θ1, θ2, . . . , θq] ∈
LG(A).

Every generalized context-free grammar G generates a language L(G) which
is the set that contains exactly those tuples that can be derived from the start
symbol S in G.

Definition 3. Let G = (N,O,F, P, S) be a generalized context-free grammar.
L(G) = LG(S) is called the generalized context-free language (GCFL) generated
by the GCFG G. It contains exactly those n-tuples that can be derived from the
start symbol S in G.

Example 1. G = (N,O,F, P, S) = ({S, A,B}, ({a, b, c}∗)+, {f, ga, gb, θa, θb}, {S →
f [A,B], A → ga[A], A → θa, B → gb[B], B → θb}, S) with

– f(x, y) =
{

(y1c
|x1|2y2) if y = (y1, y2) is a 2-tuple and x = (x1) is a 1-tuple

undefined otherwise

– ga(x) =
{

(x1a) if x = (x1) is a 1-tuple
undefined otherwise

– gb(x) =
{

(bx1, bx2) if x = (x1, x2) is a 2-tuple
undefined otherwise

– θa = (ε)
– θb = (ε, ε)

is a generalized context-free grammar that generates the generalized context-free
language L(G) = {bncm2

bn|m,n ∈ N}.
Table 1 shows the connection between the rewriting rules, the functions and

the resulting derivations. For the nonterminal A there are two rewriting rules in

P . A → θa is a terminating rule, therefore θa = (ε) can be derived from A in G.
Since the rewriting rule A → ga[A] is a nonterminating rule in N , if (x1) can be
derived from A in G, the tuple (x1a) can also be derived from A in G. Intuitively,
the tuple containing the empty word can be derived from A. By application of
the nonterminating rule, arbitrarily many a’s can be concatenated. Therefore,
LG(A) = {am|m ∈ N}.

For the nonterminal B there are also two rewriting rules in P . The terminat-
ing rule B → θb implies θb = (ε, ε) ∈ LG(B). The nonterminating rule B → gb[B]
implies that if a 2-tuple (x1, x2) ∈ LG(B) can be derived from B in G, the 2-tuple
(bx1, bx2) can also be derived from B in G. The rules for B are similar to the
rules for A except that the concatenation is parallel in two tuple components.

For the nonterminal S there is one rewriting rule in P , S → f [A,B]. There-
fore, for every 1-tuple (x1) ∈ LG(A) that can be derived from A and for every
2-tuple (y1, y2) that can be derived from B, the 1-tuple (y1c

|x1|y2) can be derived
from S in G.

While the partial functions ga and gb in the previous example are rather
simple functions which are defined as concatenation of components of their ar-
guments and some constant strings, the partial function f is more complex.

According to Seki et al. [1], if a generalized context-free grammar may contain
arbitrary partial recursive functions, then every language that can be generated
by a Type 0 grammar can also be generated by a generalized context-free gram-
mar. Therefore, generalized context-free grammars are very expressive.

However, restricting the functions that may be contained in generalized
context-free grammars to functions that are defined as concatenation of con-
stant strings and components of their arguments results in an interesting weakly
context-sensitive subclass of GCFG’s, the so-called multiple context-free gram-
mars.

2 Multiple context-free grammars

Multiple context-free grammar is a subclass of generalized context-free grammar.
Unlike generalized context-free grammar, it may not contain arbitrary partial
functions but only partial functions that are defined as concatenation of constant
strings and components of their arguments.

Definition 4. An m-multiple context-free grammar (m-MCFG) is a generalized
context-free grammar G = (N,O,F, P, S) that satisfies the following conditions:

1. O =
⋃m

i=1(T
∗)i, where T is a finite set of terminal symbols.

2. For each function f ∈ F , which takes a(f) arguments, there are positive
integers r(f) and d1(f), . . . da(f)(f) such that 1 ≤ r(f) ≤ m and 1 ≤ di(f) ≤
m (1 ≤ i ≤ a(f)), such that f is a function from (T ∗)d1(f)× (T ∗)d2(f)×· · ·×
(T ∗)(da(f)(f)) to (T ∗)r(f)

3. Each function f ∈ F is defined as a concatenation of some constant strings
in T ∗ and components of its arguments such that every component appears
at most once in the result. More formally: For each function f ∈ F there
exist positive integers vh(1 ≤ h ≤ r(f)), constant strings α(i,j) ∈ T ∗(1 ≤ i ≤
r(f), 0 ≤ j ≤ vi) and an injective function φf from {(i, j) ∈ N × N|1 ≤ i ≤
r(f), 1 ≤ j ≤ vi} to {(i, j) ∈ N× N|1 ≤ i ≤ a(f), 1 ≤ j ≤ di(f)}, such that

f [(x(1,1), . . . , x1,d1(f)), . . . , (x(a(f),1), . . . , xa(f),da(f)(f))] = (f1, f2, . . . , fr(f))

where every fh(1 ≤ h ≤ r(f)) is of the form

fh = α(h,0)xφf (h,1)α(h,1)xφf (h,2) . . . xφf (h,vh(f))α(h,vh(f))

4. For each nonterminal A ∈ N , there exists a positive integer d(A), such that
all tuples that can be derived from A in G have exactly d(A) components.

5. d(S) = 1, i.e. all tuples that can be derived from the start symbol S are
1-tuples.

6. Every rewriting rule A → f [B(1), B(2), . . . , B(q)] must satisfy the condition
d(A) = r(f), i.e. the size of the tuple returned by f must be the same as the
size of the tuples that can be derived from the nonterminal A. Additionally,
it must satisfy the condition d(B(i)) = di(f)(1 ≤ i ≤ q), i.e. the size of the
tuples that can be derived from B(i) must be the same as the size which f
expects its i-th argument to have.

The first condition restricts the tuples that are contained in an m-MCFG to
tuples that have at most m elements. Section 3 deals with the influence of that
parameter on the expressivity of m-multiple context-free grammars.

A language generated by an m-MCFG is called an m-multiple context-free
language.

Definition 5. Let G = (N,O, S, F, P) be an m-multiple context-free grammar.
L(G) = LG(S) is called the m-multiple context-free language (m-MCFL) gener-
ated by the m-MCFG G.

Example 2. G = (N,O,F, P, S) = ({S, A,B}, (
⋃2

i=1{a, b, c}∗)i, {f2, ga, gb, θa, θb},
{S → f2[A,B], A → ga[A], A → θa, B → gb[B], B → θb}, S) with

– f((x1), (y1, y2) = (y1x1y2)
– ga(x1) = (x1a)
– gb(x1, x2) = (bx1, bx2)
– θa = (ε)
– θb = (ε, ε)

is a 2-multiple context-free grammar that generates the 2-multiple context-free
language L(G) = {bnambn|m,n ∈ N}.

Table 2 shows the connection between the rewriting rules, the functions and
the resulting derivations. The rewriting rules for the nonterminals A and B are
the same as in Example 1. They satisfy the conditions of Definition 4 because

A → ga[A] B → gb[B] S → f2[A, B]
ga[(x1)] = (x1a) gb[(x1, x2)] = (bx1, bx2) f2[(x1), (y1, y2)] = (y1x1y2)

A → θa B → θb

θa = (ε) θb = (ε, ε)

LG(A) LG(B) LG(S)
= {(am)|m ∈ N} = {(bn, bn)|n ∈ N} = {(bnambn)|m, n ∈ N}
Table 2. Rewriting rules, functions and derivations of Example 2

they are only concatenating the components of their arguments with constant
strings in the terminal alphabet. In addition, all tuples that can be derived from
A are 1-tuples and all tuples that can be derived from B are 2-tuples.

The rewriting rule for the nonterminal S in this example is different from the
rewriting rule for S in Example 1 because the function f contained in the other
example did not satisfy the third condition of Definition 4. The function f2,
however, satisfies that condition because it only concatenates the components of
its arguments.

The set of all m-multiple context-free grammars is defined as follows.

Definition 6. Lm−MCFL = {L|there exists an m-MCFG G such that L = L(G)}
is the set of all m-multiple context-free languages.

3 Expressivity of m-multiple context-free grammars

The class of m-multiple context-free languages forms a hierarchy, i.e. for all
m ∈ N \ {0} it holds that Lm−MCFL (L(m+1)−MCFL.

There is a pumping lemma for m-multiple context-free languages. It can be
used to show that a language L is not an m-multiple context-free language, i.e.
there is no m-MCFG that generates L.

Lemma 1. For any m-multiple context-free language L which is an infinite set,
there exists a word z ∈ L and strings uj ∈ T ∗(1 ≤ j ≤ m + 1) and vj , wj , sj ∈
T ∗(1 ≤ j ≤ m) such that

1. z = u1v1w1s1u2v2w2s2 . . . umvmwmsmum+1

2.
∑m

j=1 |vjsj | > 0
3. for every nonnegative integer i,

zi = u1v
i
1w1s

i
1u2v

i
2w2s

i
2 . . . umvi

mwmsi
mum+1 ∈ L

A proof for this lemma can be found in [1]

The idea behind the pumping lemma for m-multiple context-free languages
is similar to the idea of the pumping lemma for context-free languages. In the
case of context-free languages, a word can be split such that exactly two pieces
of the word can be pumped such that the resulting word is always contained in

the language. With the pumping lemma for m-multiple context-free languages
it is possible to pump not only two pieces of a word, but 2m pieces.

With the pumping lemma for m-multiple context-free grammars, it is easy
to show that the language L2m+2 = {an

1an
2an

3 . . . an
2m+2|n ≥ 1} is not an m-

multiple context-free language. However, there is an (m+1)-multiple context-
free grammar that generates L2m+2 and therefore L2m+2 is an (m+1)-multiple
context-free language.

Lemma 2. For all m ≥ 1, the language L2m+2 = {an
1an

2an
3 . . . an

2m+2|n ≥ 1} is
not an m-multiple context-free language.

Proof. Assume that L2m+2 = {an
1an

2an
3 . . . an

2m+2|n ≥ 1} is an m-MCFL. Accord-
ing to the pumping lemma, there exists a word z = aη

1aη
2aη

3 . . . aη
2m+2 ∈ L2m+2

and strings uj ∈ T ∗(1 ≤ j ≤ m + 1) and vj , wj , sj ∈ T ∗(1 ≤ j ≤ m) such that

z = u1v1w1s1u2v2w2s2 . . . umvmwmsmum+1

and
z2 = u1v

2
1w1s

2
1u2v

2
2w2s

2
2 . . . umv2

mwms2
mum+1 ∈ L.

Case 1. Now assume that there is some 1 ≤ j ≤ m and some 1 ≤ k ≤ 2m+1
such that vj or sj contains akak+1 as a substring. Then, z2 will contain akak+1

twice as a substring. Therefore zi 6∈ L2m+2.
Case 2. Now assume that for all 1 ≤ j ≤ m neither vj nor sj contains akak+1

as a substring. Therefore, for there exists an h(1 ≤ h ≤ 2m + 2) such that
the terminal symbol ah does not occur in v1s1v2s2 . . . vmsm. However, since∑m

j=1 |vjsj | > 0 there exists a p (1 ≤ p ≤ 2m+2) such that the terminal symbol
ap occurs in v1s1v2s2 . . . vmsm. Therefore, the terminal symbol ah will appear
exactly η times in z2 but ap will appear at least η +1 times in z2. Hence, z2 6∈ L.

This is a contradiction, and therefore L2m+2 is not an m-multiple context-free
language.

However, the language L2m+2 is an (m+1)-multiple context-free language
because there is an (m+1)-multiple context-free grammar that generates L2m+2.

Lemma 3. For all m ≥ 1, the language L2m+2 = {an
1an

2an
3 . . . an

2m+2|n ≥ 1} is
an (m+1)-multiple context-free language.

Proof. The following grammar G is an (m+1)-MCFG that generates L2m+2:
G = ({S, X},

⋃m+1
i=1 (T ∗)i, {f, g, θ}, {S → f [X], X → g[X], X → θ}, S) where

– f [(x1, x2, . . . , xm+1)] = x1x2 . . . xm+1

– g[(x1, x2, . . . , xm+1)] = (a1x1a2, a3x2a4, . . . , a2m+1xm+1a2m+2)
– θ = (a1a2, a3a4, . . . , a2m+2)

The following corollary follows from Lemma 2 and Lemma 3.

Corollary 1. For all m ≥ 1, Lm−MCFL (L(m+1)−MCFL.

Therefore, the class of m-multiple context-free languages forms a hierarchy
and for all m ∈ N \ {0} the expressivity of m-MCFG’s is strictly weaker than
the expressivity of (m+1)-MCFG’s.

4 Tree adjoining languages and m-MCFL’s

Tree adjoining grammar is a grammar formalism that deals with trees and an
adjoining operation. Formally, a tree adjoining grammar is defined as follows.

Definition 7. A tree adjoining grammar (TAG) is a 4-tuple G = (N,T, I, A).

– N is a finite set of nonterminal symbols.
– T is a finite set of terminal symbols.
– I is a finite set of initial trees.
– A is a finite set of auxiliary trees.

In an initial tree, each leaf node is labelled with a terminal symbol and all
other nodes are labelled with a nonterminal symbol. In an auxiliary tree, each leaf
node except one is labelled with a terminal symbol and all other nodes are labelled
with a nonterminal symbol. The leaf node of an auxiliary tree that is labelled with
a nonterminal symbol is called foot node. The foot node of an auxiliary tree β is
always labelled with the same symbol as the root node of β.

Trees can be manipulated by the adjoining operation which is defined as
follows.

Definition 8. Let G = (N,T, I, A) be a TAG and let α be a tree such that each
leaf node of α is labelled with a terminal symbol and each other node of α is
labelled with a nonterminal symbol. Let v be a node in α, which is labelled with
a nonterminal symbol X ∈ N , let γ be the subtree in α which is dominated by v
and let β ∈ A be an auxiliary tree whose root node is labelled with X ∈ N1. Let
β′ be the tree that is obtained by replacing the foot node of β with the tree γ.

The tree β is adjoined to the node v in α by replacing the subtree γ in α with
the tree β′.

Figure 1 shows how an auxiliary tree whose frontier is α1Aα2 is adjoined in
a tree whose frontier is σ1σ2σ3 to the node that dominates the subtree whose
frontier is σ2 yielding a tree whose frontier is σ1α1σ2α2σ3.

Definition 9. Let G = (N,T, I, A) be a tree-adjoining grammar. A tree τ can
be derived in G if and only if it can be obtained by finitely many adjoining op-
erations, starting with an initial tree in I. The tree-adjoining language (TAL)
generated by G is defined as the set that contains a string σ if and only if a tree
τ whose frontier is σ can be derived in G. The TAL generated by G is denoted
by L(G).

Lemma 4. The set of all tree-adjoining languages LTAL is properly included in
L2−MCFL, i.e. LTAL (L2−MCFL.

1 By Definition 7, the foot node of β is labelled with the same nonterminal symbol X.

Fig. 1. Adjoining

Seki et al. [1] have shown that the set of tree-adjoining languages is equal to
the set of head languages and that the set of head languages is properly included
in L2−MCFL.

The following subsection deals with the idea of how a TAG can be trans-
formed into a 2-MCFG that generates the same language. However, proofs for
correctness and completeness of the transformation algorithm are not given
there.

4.1 LT AL ⊆ L2−MCF L

Every TAG can be transformed into a 2-MCFG that generates the same lan-
guage. The idea behind that is to add a rewriting rule and a corresponding
function to P and F respectively for every initial tree in I and every auxiliary
tree in A.

In order to simplify the transformation, we assume that the TAG is in the
following normal form.

Lemma 5. Every tree-adjoining grammar G = (N,T, I, A) where S 6∈ N can be
transformed into an equivalent tree-adjoining-grammar G′ = (N ∪ {S}, T, I ′, A′)
that satisfies the following conditions:

1. The root of each initial tree in I ′ is labelled with S.
2. Every node that is not the root node of an initial tree is labelled with a symbol

other than S.
3. No auxiliary tree is adjoinable at the root node of any tree.
4. No auxiliary tree is adjoinable at the foot node of any tree.

Let v be an inner node2 labelled with a nonterminal symbol X ∈ N \ {S}
where an auxiliary tree can be adjoined. Assume that the frontier of the subtree
is σ2 ∈ T ∗ and that the frontier of the entire tree is σ1σ2σ3 (σ1, σ3 ∈ T ∗). When

2 In this context, a node is called inner node if it is labelled with a nonterminal symbol
and if it is neither the root node nor the foot node of the tree.

an auxiliary tree whose frontier is α1Xα2 (α1, α2 ∈ T ∗) is adjoined in v the
frontier of the resulting tree is σ1α1σ2α2σ3. This idea is illustrated in Figure 1.

Hence, by adjoining a tree in a node v that is labelled with X ∈ N \ {S} two
substrings will be added to the frontier, one immediately to the left and the other
immediately to the right of that part of the frontier that is dominated by v. What
substrings can be added solely depends on the nonterminal X. More precisely,
α1 ∈ T ∗ and α2 ∈ T ∗ can be added to the left and to the right, respectively, if and
only if there is a tree τ ∈ A whose frontier is α1Xα2. Therefore, the fundamental
idea for transforming a TAG into a 2-MCFG is that for X ∈ N \{S}, the 2-tuple
(α1, α2) can be derived from X if and only if there is a tree τ ∈ A whose frontier
is α1Xα2.

The transformation of a tree-adjoining grammar GTAG = (N,T, I, A) into
a 2-MCFG G2−MCFG = (N,O,F, P, S) which generates the same language as
GTAG works as follows:

1. The set of nonterminals in G2−MCFG is the same as the set of nonterminals
in GTAG. S, which is the label of the root nodes of the initial trees in I is
the start symbol in G2−MCFG. The set of tuples is set to O =

⋃2
i=1(T

∗)i.
2. For every initial tree α ∈ I do the following.

(a) Let {v1, v2, . . . , vq} be the inner nodes of α.
(b) Add the function

f : (T ∗, T ∗)q → (T ∗), [(l1, r1), (l2, r2), . . . , (lq, rq)] 7→ σ

where σ is the frontier of the tree α′ to F . α′ is computed as follows.
First, let α′ = α. Then, for each inner node vi in α′

– add li as the leftmost child to the node vi and
– add ri as the rightmost child to the node vi.

(c) For 1 ≤ i ≤ q, let B(i) be the nonterminal symbol at the node vi. Add
the rule S → f [B(1), B(2), . . . B(q)] to P .

3. For every auxiliary tree β ∈ A do the following.
(a) Let X ∈ N be the nonterminal at the root node and let {v1, v2, . . . , vq}

be the inner nodes of β.
(b) Add the function

f : (T ∗, T ∗)q → (T ∗, T ∗), [(l1, r1), (l2, r2), . . . , (lq, rq)] 7→ (σ1, σ2)

where σ1Xσ2 is the frontier of the tree β′ to F . β′ is computed as follows.
First, let β′ = β. Then, for each inner node vi in β′

– add li as the leftmost child to the node vi and
– add ri as the rightmost child to the node vi.

(c) For 1 ≤ i ≤ q, let B(i) be the nonterminal symbol at the node vi. Add
the rule X → f [B(1), B(2), . . . B(q)] to P .

4. Add θ = (ε, ε) to F . For every nonterminal X ∈ N \{S}, add the rule X → θ
to P .

– add S → f [A, B] to P
– add f : (T ∗, T ∗)× (T ∗, T ∗) → (T ∗), [(l1, r1), (l2, r2)] 7→ (l1a1r1l2a2a3r2) to F .

Fig. 2. Transformation of an initial tree into a rewriting rule.

– add S → f [B, C, D, K] to P
– add f : (T ∗, T ∗)4 → (T ∗, T ∗),

[(l1, r1), (l2, r2), (l3, r3), (l4, r4)] 7→ (l1a1r1l2a2, r2l3l4a3r4r3) to F .

Fig. 3. Transformation of an auxiliary tree into a rewriting rule.

In the second step a rewriting rule and a corresponding function are added for
each initial tree in I. Figure 2 shows how that rewriting rule and that function
are obtained from an example initial tree.

In the third step a rewriting rule and a corresponding function are added
for each auxiliary tree in A. Figure 3 shows how that rewriting rule and that
function are obtained from an example auxiliary tree.

The fourth step adds terminating rules to P . These are necessary because
adjoining is not obligatory.

4.2 LT AL 6= L2−MCF L

Since every tree adjoining language can be transformed into a 2-MCFG which
generates the same language, the set of all tree adjoining languages LTAL is a

subset of the set of all 2-MCFL’s L2−MCFL. To show that there is a 2-MCFL
L 6∈ L2−TAL a pumping lemma for tree-adjoining languages can be used.

Vijay-Shanker, Weir and Joshi have shown in [2] that the class of modified
head languages is equivalent to the class of tree-adjoining languages. Therefore,
the pumping lemma for modified head languages shown by Seki et. al in [1] is
also applicable for tree-adjoining languages.

Lemma 6. Let #a(α) denote the number of occurrences of the terminal symbol
a in the word α. Let L be a tree-adjoining language, such that for a given n ≥ 0,
there exists a word α ∈ L such that #a(α) ≥ n holds for every terminal symbol
a ∈ T , i.e. every terminal symbol a ∈ T appears at least n times in α. Then
there exists a constant M ≥ 0 that depends only on L, such that for any n ≥ 0
there exists a word z ∈ L that satisfies the following conditions:

1. For each a ∈ T , #a(z) ≥ n
2. z = u1v1w1s1u2v2w2s2u3 such that

(a) |v1s1v2s2| ≥ 1
(b) |u2| ≤ M
(c) ∀i ∈ N : u1v1w1s1u2v2w2s2u3 ∈ L

The pumping lemma for tree adjoining languages can be used to show that the
language L = {ambmcndnemfmgnhn|m,n ∈ N} is not a tree adjoining language.

Lemma 7. L = {ambmcndnemfmgnhn|m,n ∈ N} is not a tree-adjoining lan-
guage.

Proof. Assume that L = {ambmcndnemfmgnhn|m,n ∈ N} is a tree adjoin-
ing language and let M be the constant in the pumping lemma. Let z =
aqbqcrdreqfqgrhr = u1v1w1s1u2v2w2s2u3 where (q, r > M

2) and |v1s1v2s2| ≥ 1.
The condition ∀i ∈ N : u1v

i
1w1s

i
1u2v

i
2w2s

i
2 ∈ L holds only if one of the following

two conditions holds:

– v1 = aj , s1 = bj , v2 = ej , s2 = f j (1 ≤ j ≤ q), or
– v1 = cj , s1 = dj , v2 = gj , s2 = hj (1 ≤ j ≤ r).

Since q, r > M
2 holds by construction, |crdr| > M and |eqfq| > M follows.

Therefore, in both cases the condition |u2| ≤ M does not hold. This, however,
means that L is not a tree-adjoining language.

Lemma 8. L = {ambmcndnemfmgnhn|m,n ∈ N} is a 2-MCFL.

Proof. The following 2-MCFG generates L:
G = ({S, X, Y },

⋃m+1
i=1 (T ∗)i, {f, gx, gy, θ}, {S → f [X, Y], X → gx[X], X →

θ, Y → gy[Y], Y → θ}, S) where

– f [(x1, x2), (y1, y2)] = x1y1x2y2

– gx[(x1, x2)] = (ax1b, ex2f)
– gy[(y1, y2)] = (cy1d, gx2h)
– θ = (ε, ε)

The following corollary follows from Lemma 7 and Lemma 8.

Corollary 2. LTAL 6= L2−MCFL.

5 Parsing complexity of m-MCFG’s

According to Shieber, Schabes and Pereira [3], parsing can be seen as a deduc-
tive process in which inference rules are used to derive statements about the
grammatical status of strings from other such statements. This section will give
an overview of deductive parsing of MCFG’s.

The inference rules become easier, when the grammar is in the normal form
that is described in Lemma 9.

Lemma 9. For every m-MCFG G = N,O,F, P, S there exists an m-MCFG
G′ = N ′, O′, F ′, P ′, S′ such that L(G′) = L(G) and G′ satisfies the following
conditions.

1. Every terminating rule has the form A → (a), where a ∈ T is a terminal
symbol.

2. For every nonterminal symbol A ∈ N ′\{S′} and every tuple (α1, . . . , αd(A)) ∈
LG′(A) it holds that for all i (1 ≤ i ≤ d(A)), ai 6= ε, i.e. a tuple that can be
derived from a nonterminal which is not the start symbol does not contain
any empty component.

3. The start symbol S′ does not appear in the right-hand side of any rewriting
rule in P ′.

4. For every function f ∈ F ′ every component of each argument appears exactly
once in the resulting tuple, i.e. φf as defined in Definition 4 is bijective.

5. For every nonterminating rule A → f [B(1), B(2), . . . , B(q)] ∈ P ′, f is defined
as concatenation of its arguments, i.e. each constant string α(h,k) as defined
in Definition 4 is the empty string.

A proof can be found in [1].

However, unlike in the Chomsky normal form, typically it can not be achieved
that the number of nonterminals in the right-hand side of every production is
limited to two. This is the reason why the upper bound for the time needed
to decide whether or not a word is contained in the language generated by the
m-MCFG G depends on the functions contained in G and not only on m [1].

The fundamental idea for parsing of m-MCFG’s is similar to bottom-up CKY
parsing of context-free grammars. For an m-MCFG G = (N,O,F, P, S) which
is in the normal form described in Lemma 9 and a word w = w1w2w3 . . . wn

parsing works as follows.
The items of the inference rules are of the form (l1, r1, l2, r2, . . . , ld(A), rd(A), A)

and state that the tuple (wl1 . . . wr1 , wl2 . . . wr2 , . . . , wld(A) . . . wrd(A)) can be de-
rived from A ∈ N in G. The string w is generated by the grammar G if and
only if the item (1, n, S) is deducible because that item asserts that w1 . . . wn ∈
LG(S) = L(G).

If the m-MCFG is in the normal form described in Lemma 9 the terminating
rewriting rules can be realized by the following inference rule:

(i, i, T)
T → (wi)

The nonterminating rewriting rules can be realized by the following inference
rule:

(l(1,1), r(1,1), . . . , l(1,d1(f)), r(1,d1(f)), B
(1))

(l(2,1), r(2,1), . . . , l(2,d2(f)), r(2,d2(f)), B
(2))

. .

(l(a(f),1), r(a(f),1), . . . , l(a(f),da(f)(f)), r(a(f),da(f)(f)), B
(a(f)))

(λ1, ρ1, . . . , λr(f), ρr(f), A)
c

where c consists of the following four constraints (with φf and vi (1 ≤ i ≤
r(f)) as defined in Definition 4):

1. A → f [B(1), B(2), . . . , B(a(f))]
2. for 1 ≤ i ≤ r(f): λi = φf (i, 1)
3. for 1 ≤ i ≤ r(f): ρi = φf (i, vi)
4. for 1 ≤ i ≤ r(f), 1 ≤ i < vi: lφf (i,j+1) = rφf (i,j) + 1

The second constraint states that the left end of each component of the
resulting tuple must be the same as the left end of the corresponding argument
tuple component that appears leftmost in the concatenation. Similarly, the third
constraint states that the right end of each component of the resulting tuple must
be the same as the right end of the corresponding argument tuple component
that appears rightmost in the concatenation. The fourth constraint states that
if two components a and b are concatenated next to each other, yielding ab, then
the left end of b must be the right end of a plus 1.

The items in the premises of the inference rule contain 2
∑a(f)

i=1 di(f) indices.
By the fourth constraint,

∑r(f)
i=1 (vi − 1) of these indices are bound. The number

of free indices in the inference rules therefore is 2
∑a(f)

i=1 di(f) −
∑r(f)

i=1 (vi − 1),
which can be simplified as follows:

2
∑a(f)

i=1 di(f)−
∑r(f)

i=1 (vi − 1)
= 2

∑a(f)
i=1 di(f)− (−r(f) +

∑r(f)
i=1 vi)

= r(f) + 2
∑a(f)

i=1 di(f)−
∑a(f)

i=1 di(f)
= r(f) +

∑a(f)
i=1 di(f)

The second equation holds because φf is bijective.
Therefore, for an m-MCFG G = (N,O,F, P, S) which is in the normal form

described in Lemma 9 the membership problem for a word α can be decided in
O(|α|δ) where δ = maxf∈F {d|d = r(f) +

∑a(f)
i=1 di(f)}.

6 Summary

Multiple context-free grammar is a weakly context-sensitive subclass of general-
ized context-free grammar. It deals with tuples of strings and functions that are
defined as concatenation of constant strings and components of their argument

tuples . If each of those tuples contains at most m components, the grammar is
called an m-multiple context-free grammar.

The class of m-multiple context-free languages forms a hierarchy, that means
for all m ∈ N \ 0 the set of all m-multiple context-free languages Lm−MCFL is a
strict subset of the set of all (m+1)-multiple context-free languages L(m+1)−MCFL.

In addition, the set of all tree-adjoining languages LTAL is a strict subset of
the set of all 2-multiple context-free grammars L2−MCFL. Therefore, 2-multiple
context-free grammars are more expressive than tree-adjoining grammars.

Furthermore, the parsing problem for m-multiple context-free grammars can
be decided in polynomial time.

References

1. Seki, Matsumura, Fujii, Kasami: On multiple context-free grammars. TCS: Theo-
retical Computer Science 88 (1991)

2. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Tree adjoining and head wrapping. In:
Proceedings of the 11th coference on Computational linguistics, Morristown, NJ,
USA, Association for Computational Linguistics (1986) 202–207

3. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of de-
ductive parsing. Journal of Logic Programming 24(1&2) (1995) 3–36

