
(Bi-)Lexicalized Context-Free Grammars

Christoph Dörr

University of Saarbrücken
Chris.Doerr@gmx.de

Abstract

Several recent stochastic parsers use bilexicalized grammars, where each word 
idiosyncratically  prefers  particular  complements  with  particular  head  words. 
These parsers' complexity is O(n5). For two different bilexicalized formalisms, I 
present  an  algorithm improving  this  upper  bound  to  O(n4).  For  a  common 
special case, even this can be reduced to O(n3). I'll present a O(n3) algorithm 
with an improved grammar constant.

1. Introduction

Lexicalized  grammars  specify syntactic  facts  about  each  word  of  a  language  -  in 
particular  the type of  arguments that  a word can or  must take.  Early mechanisms 
satisfying  this  requirement  utilize  categorical  grammar  (Bar-Hillel,  1953)  and 
subcategorization frames (Chomsky, 1965). Other lexicalized formalisms are (Schabes 
et al., 1988; Mel'cuk 1988, Pollard and Sag, 1994).  
But instead of just specifying a possible argument for a word, especially for natural 
language, it is advantageous to specify possible head words for those arguments. For 
instance, “solved” requires a NP object. But some of the NP objects are semantically 
or  lexically  more  appropriate  here  then  others,  and  the  appropriateness  depends 
largely on the NP's head (e.g. “puzzle”). The acceptability of “Nora solved a puzzle” 
then depends on the grammar writer's assessment whether a puzzle can be solved. 
Grammars that  record such facts are called “bilexical”.  Thus,  a  bilexical  grammar 
makes many stipulations about compatibility of particular pairs of words in particular 
roles. Formalisms describing lexical grammars, as well as such describing bilexical 
grammars are of high theoretical and practical interest to the computational linguistics 
community. Using probabilistic or weighted versions of bilexical grammars, recent 
real-world parsers have improved state-of-the-art parsing accuracy (Alshawi, 1996; 
Eisner, 1996; Charniak, 1997; Collins, 1997). All parsers have in common that soft 
selectional  restrictions  are  used  to  solve  ambiguities.1 But  even  with  excessive 

1 Other relevant parsers simultaneously consider two or more words that are not necessarily in 
a dependency relationship (Lafferty et al., 1992; Magermann, 1995) 

mailto:Chris.Doerr@gmx.de


2       Lexicalized Context-Free Grammars

pruning, all above algorithms run in time O(n5). The reason is that bilexical grammars 
are huge. Notice that the part of the grammar relevant to an input string of size n has 
size O(n2) in practice! However, in this paper I show that it's possible to improve the 
complexity 

• for bilexicalized context-free grammars to O(n4).
• for head-automaton grammars to O(n4).
• for  a  common  special  case  of  these  grammars  to  O(n3),  improving  the 

grammar constant of the O(n3) algorithm presented by (Eisner, 1997)

The  presented  algorithms  propose  new  kinds  of  subderivations  that  are  not 
constituents  and  are  assembled  into full  constituents  using dynamic programming. 
This paper is based on (Eisner and Satta, 1999).

2. Notation of context-free grammars and naming conventions

I  assume that  the  reader  is  familiar  with context-free  grammars.  In  this  paper  I'll 
follow the notation that is proposed by (Harrison, 1978; Hopcroft and Ullman, 1979). 
A CFG is a  4-tuple  G = (VN,VT,P,S),  where  VN an VT are  finite,  disjoint  sets  of 
nonterminal  and  terminal  symbols,  respectively,  and  
S∈VN. P is a set of productions, where each production has the form A → α,  where A
∈VN,  α∈(VN∪VT)*.  A  grammar  is  in  Chomsky  normal  form  (CNF),  if  each 
production in P has the form A → BC or A → a, for A,B,C∈VN and a∈VT.2 
Throughout this paper I'll use the following naming conventions:

• a,b,c,d denote symbols in VT

• A,B,C denote symbols in VN

• w,x,y denote strings in VT*
• α,β,γ,... denote strings in (VN∪VT)*
• w =  d1d2....dn denotes  the  input  string  given  to  the  parser  (together  

    with an CFG G)
• h,i,j,k  are  positive  integers,  assumed to  be  ≤ n  when we use  them as

    indices into w
• wi,j denotes the input substring di...dj (wi,j = ε if i > j)

Finally we define the derivation relation  ⇒, its transitive and reflexive closure  ⇒* 
and the language L(G) generated by an CFG G as usual. We write αβδ ⇒∗ αγβ for a 
derivation in which only β is rewritten.

2 (Notice that  S→ε is  in  CNF, if S does  not  appear on the right  hand side of any of the 
productions. But S→ε is not allowed in our bilexicalized CFG, as for every rule in P, each 
nonterminal must be lexicalized by a head word.)



Lexicalized Context-Free Grammars      3

3. Probabilistic Context-Free Grammars

To get an better idea of the advantages of BCFGs we first have a look at PCFGs, 
recently the formalism of choice for many researchers in computational linguistics.
A PCFG is a CFG as defined before, which, in addition, defines a probability function 
F that assigns a probability to each production in P, such that Σα F(A → α) = 1.

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → astronomers 0.1
VP → V NP 0.64 NP → eyes 0.8
VP → VP PP 0.36 NP → telescopes 0.1
P → with 1.0 NP → saw 0.04
V → saw 1.0 NP → stars 0.18

Fig.1: The productions and probabilities for the sample PCFG

I.e. the sum of the probabilities of all productions containing A as the parent is 1. 
With these probabilities, the probability of a parse is the product of the probabilities 
of  the used  productions.  Consider  the  simple  PCFG in  Fig.1 and  the input  string 
“Astronomers saw stars with eyes”. Fig.2 and Fig.3 give two different parse trees with 
the probability of the corresponding parse. Although one parse is semantically much 
better then the other, both parses have almost the same probability and thus there is no 
way for us to decide which one to prefer. The crucial point in the derivation is the 
question which of the rules VP  → VP PP and NP  → NP PP is better. This cannot 
generally be said for these rules. What we would need here to solve the ambiguity is 
the possibility to see the head words of the prepositional phrase (PP),  of the verb 
phrase (VP) and of the noun phrase (NP),  i.e.  the words the currently parsed sub-
strings refer to. This would allow us to see that a VP headed by see is more likely to 
be modified by a PP headed by eyes then by a NP headed by stars. And this is exactly 
what bilexicalized grammars do! Now, as we have a better intuition of the usefulness 
of  BCFGs,  it  is  convenient  to  consider  CFGs instead  of  PCFGs in  the  upcoming 
chapters. CFGs are more lightweight and all results can straightforwardly be applied 
to PCFGs.



4       Lexicalized Context-Free Grammars

Fig.2: The first possible parse

Fig.3: The second possible parse

4. Bilexical context-free grammars

After discussing the motivation for bilexicalized grammars, I'll define a formalism that 
satisfies the requirements established in §3.  That is,  a formalism that  captures the 
dependencies  among  pairs  of  words  in  VT.  Let  G  be  a  bilexical  CFG with  
G = {VN,VT,P,T[$]}. Let VD be a set of “delexicalized nonterminals”, i.e. “traditional” 
nonterminals as defined in §2. Then VN = {A[a] : A∈VD, a∈VT}. As the start symbol 
T[$] is an element of VN, it is necessarily a lexicalized “traditional” nonterminal too. 
Its lexical head $ is a terminal appearing in every sentence of L(G). In most cases it is 
convenient to consider the language L'(G) = {x : x$∈L(G)}. Finally, each production 



Lexicalized Context-Free Grammars      5

in P has the form  

• A[a] → B[b] C[a]
• A[a] → C[a] B[b]
• A[a] → a

In each rule the lexical head a on the left is inherited from the constituent's head child 
in  the  parse  tree.  With  such  a  grammar  we're  able  to  encode  lexically  specific 
preferences  as  required  in  §2.  Let's  observe  this  formalism at  work.  Consider  the 
example with the astronomers above. VT, VN and T[$] are defined straightforwardly. 
P contains the following productions.

S[saw] → NP[astronomers] VP[saw]
VP[saw] → V[saw] NP[stars]
PP[eyes] → P[with] NP[eyes]
VP[saw] → VP[saw] PP[eyes]
NP[stars] → NP[stars] PP[eyes]

As can easily be seen, in a bilexicalized CFG such as this, we can selectively rule out 
parses where stars is modified by a PP with head word eyes by simply leaving out the 
rule  NP[stars]  →  NP[stars]  PP[eyes]  (or  giving the  rule  a  lower  probability  in  a 
bilexicalized  PCFG). Unfortunately this  increased  expressiveness  has  a  backdraw: 
such  grammars  are  huge.  Consider  a  CKY-based  parser  with  the  running  time
O(n³ * |P|) (Younger, 1967; Aho and Ullman, 1972). In the worst case, for CFGs we 
have |P| =  |VN|  and  for  BCFGs even |P| =  |VD|³  * |VT|².  Thus  |P| depends  on  the 
vocabulary size, which is very large for natural languages. Observing that there are at 
most n words of the whole vocabulary relevant for a given input string w = d1d2...dn, 
we can rewrite |P| = |VD|³ * |VT|² to |P| =  |VD|³ * min(|VT|, n)² and finally, as in practical 
applications, n << VT, |P| = |VD|³ * n². With these considerations, the running time of 
the parser is O(n³ * |VN|³) for CFGs and O(n³ * |VD|³ * n²) = O(n5 * |VD|³) for BCFGs. 
Thus,  parsing  is  a  factor  of  n²  slower  for  BCFG then for  CFG! To  get  a  better 
understanding for the improved algorithm I'll give in the next section, we'll have a 
closer look at the source of this. The standard CKY algorithm contains derivations of 
the following form: 

Fig.4: The “standard” derivation for CKY for CFGs



6       Lexicalized Context-Free Grammars

We have three variables ranging over n that can be combined in n³ different ways. 
And indeed, this is the n³ we find in the worst case running time for standard CKY for 
CFGs. But for BCFGs we have derivations of the form in Fig.5, reflecting the fact that 
we have for each production two additional  variables to consider,  namely the two 
lexical   heads.  And  again,  each  variable  ranges  over  n,  resulting  in  n5 different 
combinations.  Obviously  the  key  to  an  improved  running  time  is  decreasing  the 
number of variables considered at once. And indeed, this is possible, as I'll show in 
the next sections.

Fig.5: The “standard derivation” for CKY for BCFG

5. Parsing BCFGs in O(n4)

Take a look at Fig.5. What C can be combined with a given B? To find a suitable C, 
you have to vary the width, i.e. the “end-point” k, and the lexical head h'. If you vary k 
and h' at the same time, you get n² possibilities resulting in O(n²) running time. The 
idea behind the O(n4) algorithm is to split this step up into two single steps. First 
combine  B  just  with all  possible  head  words  h' for  C.  This  is  legal  if  there's  a 
production  in  P  where  h'  (on  the  right  side)  is  a  parent  of  h (on  the  left  side),
i.e. A[h] → B[h] C[h']. This results in a structure that categorical grammar would call 
an A/C. This is an A missing its head child on the right, a C headed at position h'. The 
derivation for this step is shown in Fig.6. 



Lexicalized Context-Free Grammars      7

     Fig. 6: The first step of the algorithm sketch. Combining B with  
the disembodied C headed at h'

In the next step we vary k, i.e. the width of C, where the C is headed at h' and starts at 
j+1. Each of the resulting C's can be combined with the A/C to get the “full” A. This 
step is shown in Fig.7.

Fig. 7: The second step of the algorithm sketch: combining
 A/C with the body of C headed at h'.

And again we have only 4 variables we range over, resulting in a running time of 
O(n4).  And the combination of these two steps runs in time O(2*n4) = O(n4).  The 
formal definition of the algorithm is given in the appendix from (Eisner and Satta, 
1999)



8       Lexicalized Context-Free Grammars

6. Head automaton grammar

It's even possible to improve the running time to O(n³) for a common special case of 
BCFGs, so called split grammars (see §7). But to understand what split grammars are, 
it  is  convenient  to  define  another  formalisms,  namely  head  automaton  grammars 
(Alshawi, 1996), that allows an intuitive understanding of split grammars, and show 
that it's possible to parse a n-length input string for the general case of HAGs in O(n4). 
After that I'll show that it's easy to transform a HAG into a BCFG that constructs the 
same language. 

A Head Automaton Grammar is a function that defines a Head Automaton (HA) Ha 

for each element a of its finite domain, i.e. VT. An example should give us a first idea 
how a Haa works:

 “[Good old Peggy]solved[the puzzle][with her teeth].”

The words in braces are already “processed” by their HAs. Notice that the input for 
Hpuzzle was “the” on the left. “Her teeth” was already consumed by Hwith. We'll only 
observe the HA for “solved” at work (Note that here the preposition is the head of a 
PP, contrary to what we did in the introductory example for PCFG above, where the 
noun was the head of the PP.):

 [Peggy] solved [puzzle] [with] (state = V)  
 [Peggy] solved [with] (state = VP)  
 [Peggy] solved (state = VP)  

 solved (state = S;halt)

Let D = {→,←} and $∈VT be a special start symbol. Then, for every a∈VT,
    Ha = {Qa,VT,δa,Ia,Fa} where 

• Qa is a finite set of states
• Ia, Fa ⊆ Qa are sets of initial and final states, respectively
• δa is a transition function mapping Qa x VT x D to 2Qa, the power set of Qa          

You can imagine a HA as an automaton Ha, whose head points between two words of 
the input string. Thus a HA is an acceptor for a pair of strings 〈zl,zr〉∈VT

* x VT
*. For 

instance, if b is the leftmost symbol of zr, the automaton is in state q and q'∈δα(q,b,→), 
HA can move from q to q', removing  b from the left end of  zr. The input string is 
accepted if a state q''∈Fa is reached when zr,zl = ε.                                                       
Τhe derivation relation ╞a is defined for each head automaton Ha (similar to ”⇒“ for 
CFG) as a binary relation on Qa x VT

* x VT
* as follows:

    For every q∈Qa, x,y∈VT
*, b∈VT, d∈D and q'∈δa(q,b,d)                                            

• (q, xb, y) N╞a (q', x, y) if d = ←
• (q, x, by) ╞a (q', x, y) if d = →                                                                  



Lexicalized Context-Free Grammars      9

The reflexive, transitive closure of ╞a is written ╞a
*. The language generated by Ha is 

the set
L(Ha) = {〈zl, zr〉   |   (q, zl, zr) ╞a

* (r, ε, ε), q∈Ia, r∈Fa}

The language L$ generated by the entire grammar H is now defined as follows. 
   Given H, we define La for all a∈VT to be the least set such that if 〈x,y〉∈L(Ha) and
    x'∈Lx, y'∈Ly, then x'ay'∈La.

To conclude the formal definition of HAGs, let's see a simple one in practice.  I'll 
(informally)  define  a  HAG H that  generates  only the  two sentences  “The woman 
sleeps soundly $” and “A woman sleeps soundly $” and show how the language of H 
is built up. H contains the following HAs:

• Hthe:δthe= ∅, L(Hthe) = {〈ε, ε〉}, Lthe = {the}
• Ha: δa= ∅, L(Ha) = {〈ε, ε〉}, La   = {a}
• Hwoman: δwoman= {(q, the, ←, q')}, L(Hwoman) = {〈the,ε〉,〈a,ε〉},

Lwoman= {the woman, a woman}
• Hsoundly: δsoundly= ∅, L(Hsoundly) = {〈ε, ε〉}, Lsoundly = {soundly}
• Hsleeps: δsleeps={(q,woman,←,q'),(q',soundly,→,q'')}, L(Hsleeps) = {〈woman,soundly〉} 

Lsleeps = {the woman sleeps soundly, a woman sleeps soundly}
• H$: δ$ = {(q, sleeps, ←, q')}, L(H$) = {〈sleeps,ε〉},

L$ = {the woman sleeps soundly $, a woman sleeps soundly $}

Now I'll give a simple algorithm transforming a HAG H into a BCFG G generating the 
same language. Even more, the BCFG preserves derivation ambiguities. I.e. if there is 
more than one derivation for an input string, then there are equally many different 
derivations for this input string in the BCFG. If not stated otherwise, variables have 
the same meaning as above.
    Let VD be an arbitrary set of size t = max{|Qa| : a∈VT}, and for each a, define an 
arbitrary injection fa : Qa → VD. Now G = (VN, VT, P, T[$]) is constructed as follows:

(i) VN = {A[a] : A∈VD, a∈VT} as usual for BCFG (see §4)
(ii) P is the set of productions having one of the following forms, where a,b∈VT:

• A[a]  →  B[b] C[a],  where A = fa(r),  B = fb(q'),  C = fa(q)  for some q'∈Ib,
  q∈Qa, r∈δa(q,b,←)

• A[a]  →  C[a] B[b],  where A = fa(r),  B = fb(q'),  C = fa(q) for some q'∈Ib,
  q∈Qa, r∈δa(q,b,→)

• A[a] → a, where A = fa(q) for some q∈Fa

(iii) T = f$(q), where we assume w.l.o.g that I$ is a singleton set {q}

To show that G and H generate the same languages it would be necessary to give a 
formal  proof  that  they  admit  isomorphic  derivations.  But  as  this  is  neither 
straightforward nor needed for the understanding of the further discussion, this proof 
is omitted here and we just observe that if 〈x,y〉 = 〈b1b2...bj,bj+1...bk〉 ∈ L(Ha) then 



10       Lexicalized Context-Free Grammars

A[a] ⇒* B1[b1]...Bj[bj] a Bj+1[bj+1]...Bk[bk], for any A,B1,...,Bk that map to initial states 
in Ha, Hb1,..., Hbk, respectively. This means that a HA can consume words adjacent to it 
on either side, but first these words must consume  their dependents (with the HAs 
defined for these words in H).
A special case are split head automatons. A head automaton Ha is called split if it has 
no states that can be entered on a ← transition and exited on a → transition. Such a 
HA accepts the input string  〈x,y〉  by consuming all its right dependents first before 
consuming the left dependents. After reading y, the automaton is said to be in a flip 
state. A flip state allows entry on a  → transition and that either allows exit on a  ← 
transition or is an final state. Obviously a split HA allows no cycles. We are interested 
in HAG that only consist of split HA. Such a “split HAG” corresponds to a BCFG in 
which any derivation A[a]  ⇒* xay has the form A[a]  ⇒* xB[a]  ⇒* xay. HAs with 
cycles are only necessary for formal languages of the form {〈bn,  cn〉 : n≥0}, where 
word  a takes  2n  dependents.  According  to  (Eisner  and  Satta,  1999),  for  natural 
language such a requirement is never needed (indeed, this is an informal claim). To 
conclude this chapter I follow (Eisner and Satta, 1999) in claiming that each HAG for 
natural languages can be transformed to a split HAG. This is important, as we'll see in 
§9.

7. Expressiveness of (split) bCFG

Let's have a closer look at how the expressiveness of (split) BCFGs and of CFGs are 
related.

• BCFGs are strongly equivalent with CFGs.  
Proof idea: Let the CFG be in CNF. For each a∈VT add a as the head to each 
nonterminal in each rule, e.g. A → B C  =>  A[a] → B[a] C[a].

• Split BCFGs are weakly equivalent with general BCFGs.
Proof idea: Given a BCFG, modify each production to specify the head of the 
left child as the lexical head. In the resulting grammar all dependents of a 
head are on its right. Thus the resulting grammar is split.  Indeed, the new 
split grammar generates the same tree structures but different dependency 
structures as the given BCFG. I.e. the generated trees only differ in the labels 
of the nodes.

8. Split HAG and BCFG in time O(n³)

I'll now give an algorithm that parses split HAGs (and hence BCFGs; see §6) in time 
O(n³)  (Eisner  and  Satta,  1999),  improving  the  grammar  constant  of  the  O(n³) 
algorithm presented in (Eisner, 1997). The reason why we're that interested in split 
grammars is that such grammars allow derivation rules as shown in Fig.8.



Lexicalized Context-Free Grammars      11

    Fig. 8: Split grammars allow separate, simultaneous  
            parsing of the left and right dependents 

This rule says, that we can combine the left and right body of A[h], after we have 
processed them separately, to get an "full" A[h]. This kind of derivation rule is crucial 
for our improved algorithm that is based on the same idea then the algorithm in §4. 
But this time, we split the varying of k, the end-point of C, and j, the end-point of B, 
also representing the midpoint between B and C. First, we vary j. To exclude k from 
this step, we make use of the derivation rule in Fig.8 and combine an B just with the 
left body of C. This results in an A that is missing the right body of C, headed at h' and 
of arbitrary width. Hence, we range over the 4 variables h, h', i and j, which needs 
O(n4) time. The derivation rule for this step is given in Fig.9.

        Fig. 9: First step: Combining B only with the left half of C[h']

In the second step we construct the "right-body" Cs fulfilling the above requirements 
to merge it with the "incomplete" A to a "full" A headed at h. To do so, we have to 
range over the 4 variables h, h', i and k. Again this needs O(n4) time resulting in an 
overall running time of O(2n4) = O(n4).  The derivation rule for the second step is 
given in Fig.10.



12       Lexicalized Context-Free Grammars

  Fig. 10: The second step: Merging the A missing the  
 right body of C[h'] with the matching “right body” C[h']

To get down to O(n³) we apply this "trick" not only to the right body of C, but also to 
the left body of B. This results in an "right-body" A headed at h. Such As are then 
combined with their "left-body" A counterpart to the "full" A in an additional step. 
This step just  needs constant time and thus does not affect  the running time. And 
because we even don't care for the starting-point of B "i" now, we only consider a 
maximum of three variables, namely h, h' and j, at once, allowing us to run this part of 
the  algorithm (the  part  that  brought  us  to  O(n5)))  in time  O(n³)!  Fig.11  shows a 
derivation tree that illustrates this idea. Keep in mind that all this is possible because 
in split HA, one can separately find the half-path before the flip state (which accepts 
zr) and the half-path after the flip state (which accepts zl). To join these two half-paths 
into an accepting path they only have to share the same flip state s, i.e. one path starts 
where the other ends. Of course, to do this check we have to keep track of s. The 
formal definition of the algorithm based on this sketch is given in the appendix of 
(Eisner and Satta, 1999).

Fig.11: Ignoring the left part of the body of B it's even possible to get to O(n³)!



Lexicalized Context-Free Grammars      13

9. Theoretical Speedup

With  n  =  input  string  length,  g  =  grammar  constant  (polysemy  factor)  and 
t = traditional nonterms or automaton states, the different considered algorithms in this 
paper have the following running times.

For the general case:
• Naive: O(n5g2t)
• New (Eisner and Satta, 1999): O(n4g2t)

For split grammars:
• Old (Eisner, 1997): O(n3g3t2)
• New (Eisner and Satta, 1999): O(n3g2t)

In the worst case the polysemy factor g equals t for BCFGs. But in most cases it's 
smaller then t. More information on polysemy can, for instance, be found in (Eisner 
and Satta, 1997; Eisner, 2000). Notice that all running times are independent of the 
vocabulary size! 
These theoretical speedups are indeed confirmedt in practical applications. Compared 
with the Eisner (1996) Treebank WSJ parser and its split lexical grammar, a common 
O(n5) parser,  the new algorithm gives a 5x speedup with pruning and even a 19x 
speedup for exhaustive parsing!

10. Final remarks

I've described three different grammatical rewriting systems that encode dependencies 
between pairs of words, namely bilexical context-free grammars (Eisner, 1997; Eisner 
and Satta, 1999; Eisner, 2000), head automaton grammars (Alshawi, 1996) and split 
HAG (Eisner, 1997; Eisner and Satta 1999). Following (Eisner and Satta, 1999) I've 
shown that HAGs are isomorphic to BCFGs (Eisner and Satta, 1999).  For each of 
these formalisms I've given an algorithm sketch improving the standard O(n5) running 
time. For general BCFGs and HAGs the running time was improved to O(n4) and for 
split HAGs the running time was even improved to O(n3), simultaneously decreasing 
the grammar constant of the O(n3)-time algorithm by (Eisner, 1997). Eisner and Satta 
have  developed  an  O(n7)-time  parsing  algorithm  for  bilexicalized  tree  adjoining 
grammars,  based  on  the  ideas  collected  in  this  paper,  improving  the  naive  O(n8) 
method. Finally, the theoretical and practical speedup of the given algorithms have 
been shown. Detailed results of some practical tests can be found in the slides for the 
talk "Efficient Parsing for Bilexical CF Grammars and Head Automaton Grammars" 
held by Eisner at ACL99.



14       Lexicalized Context-Free Grammars

11. References

Alshawi  H.,  1996,  Head  automata  and  bilingual  tiling:  Translation  with  minimal 
representations. In Proceedings of the 34th ACL, pages 167-176, Santa Cruz, CA.

Charniak  E.,  1997,  Statistical  parsing  with  a  context-free  grammar and  word  statistics.  In 
Proceedings  of  the  14th National  Conference  on  Artificial  Intelligence,  pages  598-603, 
Menlo Park. AAAI Press/MIT Press.

Collins, M.J., 1997, Three generative, lexicalised models for statistical parsing. In Proceedings 
of the 35th ACL, pages 16-23, Madrid, July.

Mel'čuk I.,  1988,  Dependency Syntax: Theory and Practice.  State University of New York 
Press.

Eisner J., 1996a, An empirical comparison of probability models for dependency grammar.  In 
Technical  Report  IRCS-96-11,  Institute  for  Research  in  Cognitive  Science,  Univ.  Of 
Pennsylvania.

Eisner J., 1996b, Three new probabilistic models for dependency parsing: An exploration. In 
Proceedings of the 16th International Conference on Computational Linguistics (COLING-
96), pages 340–345, Copenhagen.

Eisner J., 1997, Bilexical grammars and a cubic-time probabilistic parser. In  Proceedings of  
the 1997 International Workshop on Parsing Technologies, pages 54–65, MIT, Cambridge, 
MA.

Eisner J. and Satta G., 1999, Efficient parsing for bilexical context-free grammars and head-
automaton  grammars.  In  Proceedings  of  the  37th  ACL,  pages  457–464,  University  of 
Maryland.

Eisner J. and Satta G., 2000, A faster parsing algorithm for lexicalized tree adjoining grammars. 
In Proceedings of the 5th Workshop on Tree-Adjoining Grammars and Related Formalisms  
(TAG+5), Paris.

Lafferty J., Sleator D. and Temperley D., 1992, Grammatical trigrams: A probabilistic model of
link grammar. In  Proceedings of the AAAI Conf. On Probabilistic Approaches to Natural  
Language, October.

Magerman D., 1995, Statistical decision-tree models for parsing. In  Proceedings of the 33rd  
ACL.

Pollard C. and Sag I., 1994,  Head-Driven Phrase Structure Grammar. University of Chicago 
Press.

Schabes Y., Abeille A., and Joshi A., 1988,  Parsing strategies with `lexicalized'  grammars: 
Application  to  Tree  Adjoining  Grammars.  In Proceedings  of  COLING-88,  Budapest, 
August.

Younger  D.H.,  1967,  Recognition  and  parsing  of  context-free  languages  in  time  n³.  In 
Information and Control, 10(2):189-208, February.


