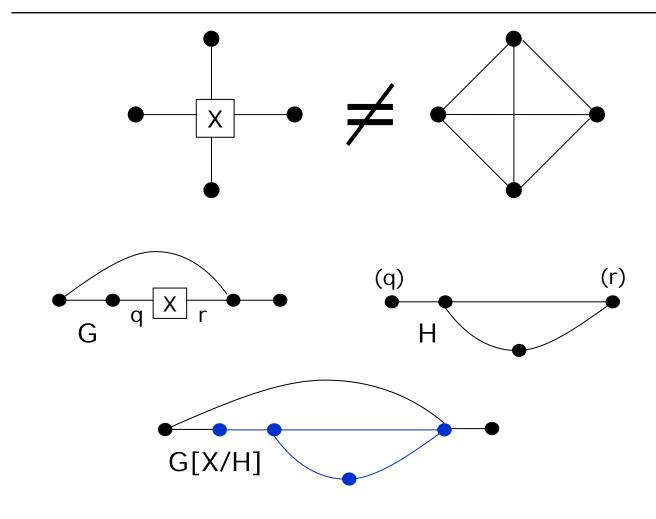
Context-Free Graph Grammars

Kai Mittermüller

Übersicht

- Hypergraphen und Graphgrammatiken
- Kontextfreiheit von Graphgrammatiken
- Hierarchie von String-Graphgrammatiken

Hypergraphen

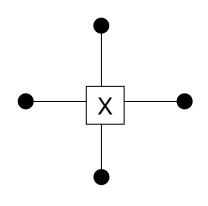


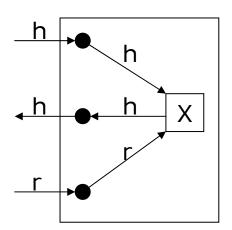
Hypergraphen

Zwei Arten von Hypergraphen

Hyperkanten

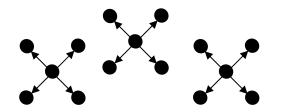
Hyperknoten

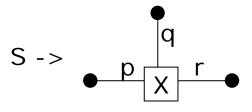




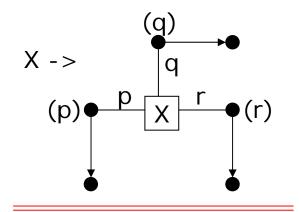
Hyperkanten-Graphen sind äquivalent zu Hyperknoten-Graphen

Ableitungen

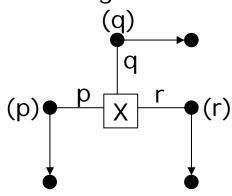




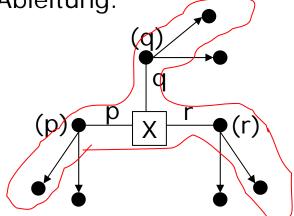
$$X -> (p) \bullet (r)$$



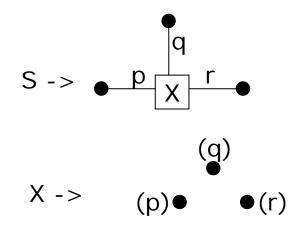
1. Ableitung:

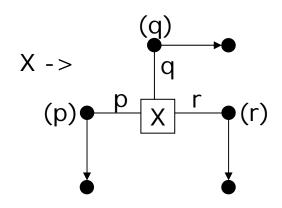


2. Ableitung:



Ableitungen





4. Ableitung:

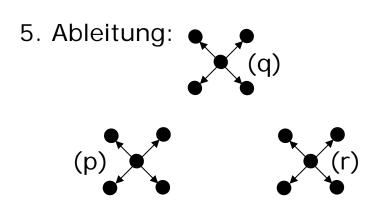
(q)

(p)

(p)

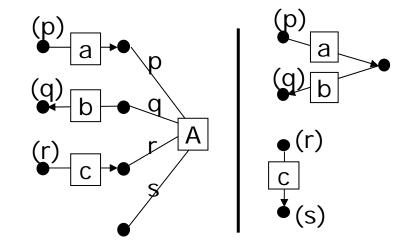
(x)

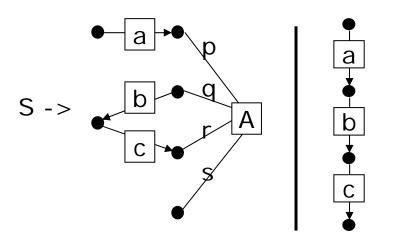
(r)

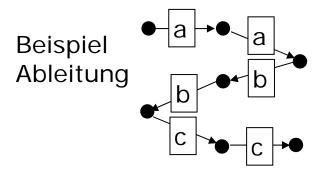


Stringsprachen

$$L = \{a^n b^n c^n\}$$



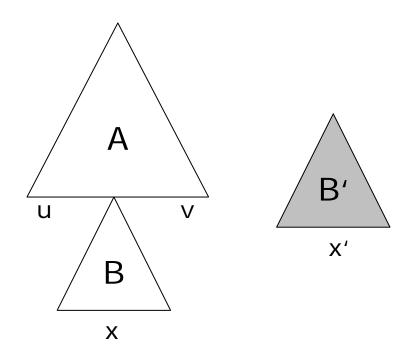




Kontextfreiheit

$$A \Rightarrow^* uBv$$
$$\Rightarrow^* uxv$$
$$B' \Rightarrow^* x'$$

$$\Rightarrow A \Rightarrow *ux'v$$



Kontextfreiheit

Lemma:

Seien H und K Hypergraphen.

 $Sei\ e_1 \dots e_n\ alle\ Nichtterminal-Kanten \in H$.

Gdw. $H \Rightarrow *K$ existieren Hypergraphen $K_1 \dots K_n$,

so dass
$$K = H[e_1 \setminus K_1]...[e_n \setminus K_n]$$
 mit

$$e_i \Rightarrow *K_i$$
 für alle $1 \le i \le n$.

29. März 2007

Kontextfreiheit

Beweisskizze:

Induktion über die Länge der Ableitung:

$$I.A: L\ddot{a}nge = 0 \implies H = K$$

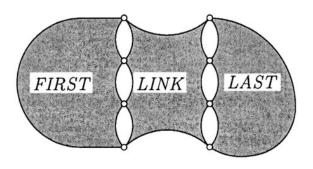
$$I.S : Sei K' = H[e_1 \setminus K_1]...[e_{n-1} \setminus K_{n-1}]$$

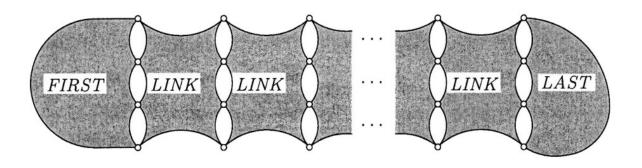
und es exitiert Ableitung $e_n \Rightarrow *K_n$

$$\Rightarrow K = K'[e_n \setminus K_n]$$

Zusätzlich muss gezeigt werden, das die Reihenfolge und der Zeitpunkt der Ersetzung keinen Unterschied machen.

Pumping-Lemma





Pumping-Lemma

 $\forall L \in hyperedge \ replacement \ language \ with \ order(L) = r$

 $\exists p,q \in N$

 $\forall H \in L, |H| > p$

 \exists First, Link, Last: First \otimes Link \otimes Last=H, $|Link\otimes Last| \leq q$ und type(Link) \leq r

 $\forall k \in N : First \otimes Link^{k} \otimes Last \in L$

Pumping-Lemma (regulär)

 $\forall L \in regular\ language$

 $\exists p \in N$

 $\forall h \in L : |h| > p$

 $\exists u, v, w : uvw = h, |v| > 0, |uv| < p$

 $\forall k \in \mathbb{N} : uv^k w \in L$

Hierarchie von Stringgrammatiken

1)
$$STR(HR_2) \ll CFL$$

$$2) \forall k > 1: STR(HR_{2k}) = STR(HR_{2k+1}) \subset STR(HR_{2k+2})$$

Anmerkung:

$$STR(HR_{2k}) \iff L_{2k} = \{a_1^n \dots a_{2k}^n\}$$

STR(HR₂) <=> CFL

$$A \rightarrow a$$

$$A \rightarrow (s)$$

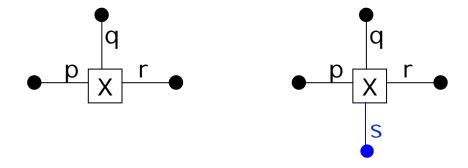
STR(HR₂) <=> CFL

$$A \rightarrow \begin{bmatrix} (s) \\ \bullet \\ a \end{bmatrix} \rightarrow \begin{bmatrix} (t) \\ c \end{bmatrix}$$

Es ist offensichtlich das

$$HR_l \subseteq HR_{l+1}$$

da jede Hyperkante einfach um einen zusätzlichen Knoten erweitert werden kann:



 $z.z.: L_4 \notin HR_3$

Annahme: $L_4 \in HR_3$

dann gilt nach dem Pumpinglemma:

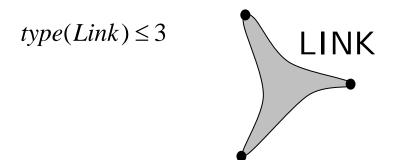
 L_4 mit order $(L_4) = 3$

 $\exists p,q \in N$

 $\forall H \in L, |H| > p$

 $\exists First, Link, Last : First \otimes Link \otimes Last = H, |Link \otimes Last| \leq q$ $und(type(Link) \leq 3)$

 $\forall k \in \mathbb{N} : First \otimes Link \otimes Last \in L$



da L₄ eine Stringgrammatik ist, muss LINK Kanten der Form

enthalten.

29. März 2007

Damit fehlt aber eine Verbindungsstelle für eine Kante.

Zusammenfassung

- Hypergraphen
- Kontextfreie Graphgrammatiken
- Pumpinglemma
- Stringgrammatiken

Literatur

- Jost Engelfriet: Context-Free Graph Grammars,
 Handbook of Formal Languages, 1997
- F. Drewes, H.-J. Kreowski, A. Habel: Hyperedge Replacement Graph Grammars, Handbook of Graph Grammars and Computing by Graph, 1997
- A.Habel, H.-J. Kreowski: Some structural aspects of hypergraph languages generated by hyperedge replacement, LNCS 247, 1987