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Abstract. In this survey the concept of hyperedge replacement is presented as 
an elementary approach to graph and hypergraph generation. In particular, 
hyperedge replacement graph grammars are discussed as a (hyper)graph-
grammatical counterpart to context-free string grammars. Basic properties of 
the context-free graph grammar are shown, like the pumping lemma. We also 
discuss hyperedge replacement grammars as generators for string languages and 
the power of those generators. 

1   Hyperedge replacement grammars 

Graph grammars have been developed as an extension of the concept of formal 
grammars on strings to grammars on graphs. Among string grammars context-free 
grammars have proved extremely useful in practical applications and powerful 
enough to generate a wide spectrum of interesting formal languages. It is therefore not 
surprising that analogous notions (context-freeness) have been developed also for 
graph grammars. 
Hyperedge replacement is an elementary approach of graph and hypergraph rewriting.  
Hyperedge replacement is as powerful as hypernode replacement. In this survey we 
will only discuss hyperedge replacement. 
 

Definition 1 (based on [1], p.131):  

Let Γ be an alphabet of edge labels, and let Σ be an alphabet of selectors. A 
hypergraph over Γ and Σ is a tuple H = (V, E, lab, nod, ext), where V is the finite set 
of nodes, E is the finite set of edges (or hyperedges), disjoint with V, lab: E → Γ is 
the labeling function, nod is the incidence function that associates with each e ∈ E a 
partial function nod(e) : Σ → V, and ext is the external function, a partial function     
Σ → V. The type of H is type (H) = dom(ext), the domain of the external function. For 
each e ∈ E, the type of e is type(e) = dom(nod(e)). 
The components of a hypergraph H may be denoted by VH, EH, attH, labH, extH, 
respectively. Furthermore, given a set X ⊆ Γ of labels we denote by E  the set           
{e ∈ EH | labH(e) ∈ X}. 
The number of nodes plus the number of hyperedges of H is called the size of H, 
denoted by |H|. 
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Definition 2 (from on [1],[2]): 

Let H, K ∈ HGRΓ,Σ be disjoint hypergraphs, and let e ∈ EH with type(e) = type(K). 
Let (H - e) + K be the result of removing e from H and adding K, i.e., (H – e) + K = 
(V, E, lab, nod, ext) where V = VH ∪ VK, E = (EH – {e}) ∪ EK, lab = labH ∪ labK 
restricted to E, nod = nodH ∪ nodK restricted to E, and ext = extH. The substitution of 
K for e in H is the hypergraph H[e/K] = ((H – e) + K)/R where R = {(nodH(e,s), 
extK(s)) | s ∈ type(e)}. Another notation for H[e/K] is H ⊗ K. 

Example: 

Let us consider hypergraphs with multiple edges. We can replace an hyperedge X of a 
hypergraph G with another hypergraph H by removing X from G, adding H disjointly, 
and fusing the q-node of H with the source of X and the r-node of H with the target of 
X. The resulting graph is denoted by G[X/H]: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The replacement of an edge 
 
 
Hyperedge replacement enjoys some nice properties well-known from other rule-
based formalisms. First of all, we have a sequentialization and parallelization 
property. It does not matter whether we replace some hyperedges of a hypergraph one 
after another, or simultaneously. The second property is confluence. Hyperedges of a 
hypergraph can be replaced in any order, without affecting the result. (In fact this 
follows already from the sequentialization and parallelization property. If we replace 
hyperedges simultaneously there is no order among them at all.) The last and maybe 
most important property is associativity. If a hyperedge is replaced and afterwards a 
hyperedge of the new part is replaced with a third hypergraph, the same is obtained by 
first replacing the latter hyperedge and then replacing the first one with the result. 
These properties are stated formally below. 



Sequentialization and parallelization: Let H be a hypergraph with pairwise distinct 
e1, …,en ∈ EH and let Hi be a hypergraph with type(Hi) = typeH(ei) for i = 1, …,n. 
Then 
 

H[e1/H1, …, en/Hn] = H[e1/H1]…[en/Hn]. 
 

Confluence: Let H be a hypergraph with distinct e1, e2 ∈ EH and let Hi be a 
hypergraph with type (Hi) = typeH(ei) for i ∈ {1,2}. Then 
 

H[e1/H1] [e2/H2] = H[e2/H2] [e1/H1]. 
 

Associativity: Let H, H1, H2 be hypergraphs with e1 ∈ EH and e2∈ EH, such that typeH 
(e1) = type(H1) and typeH (e2) = type(H2). Then 
 

H[e1/H1][e2/H2] = H[e1/H1 [e2/H2]]. 
 
 
We have now seen how hyperedge replacement on hypergraphs works. Now 
grammars, how base on this formalism, will be introduced. In this case we define a 
simple notation for terminal hyperedges with only two tentacles. These edges can be 
equivalent written as directed edges. The direction of the edges follows from the 
labelling of the tentacles. 
 

Definition 3 (from [1], p.139): 

A hyperedge replacement grammar (or HR grammar) is a tuple HGR = (N, Τ, Σ, P, 
S), where N is the Σ – typed alphabet of nonterminal edge labels. A Σ – typed 
alphabet is an alphabet N together with a mapping type: N → P(Σ), the set of subsets 
of Σ. T is the alphabet of terminal edge labels (disjoint with N), Σ is the alphabet of 
selectors, P is the finite set of productions, and S ∈ N is the initial nonterminal. Every 
production is of the form X → D with X ∈ N and D ∈ HGRN∪Τ,Σ, such that type(X) = 
type (D) and, for every e ∈ ED with labD(e) ∈ N, type(e) = type(labD(e)). 
A hyperedge replacement grammar HGR = (N, Τ, Σ, P, S) is said to be of order r if 
for all (A,R) ∈ P, type(R) ≤ r. A hyperedge replacement language L is of order r if 
there is a hyperedge replacement grammar HRG of order r with L(HGR) = L. 
 



Example 

Let us consider an HR grammar G3 such that L(G3) is the set of all “triple stars”, of 
the form shown in figure 2 (where edge labels are dropped). 
 
 
 
 
 
 
 

Figure 2: A triple star 
 
Thus a triple star is the disjoint union of three copies of the same star. G3 = (N, T, Σ, 
P, S) with N = {S, X}, T = {*}, Σ = {p, q, r}, type(S) = ∅, type(X) = {p, q, r}, and P 
contains the three production shown in figure 3 (where the edge label * of the three 
ordinary edges is dropped).  
 
 
 
 
 
 
 
 

Figure 3: Productions of HR grammar G3, generating triple starts 
 
A triple star with 3n edges is generated by starting with the first production, applying 
the second production n times (each time adding one edge to each star), and finally 
removing the nonterminal edge by the third production. Note that from the point of 
view of context-free (string) grammar, L(G3) is rather noncontext-free: it is similar to 
the language {anbncn | n ≥ 0} 
 

2   Context-freeness lemma 

We have see, how hyperedge replacement grammars work. Now we want to show that 
hyperedge replacement grammars are context-free. Hypergraph context-freeness is 
not the same as string context-freeness. Hypergraph grammars can generate string 
languages which are more powerful then context-free string languages. But this will 
be discussed later in Chapter 4. 



Theorem 4 - Context-free lemma (from [1], p.144): 

Let G = (N, T, Σ, P, S) be an HR grammar. Let H and K be hypergraphs in HGRN∪Τ,Σ 
and HGRT,Σ, respectively, let e1, …,en be all the nonterminal edges of H, and let ei be 
labeled by Xi in H. Then H ⇒* K if and only if there exist hypergraphs K1, ..., Kn in 
HGRT,Σ (disjoint with H) such that K = H[e1/K1]… [en/Kn] and sn(Xi, ei) ⇒ * Ki for all 
1 ≤ i ≤ n. Moreover, the length of the derivation H ⇒* K equals the sum of the 
lengths of the derivations sn(Xi, ei) ⇒* Ki. 

Proof: 
We prove the equivalence by induction on the length of the derivation H ⇒* K, and 
on the sum of the lengths of the derivations sn(Xi, ei) ⇒* Ki. 
(Only if) Let H ⇒* K. If the derivation has length 0, and so K = H, then n = 0 and 
there is nothing to prove. Otherwise, because of confluence of substitution, we may 
assume w.l.o.g. that in the first step of the derivation a production copy p is applied to 
edge en, say p : Xn → D. Thus, H ⇒ H[en/D] ⇒* K. Let en+1, …, en+d be all 
nonterminal edges of D, with labels Xn+1, ..., Xn+d. By induction, there exist 
hypergraphs Ki, for 1 ≤ i ≤ n+d and i ≠ n, such that sn(Xi, ei) ⇒* Ki and 
 

K = H[en/D] [e1/K1]… [en-1/Kn-1] [en+1/Kn+1]… [en+d/Kn+d]. 
 
Define Kn = D[en+1/Kn+1]…[en+d/Kn+d]. By induction (in the other direction) D ⇒* Kn, 
and hence (using p) sn(Xn, en) ⇒ D ⇒* Kn. By confluence of substitution (n – 1 
times), 
 

K = H[e1/K1]… [en-1/Kn-1] [en/D] [en+1/Kn+1]…[en+d/Kn+d], 
 
and by associativity of substitution (d times) this is equal to  
 

H[e1/K1]… [en-1/Kn-1] [en/D[en+1/Kn+1]… [en+d/Kn+d]]  
= H[e1/K1]… [en-1/Kn-1][en/Kn]. 

 
(If) This part of the proof is analogous to the one above. Consider K = 
H[e1/K1]…[en/Kn] with sn(Xi, ei) ⇒* Ki. If all these derivations have length 0, then n 
= 0 and K = H. Otherwise, by confluence, we may assume that the last derivation has 
positive length. Let sn(Xn, en) ⇒ D ⇒* Kn be the first step of the last derivation, with 
production copy p : Xn → D. By induction (in the other direction), there exist Ki, for 
n+1 ≤ i ≤ n+d, such that Kn = D[en+1/Kn+1]…[en+d/Kn+d] and sn(Xi, ei) ⇒* Ki. By the 
calculation above (in reverse),  
 

K = H[en/D] [e1/K1]… [en-1/Kn-1] [en+1/Kn+1]… [en+d/Kn+d]. 
 
Hence, by induction, H[en/D] ⇒* K, and so (using p) H ⇒ H[en/D] ⇒* K. 



3   Pumping lemma 

After seeing what context-freeness for hypergraph grammars means, it would be good 
to have a possibility to check whether a hypergraph grammar is context-free or not. 
Luckily for us exists also a pumping lemma for hypergraph grammars. This pumping 
lemma is similar to the pumping lemma for regular string languages. (see figure 4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: principle of pumping lemma for hypergraph grammars.  

 
 
Before we can start with the pumping lemma for context-free hypergraph grammars, 
we must first introduce some definitions. 

Definition 5 (from [2], p.19) 

The set TREE(P) of derivation trees over P is recursively defined as follows: 
• N ⊆ TREE(P) with root(A) = A and result(A) = A• for A ∈ N 
• For every production (A,R) ∈ P and every mapping branch E   → TREE(P) 

such that we have type(e) = type (root(branch(e))) for all e ∈ E   , the triple 
t(A,R,branch) is in TREE(P). 
Furthermore we let root(t) = A and result(t) = R[result(branch(e))] for all e ∈ E 

 
One should notice that a derivation tree contains nonterminal labels A ∈ N as subtrees 
if and only if its result is not terminal.  
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Definition 6 (from [2], p.22/23): 

A hypergraph H is substantial if VH ≠ extH or |EH| > 1. A hyperedge replacement 
grammar each of whose productions has a substantial right-hand side is growing. A 
growing hyperedge replacement grammar generates only substantial hypergraphs. 
H is said X-handled if there is a unique type(X)-edge e ∈ EH with label X ∈ ΣH. In 
this case, e is called the X-handle of H. 
 

Theorem 7 - Pumping lemma (based on [2], p.23): 

Let L be some hyperedge replacement language of order r. Then there exists constants 
p and q such that the following is true: For every hypergraph H in L with |H| > p there 
are an X-handled hypergraph FIRST, a substantial X-handled type(X)-hypergraph 
LINK, and a type(X)-hypergraph LAST for some X ∈ ΣH with H = FIRST ⊗ LINK ⊗ 
LAST, |Link ⊗ Last | ≤ q and type(LINK) ≤ r, such that FIRST ⊗ LINKk ⊗ LAST ∈ 
L for all k ∈ ℕ 

Proof: 
Let HRG= (N, Τ, Σ, P, S) ∈ HR grammar with L(HGR) = L and n the number of 
nonterminals. Since there are only finitely many one-substantial hypergraphs in L we 
may assume HGR is growing. Let max be the size of the largest right-hand side of 
HRG. Let t ∈ TREE(P) with root(t) = S and H = result(t) a hypergraph. If |H| > maxn, 
then contains a path from the root to to a leaf longer than n such that one of the 
nonterminals, say X, occurs twice. In other words, t has a subtree t’ with root X which 
has a proper subtree t’’ with root X. Choose LAST = result(t’’), LINK = result(t’ - t’’) 
and FIRST = result(t – t’) where t’ – t’’ is obtained from t’ by removing the subtree t’’ 
and t – t’ by removing t’ from t. Then, FIRST and LINK are X-handled, LINK and 
LAST are type(X)-hypergraphs, and H = FIRST ⊗ LINK ⊗ LAST. Since HGR is 
growing, LINK must be substantial. As in the case of pumping lemma for regular 
string languages one can now show FIRST ⊗ LINKk ⊗ LAST ∈ L for all k ∈ ℕ 



4   String-generating hyperedge replacement grammars 

Now, how already hinted in Chapter 2, we will see how hypergraph grammars can 
generate string languages. These string languages are more powerful then context-free 
string languages. In fact, string-generating hyperedge replacement grammars are as 
powerful as Multiple Context-Free Grammars. 
 
 
 
 
 
 
 
 
 

Figure 5: Productions of the hyperedge replacement grammar AnBnCn 

Example 

Let us consider the hyperedge replacement grammar AnBnCn = ({S,A}, {a, b, c}, P, S) 
where P consists of the production depicted in figure 5. Beginning with S, the 
application of the second production yields the string graph (abc). By applying the 
first production, then applying the third production n-1 times, followed by an 
application of the fourth production, we obtain the derivation in Figure 4. 
Furthermore, the only hypergraphs in L(AnBnCn) are string graphs of the form (anbncn) 
for n ≥ 1. Thus, L(AnBnCn) = {(anbncn) | n ≥ 1}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: A derivation in AnBnCn 



Theorem 8: 

Let L2k+2 be the languages {a1
n a2

n…a2k+1
n a2k+2

n | n ≥ 1}, where a1, …, a2k+2 are 
different symbols. Then L2k+2 is in STR(HR2k+2) but not in STR(HR2k+1), for all k ≥ 1. 
STR(HRi) are all languages generated by an hypergraph grammars at which each 
hyperedge has at most i tentacles. 

Proof: 
It is obvious that Hi ⊆ Hi+1, i ≥ 2, because you can simply add an extra tentacle to 
each nonterminal hyperedge. In the last substitution the node of the extra tentacle can 
be consolidated with any other node connected by the same hyperedge. In this case 
we get the same derivation. This implies STR(HRi) ⊆ STR(HRi+1). We now want to 
show that STR(HR2k+1) ≠ STR(HR2k+2). 
The string-graph language L2k+2 = {a1

n…a2k+2
 n | n∈ ℕ} can be generated by the 

hyperedge replacement grammar of order 2k+2, for every k ≥ 1. The construction is a 
straightforward generalization of the one presented in previous example. Thus, L2k+2 
is a string-graph language of order 2k+2. Making use of the pumping lemma, it can be 
shown that L2k+2 is no string-graph language of order 2k+1. To see this, assume L2k+2 
is a language of order 2k+1. Let FIRST, LINK, and LAST be as in the pumping 
lemma, for some sufficiently large member of L2k+2. Then LINK has type less than 
2k+2 and is substantial. The latter implies ELINK ≠ 0 because |VH| = |EH| + 1 for all H 
∈ L2k+2. 
Since FIRST ⊗ LINK ⊗ LAST is a string graph the connected components of LINK 
must be paths whose first and last nodes are in [extLINK] ∪ [attLINK(e)], where e is the 
X-handle of LINK. Hence, the number of connected components of LINK which 
contain at least one edge is at most k. Moreover, none of these connected components 
can contain edges with different labels, since otherwise pumping obviously yields 
graphs not in L2k+2. But then LINK lacks at least one of the labels, so FIRST ⊗ LINK 
⊗ LAST ∈ L implies FIRST ⊗ LAST ∉ L because ELINK ≠ ∅. This proofs that 
STR(HR2k+1) ⊂ STR(HR2k+2). 
 

Theorem 9: 

STR(HR2) is the class of context-free languages.  

Proof: 
L is context-free ⇒ L ∈ STR(HR2). 
Because L is context-free, there exists a grammar in Chomsky normal form that 
generates L. In Chomsky normal form there exists only production of the following 
types: 
 
 1) A → BC or  2) A → a or 3) S → ε 
 
These productions can equivalent be encoded in a hypergraph grammar (see figure 6). 



 
 
 
 
 
 

Figure 6: Production of hypergraph grammar in Chomsky normal form 
 
The proof for the direction L ∈ STR(HR2) ⇒ L is context-free works analogous as 
described above. Because we know that each hyperedge in the grammar for L can 
only have two tentacles. In this case each production can only produce hyperedges in 
a series. These series can be easy encoded as context-free grammar. 
 

Conclusion 

In this survey we outlined the theory of hyperedge replacement as a grammatical 
device for the generation of hypergraph and string languages. Hypergraph 
replacement grammars are context-free and in this case we have seen a possibility to 
check if it is possible to model a language as hypergraph grammar (pumping lemma). 
At all, hypergraph replacement grammars are a nice theoretical model, but they are 
not use in practise, because in difference to context-free string grammars the 
membership problem turns out to be NP-complete. Only restricted subclasses lead to 
polynomial membership algorithms. 
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