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Semiring parsing is a framework for parsing probabilistic grammars, simplify-
ing and unifying the computation of both traditional (non-probabilistic) and 
probabilistic values. I first give an introduction to probabilistic context-free 
grammars and then summarize and illustrate Joshua Goodman’s fundamental 
work on semiring parsing. 

1 Introduction 

Semiring parsing allows a unified way to specify parsers, most notably for probabilis-
tic grammars, that can compute a wide range of both probabilistic and non-
probabilistic values like recognition, derivation forests, inner probabilities and Viterbi 
values by using the operations of a corresponding semiring. 

Probabilistic grammars are an attractive formalism for parsing natural language be-
cause of the combination of the possibility for broad coverage of language phenom-
ena, sufficient distinction of natural and unnatural interpretations, and efficient pars-
ing. One particular probabilistic grammar formalism is probabilistic context-free 
grammars (PCFGs), which is a simple extension of the well-known context free 
grammars. PCFGs will be our formalism of choice. 

I will first give a motivation for the use of PCFGs, an overview of their most im-
portant properties, and illustrative examples. I will then present the semiring parsing 
framework, mainly summarising and exemplifying the fundamental paper by Joshua 
Goodman [1]. 

1 Natural language parsing problems 

When parsing natural language, our ultimate goal is to be able to computationally 
determine the meaning of a sentence. In contrast to the main use of grammars in basic 
theoretical computer science lectures, we are not only interested in recognition, i.e. 
deciding whether a given sentence is syntactically correct, but we also need to analyse 
its structure, which is ideally given by the structure of the corresponding parse trees. 

We know that natural language is inherently complex. Most notably, the meaning 
of words often depends on the context in which they occur in a sentence, and even 
complete sentences can be ambiguous. Consider the sentence I saw the man with the 
telescope [2]: The phrase with the telescope can be interpreted as specifying the in-
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strument we used to see the man, but also as an attribute of the man, where the man 
has a telescope. 

In this case, the usual interpretation is the one where we use the telescope to see 
the man. While also valid, the other interpretation is at least less probable in everyday 
use of the language. On the other hand, if we substitute a rifle for the telescope, thus 
giving the sentence I saw the man with the rifle, the situation will be reversed: In most 
cases, we expect the man to have a rifle, because seeing with a rifle (though conceiv-
able, e.g. through an attached scope) is unusual. 

We thus have a situation where we may get two different but valid interpretations, 
i.e. two different parse trees (see figure 1), for one sentence. While we might be able 
to exclude one interpretation in the case of telescopes and the other in the case of 
rifles by using some strong grammar formalism, e.g. context-sensitive grammars, this 
would be computationally expensive and prohibit efficient language processing. Be-
cause we have already observed that both interpretations are valid, but differ in the 
amount of occurrences in everyday use, a natural approach to obtain an efficient 
parser that sufficiently distinguishes the respective interpretations would be to some-
how equip parse trees with a probability. 

2 Probabilistic Context-Free Grammars 

A probabilistic context-free grammar is basically a normal context-free grammar 

G =  N, T, S, R  and a probability distribution on the derivations. However, defining 

this distribution directly, i.e. as a function 𝔼 → ℝ 0,1  (where 𝔼 is the set of all deri-
vations), is complex and conflicts with the grammar’s context-free approach: If we 
know the complete derivation when assigning the probability, we have all possible 
context at hand. 

The PCFG approach is thus to use a function 𝑝: R → ℝ 0,1  to assign a probability 
to every rule of the grammar. Intuitively, this makes the decision which rule to use 

when replacing some nonterminal 𝐴 ∈ N a probabilistic one. In order to obtain a valid 
probability distribution for this case, we have to make sure that 

∀𝐴 ∈ N:  𝑝 𝐴 → 𝛼 

 𝐴→𝛼 ∈R

= 1 . (1) 

  

Figure 1: Natural language ambiguities 

I saw the man with the telescope.

Sentence

I saw the man with the telescope.

Sentence
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At this point, we can use 𝑝 to obtain the probability distribution on derivations, 

which we wanted to define in a context-free way: A derivation 𝐸 as a list of grammar 

rules is, in the context of 𝑝, a series of decisions, so we just have to multiply the 
grammar rule probabilities to obtain the probability of the derivation: 

𝑃 𝐸 =  𝑝 𝐴 → 𝛼 

 𝐴→𝛼 ∈𝐸

 (2) 

Figure 2 shows a simplified example of a grammar that creates both possible inter-
pretations for the example sentence from section 1 (except that the English sentence 

fragments have been simplified to a single nonterminal 𝑎), but also assigns proper 
probabilities. 

Usually, the rule probabilities will not be assigned by hand. There exist both some 
large databases of sentences hand-annotated with correct derivation trees and algo-
rithms to compute the probabilities of a given grammar such that the most probable 
results of the grammar match those given in the database. 

Grammar rules: 𝐴 → 𝐴𝑎, 𝐴 → 𝑎𝐴, 𝐴 → 𝑎𝑎 

Rule probabilities: 𝑝 𝐴 → 𝐴𝑎 = 0.4, 

 𝑝 𝐴 → 𝑎𝐴 = 0.1, 

 𝑝 𝐴 → 𝑎𝑎 = 0.5 
Derivations: 

  

𝑃 = 0.1 × 0.5 = 0.05 𝑃 = 0.4 × 0.5 = 0.2 

Figure 2: PCFG derivation probabilities example 
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2.1 Values of Interest 

Aside from properties such as recognition or derivation forests, PCFGs, when used 

with a fixed input sentence 𝑤1 …𝑤𝑛 , have a set of interesting probabilistic properties. 
In the previous section, I have already shown how to compute the probability of a 

certain derivation; this can easily be extended to the inside probability, which is the 
probability of covering a range of the input starting from a specified nonterminal, 

inside 𝑖, 𝐴, 𝑗 = Pr 𝐴 →∗ 𝑤𝑖 …𝑤𝑗−1  , (3) 

and can be computed simply as the sum of the probabilities of all derivations of 

𝑤𝑖 …𝑤𝑗  starting with 𝐴. 

Another class of interesting values are the Viterbi value, the Viterbi derivation, 
and the Viterbi n-best derivations. All of these make a statement about the most prob-
able derivations: The Viterbi value is the probability of the most probable derivation, 
while the Viterbi derivation is this derivation itself. Inevitably, the Viterbi n-best 

derivations are the 𝑛 most probable derivations for the given input range and starting 
nonterminal. 

Finally, the outside probability is, intuitively, the probability of everything sur-
rounding a certain nonterminal, and thus in some way dual to the inside probability. 
Formally: 

outside 𝑖, 𝐴, 𝑗 = Pr S →∗ 𝑤1 …𝑤𝑖−1 𝐴 𝑤𝑗 …𝑤𝑛  . (4) 

While the outside probability is usually more difficult to compute than the other 
values, there is a convenient relationship to the inside probability when we multiply 
both [3]: 

inside 𝑖, 𝐴, 𝑗 × outside 𝑖, 𝐴, 𝑗  

= Pr 𝐴 →∗ 𝑤𝑖 …𝑤𝑗−1 × Pr S →∗ 𝑤1 …𝑤𝑖−1 𝐴 𝑤𝑗 …𝑤𝑛  

= Pr S →∗ 𝑤1 …𝑤𝑖−1 𝐴 𝑤𝑗 …𝑤𝑛 →∗ 𝑤1 …𝑤𝑛  . 
(5) 

The product of inside and outside probability is therefore the probability of cover-
ing the whole input by using a specified nonterminal for a certain range. 

For the example in figure 2 and input 𝑎𝑎𝑎, we thus have inside 1, 𝐴, 4 = 0.25, 

viterbi 1, 𝐴, 4 = 0.2 and viterbi-derivation 1, 𝐴, 4 =   𝐴 → 𝐴𝑎, 𝐴 → 𝑎𝑎  . 

3 Semiring Parsing 

At this point, we know what (a special form of) probabilistic grammars are, and what 
values we might want to compute for a given grammar and input. What we do not 
know yet is how to actually perform these computations. Right now, one might be 
tempted to just develop an algorithm for inside probabilities, an algorithm for Viterbi 
values, and one for outside probabilities. In fact, this was basically what happened 
before semiring parsing: Independent and sometimes quite elaborate algorithms were 
developed for every value class. 
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Semiring parsing greatly simplifies the algorithm development: Given a single cor-
rect, item-based (or: deductive) parser description, a semiring parser can compute 
most of the desired values without fundamental changes in the algorithms. 

3.1 From Recognition to Inside Probabilities 

To illustrate the way semiring parsing is able to achieve this improvement, let us first 
compare the computation of recognition and inside probabilities with a CKY-style 
parser. 

An abstract representation of the CKY recognition algorithm is given in figure 3: 

Being able to prove an item  𝑖, 𝐴, 𝑗  corresponds to being able to derive 𝑤𝑖 …𝑤𝑗  start-

ing with nonterminal 𝐴; the algorithm itself is then just an implementation of the 
inference rule semantics. 

Note the close correspondence between the items of the CKY parser and the way 
we defined the inside probability in section 2.1. This will allow a simple modification 
of the recognition algorithm to turn it into an algorithm for inside probability compu-

tation: substituting + and × for ∨ and ∧ and using the rule probability as the “value of 

a rule” where we previously used true to merely represent the existence of a rule 
instance. The modified algorithm is also shown in figure 3. 

The key idea of semiring parsing is to generalise this substitution such that we can 
use any complete semiring’s operations with many different item-based parsers. 

3.2 Semirings 

A semiring is a set 𝑅 with two operations ⊕, called addition, and ⊗, called multipli-

cation. ⊕ has to be associative and commutative, while ⊗ has to be associative and 

distribute over ⊕. We also assume identity elements 0 and 1 for ⊕ and ⊗, respec-

Input: 𝑤1 …𝑤𝑛  

Goal item:  1, S, 𝑛 + 1  

 

Rules:  𝐴 → 𝑤𝑖 ∈ 𝑅

 𝑖, 𝐴, 𝑖 + 1 
,

 𝐴 → 𝐵𝐶 ∈ 𝑅    𝑖, 𝐵, 𝑚     𝑚, 𝐶, 𝑘 

 𝑖, 𝐴, 𝑘 
 

 

 𝐴 → 𝑤𝑖 ∈ 𝑅 ⇒ 𝑉 𝑖, 𝐴, 𝑖 + 1 = true 
 𝐴 → 𝐵𝐶 ∈ 𝑅 ⇒ 𝑉 𝑖, 𝐴, 𝑘 = 𝑉 𝑖, 𝐴, 𝑘 ∨  𝑉 𝑖, 𝐵, 𝑚 ∧ 𝑉 𝑚, 𝐶, 𝑘   

success = 𝑉 1, S, 𝑛 + 1  

Recognition: 

 𝐴 → 𝑤𝑖 ∈ 𝑅 ⇒ 𝑉 𝑖, 𝐴, 𝑖 + 1 = 𝑝 𝐴 → 𝑤𝑖  

 𝐴 → 𝐵𝐶 ∈ 𝑅 ⇒ 𝑉 𝑖, 𝐴, 𝑘 = 𝑉 𝑖, 𝐴, 𝑘 +  𝑉 𝑖, 𝐵, 𝑚 × 𝑉 𝑚, 𝐶, 𝑘 × 𝑝 𝐴 → 𝐵𝐶   

p_inside = 𝑉 1, S, 𝑛 + 1  

Inside probabilities: 

Figure 3: From CKY recognition to inside probabilities 
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tively, with the expected properties. Intuitively, therefore, a semiring is a ring without 
the inverse elements for addition. 

We might be interested in the computation of sums over an infinite number of ele-

ments 𝑥, ⊕𝑖=1
∞ 𝑥. If infinite sums are well-defined for a particular semiring, we call it 

complete. 

If we recall that the set of integers ℤ with the usual addition and multiplication op-

erators + and × is a ring, it is easy to see that by removing all negative numbers, and 
thus the inverse elements for addition, we obtain a semiring: 

 ℕ 0, ∞ , +,× ,0,1  is a semiring. (6) 

Another semiring would be the interval from 0 to 1 of the real numbers. In this 
case, we can still use the usual multiplication operator, but this semiring would not be 

closed under the usual addition operator. We can, however, use the max function 
instead of addition: 

 ℝ 0,1 , max,× ,0,1  is a semiring. (7) 

3.3 Grammar and Item Derivations 

In order to use arbitrary semirings to compute different kinds of values with a given 
parser description, we will have to formalise the notion of values introduced infor-
mally in section 3.1. The value of a grammar derivation will serve as a formalisation 
of our intent, while the value of an item derivation according to a parser will be a 
description of the actual computations to be performed by a semiring parser. 

A grammar derivation 𝐸 corresponds to the parse trees we usually obtain when de-

riving grammatical sentences. 𝐸 is a list of grammar rules, 𝐸 = 𝑒1 …𝑒𝑚 , that encodes 
a tree whose leaves are terminals of the input and whose inner nodes are grammar 
rules. We can obtain this tree from the derivation by agreeing on the convention to 
use, for example, leftmost derivations. 

An item derivation tree 𝐷 =  𝐼, 𝐷1 …𝐷𝑙  represents one possible proof (or compu-

tation) of an item 𝐼 given a certain input: An inner node and its children represent an 
instance of one of the parser’s inference rules, while the leaves of the tree are rules of 
the underlying grammar. 
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An example of a grammar derivation (tree) and an item derivation tree for the input 

𝑎𝑎𝑎 and a Chomsky-normal version of the grammar given in figure 2 can be found in 
figure 4. 

3.4 Semiring Parsing Computations 

Recall the computation of the inside probability in section 2.1: We already know how 
to compute this particular value given a grammar derivation. For arbitrary semirings, 

we denote the value of a rule 𝑒 (which, for example, might be a probability) with 

𝑅 𝑒  and just use whatever multiplication operator there is in the semiring instead of 

×. We can then extend this to the value of an input sentence by computing the sum 

over the values of all possible derivations 𝐸1 …𝐸𝑘  of the input: 

𝑉𝐺 𝐸 = ⊗𝑖=1
𝑚 𝑅 𝑒𝑖  (8) 

𝑉𝐺 = ⊕𝑗=1
𝑘 𝑉𝐺 𝐸𝑗   (9) 

At this point, we can specify a semiring parser: Given a parser and an input sen-
tence, we know from section 3.3 that this gives us an item derivation tree where the 
leaves represent the grammar rules we used in an instance of one of the parser’s infer-
ence rules; these inference rule instances are represented at the inner nodes. We now 
want to define the value of an item derivation; naturally, this is the product of all the 
leaves’ values, which can also be written recursively: 

𝑉 𝐷 = ⊗𝑑  leaf 𝑅 𝑑 =  
𝑅 𝑑              (leaf node)   

⊗𝑖=1
𝑙 𝑉 𝐷𝑖  (inner node)

  (10) 

This recursive computation closely corresponds to the way the inside probabilities 
were computed in the modified CKY algorithm in section 3.1; the main difference is 
that in 3.1, the inside probability was computed for items (most importantly, the goal 
item) and not only item derivation trees. 

 Grammar   Parser 

 
 

Figure 4: Example grammar and item derivations 
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However, extending the value computations to items is easy: Analogously to the 
input sentence value computation, we just sum all the values of the item derivation 

trees 𝐷1 …𝐷𝑘  headed by an item 𝑥: 

𝑉 𝑥 = ⊕𝑗=1
𝑘 𝑉 𝐷𝑗   (11) 

It can further be shown [1] that equations (10) and (11) can be combined to a much 
simpler form that does not internally rely on the notion of item derivation trees, but 
only needs the parser’s inference rules and is thus much easier to compute: 

𝑉 𝑥 = ⊕𝑎1…𝑎𝑘
𝑥

⊗𝑖=1
𝑘 𝑉 𝑎𝑖  (12) 

Of course, the actual computations of a semiring parser also have to be done in the 
right order such that items that are premises of other items are computed first. To 
achieve this, Goodman uses a notion of ordered buckets that the items are put into; for 
details, see [1]. 

3.5 Useful semirings 

We have already seen the operations that a semiring parser uses to compute recogni-
tion, namely Boolean conjunction and disjunction on the set containing true and false, 
and to compute inside probabilities, addition and multiplication on the natural num-
bers including zero and infinity. In the latter semiring, infinity has to be included to 
allow the value of an unbounded infinite sum to be specified. 

Not surprisingly, the Viterbi value, the Viterbi derivation and the Viterbi n-best 
derivations can also be obtained using an appropriate semiring; see figure 5 for a 
listing. The Viterbi semiring closely resembles the inside probability semiring, except 

for the use of max as addition operator – after all, we are only interested in the prob-
ability of a single derivation, namely the most probable one – and the range of the real 
numbers used. In fact, during a semiring parser’s calculations with the inside prob-

ability semiring, values greater than 1 will never occur, but for the semiring to be 
closed under addition, these values have to be included nonetheless. 

Recognition:   true, false ,∨,∧ , false, true  

Derivation number:  ℕ 0, ∞ , +,× ,0,1  

Derivation forest:  2𝔼,∪,⋅, ∅,        

Inside probability:  ℝ 0, ∞ , +,× ,0,1  

Viterbi:  ℝ 0,1 , max,× ,0,1  

Viterbi-derivation:  ℝ 0,1 × 2𝔼, maxVit,×Vit,  0, ∅ ,  1,         

Viterbi-n-best:   topn 𝑋  𝑋 ∈ 2ℝ 0,1 ×𝔼 , maxVit-n,×Vit-n, ∅,   1,          

Figure 5: Useful semirings 
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Aside from semirings for the probabilistic values of a grammar and an input sen-
tence, there are also semirings for the traditional non-probabilistic values: we already 
know the recognition semiring, but there also exist appropriate semirings for the deri-
vation number and the derivation forest (see figure 5). The derivation forest semiring 
is perhaps the most unusual of the ones we are concerned with as its operations  have 
no direct connection to the usual numeric operations used in the other semirings (ex-
cept for recognition, which is intuitive). 

The Viterbi-derivation semiring is, in essence, a product construction of the Viterbi 
and the derivation forest semirings. For a definition of the functions used and an ex-
planation of the Viterbi-n-best semiring, see [1].  

3.6 Infinite sums 

In section 3.2, we mentioned infinite sums and complete semirings, where these sums 
are well-defined. Infinite sums will occur during semiring parsing whenever there is a 

loop in the grammar, be it a simple one such as a rule 𝐴 → 𝐴 or a more complex one 
involving many rules. A semiring parser can detect these loops, because when per-
forming the ordering, there will be so-called looping buckets of inference rules. In this 
case, an item may have an infinite number of derivations, the sum of whose values 
has to be computed. 

While the necessity to calculate infinite sums, especially when arbitrary semirings 
are involved, might seem rather intimidating, these computations are, in fact, quite 
simple for many complete semirings. Still, the precise algorithm depends on the 
semiring and cannot be dealt with in a general way on the level of the semiring parser. 
The construction of semiring parsing fortunately allows the concrete algorithms to be 
treated as a parameter just like the semiring itself. 

The necessary infinite sums can be calculated precisely for all the semirings in fig-
ure 5 except for the inside probability semiring, where it has to be approximated. I 
will just give simple intuitions for the calculations for some of the easier semirings; 
for all details and semirings, again, consult [1]. 

For the recognition semiring, we observe that one occurrence of true in the sum 

means that the result value will also be true, since the additive operator is ∨. In the 
case of the derivation number semiring, we can set the value of an item to infinity 
whenever it is provable and on or depending on a loop, since it will then have infi-
nitely many derivations. To compute an infinite sum in the Viterbi semiring, we can 
simply “discard” all loops – and therefore avoid “true” infinite sums – because values 

in a loop will only be multiplied by some probability in  0,1 , which means they can 

only get lower, and will consequently be discarded by the max operation. 

4 Summary 

We have seen that parsing and specifically analysing natural language presents sev-
eral difficulties. Probabilistic grammars, and in particular probabilistic context-free 
grammars, offer a way to deal with these difficulties in a both appropriate and effi-
cient way by assigning a probability to every interpretation. 
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Probabilistic context-free grammars, when used on a given input, have some inter-
esting values that are useful during parsing as well as when trying to improve the rule 
probabilities with some derivation database. In order to compute these values, histori-
cally, specialized algorithms were developed for each case. These were often substan-
tially different, in part also because of infinite sum computations being interweaved 
with the algorithm. 

Semiring parsing now allows us to specify an abstract, item-based parser and use 
this single specification to compute most of the interesting values by simply substitut-
ing different semirings. Even the computation of infinite sums, while semiring-
specific, is factored out of the main semiring parser and can therefore be handled 
independently of the parsing algorithm. 

Semiring parsing can thus be applied to many parsers of different styles – even 
parsers for mildly context-sensitive grammar formalisms such as tree adjoining 
grammars (TAGs) – and is, all in all, a substantial improvement for the development 
of probabilistic parsing. 
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