
Equivalence of System F and λ2 in Coq
Based on Context Morphism Lemmas

Jonas Kaiser Tobias Tebbi Gert Smolka
Saarland University,

Saarbrücken, Germany
{jkaiser,ttebbi,smolka}@ps.uni-saarland.de

Abstract
We give a machine-checked proof of the equivalence of the
usual, two-sorted presentation of System F and its single-
sorted pure type system variant λ2. This is established by
reducing the typability problem of F to λ2 and vice versa.
The difficulty lies in aligning different binding-structures
and different contexts (dependent vs. non-dependent). The
use of de Bruijn syntax, parallel substitutions, and context
morphism lemmas leads to an elegant proof. We use the Coq
proof assistant and the substitution library Autosubst.

Categories and Subject Descriptors F.4.1 [MATHEMATI-
CAL LOGIC AND FORMAL LANGUAGES]: Mathematical
Logic—Lambda calculus and related systems

Keywords Pure Type Systems, System F, de Bruijn Substi-
tutions, Context Morphism Lemmas

1. Introduction
There are different presentations of “System F” in the lit-
erature, and we often found that properties that have been
proven for one presentation are assumed for another, with-
out verifying that the presentations are in fact equivalent. A
formalisation of such an equivalence proof is surprisingly
intricate. The arising proof obligations become particularly
involved when syntax has to be translated. Our goal is to
demonstrate that a pure de Bruijn setup with parallel sub-
stitutions and the systematic use of context morphism lem-
mas lead to an elegant treatment of the hidden complexi-
ties. Parallel substitutions (i.e. multi-variable substitutions)
enable clear and natural lemma statements [18], contrary to
the usual criticism [3] of de Bruijn formalisations.

System F in its original form is due to Girard [12, 13],
who introduced it in the context of proof theory. It was also
independently discovered by Reynolds [16] as the polymor-
phic λ-calculus. Here we consider a two-sorted presentation,
as given by Harper in [15], and a pure type system (PTS)
variant λ2, closely related to the one found in Barendregt’s
λ-cube [5]. The respective type systems with de Bruijn bind-
ing are given in Figures 1 and 2. We provide a detailed dis-
cussion of these systems in Section 2.

In [11], Geuvers presents a proof sketch that valid typing
judgements can be translated between these two presenta-
tions. Apart from that, we are not aware of other treatments
of this correspondence. We improve upon Geuvers’ result
in two ways. First, we translate judgements regardless of
their derivability, thus obtaining full reductions of the deci-
sion problem of typability. Second, our proof is completely
formalised with the Coq proof assistant1.

Our main result (Theorem 31) essentially yields the fol-
lowing equivalences, where b·c and d·e are appropriate syn-
tactic translations:

F̀
s :A ⇐⇒

2̀
bsc : bAc

2̀
a : b ⇐⇒

F̀
dae : dbe

Proving this result turned out to be rather intricate. The
two main difficulties are the use of different syntaxes, which
necessitates syntactic translations, and the mismatch of the
respective type systems. In a direct proof, these aspects in-
teract, which significantly increases complexity. In order to
avoid this, we introduce an auxiliary system P and decom-
pose the proof into two steps separating the two concerns.

The intermediate system P is defined on the PTS syn-
tax of λ2, but equipped with a type system that closely mir-
rors F. In Section 5 we prove the equivalence of λ2 and P,
which is relatively straightforward due to their shared syn-
tax. We then introduce syntactic translations in Section 6
and use these to state and prove the equivalence of P and F
in Section 7. This part of the proof is involved as the trans-

1 The accompanying Coq development can be found at
https://www.ps.uni-saarland.de/extras/cpp17-sysf/
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A,B,C ::= xty | A→ B | ∀. A x : N
s, t ::= xter | s t | λA. s | sA | Λ. s x : N

x < N

N `ty
F
xty

N `ty
F
A N `ty

F
B

N `ty
F
A→ B

N + 1 `ty
F
A

N `ty
F
∀. A

Ax = A N `ty
F
A

N ;An, . . . , A0 `
ter

F
xter :A

N ; Γ, A `ter
F
s :B N `ty

F
A

N ; Γ `ter
F
λA. s :A→ B

N ; Γ `ter
F
s :A→ B N ; Γ `ter

F
t :A

N ; Γ `ter
F
s t :B

N ; Γ `ter
F
s : ∀. A N `ty

F
B

N ; Γ `ter
F
sB :A[B · id]

N + 1; Γ[+1] `ter
F
s :A

N ; Γ `ter
F

Λ. s : ∀. A

Figure 1. System F – Two-sorted de Bruijn syntax, type
formation and typing rules.

lations d·e from the PTS syntax into the two sorts of F are
necessarily partial.

We found that systematically phrasing all essential state-
ments for both parts of the proof as context morphism
lemmas [2, 14] leads to an elegant formalisation. In Sec-
tions 3 and 4 we introduce this proof technique.

We conclude with a discussion of related and future work
in Sections 8 and 9.

In summary, our contributions are:
• A proof of the equivalence, via the reduction of the deci-

sion problem of typability, of two common presentations
of F that is fully machine-checked with the proof assis-
tant Coq.

• A case-study illustrating that working with pure de Bruijn
syntax and parallel substitutions is not only possible but
desirable as it leads to elegant theorem statements and
proofs.

• The observation that context morphism lemmas are a
powerful tool for relating syntaxes and type systems with
different binding structures.

2. Preliminaries
Throughout this work we are going to deal with three vari-
ants of System F, all of which are given in a pure de Bruijn
presentation. The first is a two-sorted presentation, as given
by Harper [15] and shown in Figure 1. We are going to refer
to this system simply as F. The second variant is the single-
sorted PTS λ2, shown in Figure 2, which is a close approx-
imation of the one found in Barendregt’s λ-cube [5]. The
third variant, which we call P and present in Figure 3, acts
as an intermediary for the equivalence proof of λ2 and F:

λ2
(A)⇐⇒ P

(B)⇐⇒ F

u ::= ∗ | �
a, b, c, d ::= u | x | a b | λa. b | Πa. b x : N

0 : a[+1] ∈ Γ, a

x : a ∈ Γ

(x+ 1) : a[+1] ∈ Γ, b

Γ
2̀
∗ : �

x : a ∈ Γ Γ
2̀
a : u

Γ
2̀
x : a

Γ
2̀
a : u Γ, a

2̀
b : ∗

Γ
2̀

Πa. b : ∗
Γ

2̀
a : Πc. d Γ

2̀
b : c

Γ
2̀
a b : d[b · id]

Γ
2̀
a : u Γ, a

2̀
b : c Γ, a

2̀
c : ∗

Γ
2̀
λa. b : Πa. c

Figure 2. PTS – Single-sorted de Bruijn syntax, dependent
context lookup, and typing rules of λ2.

x : ∗ ∈ Γ

Γ `ty
P
x

Γ `ty
P
a Γ, a `ty

P
b

Γ `ty
P

Πa. b

Γ, ∗ `ty
P
a

Γ `ty
P

Π∗. a

x : a ∈ Γ Γ `ty
P
a

Γ `ter
P
x : a

Γ `ty
P
a Γ, a `ter

P
b : c

Γ `ter
P
λa. b : Πa. c

Γ `ter
P
a : Πc. d Γ `ter

P
b : c

Γ `ter
P
a b : d[b · id]

Γ, ∗ `ter
P
a : b

Γ `ter
P
λ∗. a : Π∗. b

Γ `ter
P
a : Π∗. b Γ `ty

P
c

Γ `ter
P
a c : b[c · id]

Figure 3. PTS – Auxiliary type system P.

This proof structure governs the design of P, taking into
account the two major differences of λ2 and F:
1. The syntax of F is two-sorted while λ2 is formulated with

single-sorted PTS syntax.
2. The type system of F has separate type formation and

typing judgements. λ2 only has a single typing judge-
ment. Further structural differences of the type systems
are a consequence of the uniformity of PTS syntax.

We thus define P on the PTS syntax of λ2, but its type system
is aligned with that of F. Accordingly, part (A) of the proof
(Section 5) handles the alignment of the type systems, while
part (B) (Sections 6 and 7) deals with the translation of
syntax.

We now introduce the three systems in more detail. We
start with two-sorted F. Before we consider the particular
aspects of de Bruijn syntax, let us first take a look at the
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named presentation. Its syntax is defined as

A,B,C ::= X | A→ B | ∀X.A
s, t ::= x | s t | λx :A. s | sA | ΛX. s

where the type variables X and the term variables x are
taken from disjoint universes.

This language can express the polymorphic identity,

ΛX.λx :X.x

and its universally quantified, or polymorphic, type:

∀X.X → X

Observe how implications are taken as function spaces
for ordinary abstractions, while universal quantifications are
used to type abstractions over type variables.

The type system consists of a type formation judgement
that derives well-formed types, e.g.,

`ty
F
∀X.X → X

and a typing judgement that assigns types to terms:

`ter
F

ΛX.λx :X.x : ∀X.X → X

The full type system is given in Figure 4. We consider
a presentation with explicit type variable contexts ∆. These
are simply sets of type variables that are allowed to appear
freely. Term variable contexts Γ are mappings from variables
to types. If necessary, we are going to explicitly denote the
empty context with 〈〉.

As an example, consider the following valid typing with
non-empty contexts:

A; f : ∀Y. Y → Y, z :A `ter
F
f A z :A

In order to highlight certain aspects of the various dis-
cussed systems, we are going to revisit this example through-
out this section.

Note how we have taken the liberty to express, in this
example, the type of the polymorphic identity as

∀Y. Y → Y

That is, we have relabelled the bound identifier from X
to Y . The two types are not equal but α-equivalent, which
is sufficient for an informal treatment. For a formalisation
though, equality is a lot nicer to work with. This is where de
Bruijn syntax comes into play.

We observe that variables are essentially references, ei-
ther to binders of the same expression or into the surround-
ing context. In the de Bruijn setting these references are im-
plemented as natural numbers, called indices. The index n
refers to the n-th enclosing binder of the corresponding vari-
able scope, counting from 0. In the following we write x, y, z

X ∈ ∆

∆ `ty
F
X

∆ `ty
F
A ∆ `ty

F
B

∆ `ty
F
A→ B

∆, X `ty
F
A

∆ `ty
F
∀X.A

X /∈ ∆

Γ(x) = A ∆ `ty
F
A

∆; Γ `ter
F
x :A

∆; Γ `ter
F
s :A→ B ∆; Γ `ter

F
t :A

∆; Γ `ter
F
s t :B

∆; Γ, x :A `ter
F
s :B ∆ `ty

F
A

∆; Γ `ter
F
λx :A. s :A→ B

x /∈ DOM(Γ)

∆; Γ `ter
F
s : ∀X.A ∆ `ty

F
B

∆; Γ `ter
F
sB :A[B/X]

∆, X; Γ `ter
F
s :A

∆; Γ `ter
F

ΛX. s : ∀X.A
X /∈ ∆

Figure 4. System F – Named presentation.

for such de Bruijn indices. Note that a variable x is free in a
term s if x+ k occurs in s under k binders.

The de Bruijn presentation of the two-sorted F introduced
above is shown in Figure 1. All binders, that is λ, Λ and ∀,
are nameless2 and both type and term variables are given as
natural numbers x : N. Note that the A in λA. s is the type
of the bound variable, not its name. We express the typing of
the polymorphic identity as

`ter
F

Λ. λ0ty. 0ter : ∀. 0ty → 0ty

and our running example becomes

1; (∀. 0ty → 0ty), 0ty `
ter

F
1ter 0ty 0ter : 0ty

This demonstrates how the removal of names affects the
contexts. The type variable context ∆ degenerates to a plain
natural numberN :N. It is a strict upper bound on the indices
of freely occurring type variables. Thus N = 0 would yield
the empty context. In our case we represent the free type
variable A as 0ty and have N = 1 to enforce that it is in fact
the only one.

In the de Bruijn setting, term variable contexts Γ are
reduced from maps to plain lists of types. Free term variables
are taken as indices into these contexts. Note that, to conform
to the usual orientation of contexts, we count positions from
right to left. Thus the free occurrence of 0ter in our example
references the rightmost element of the context. That is, we
have 0ter : 0ty.

2 We chose to preserve the dot in the notation as it is a uniform indicator
for the presence of a binder. More importantly, it marks the precise position
where de Bruijn indices change.

224



A core aspect of the de Bruijn setting is that terms are
not invariant under context modifications. Whenever binders
are added or removed, or when a new element is added to
a context, then the indices of all free variables have to be
adjusted. An elegant way to handle these adjustments is to
use parallel substitutions, which act on all free variables at
once. The idea dates back to de Bruijn’s original presentation
in [9] and a detailed explanation can be found in [1, 17].

We will introduce parallel substitutions for the types of F.
The construction is identical for PTS terms. For the terms
of F we have to take into account that they may also contain
free type variables. This results in the definition of s[τ, σ],
which simultaneously applies a type substitution τ to all free
type variables of s and a term substitution σ to all free term
variables of s.

All forms of substitution are automatically generated
through the Autosubst framework, which also provides tools
to efficiently work with the resulting definitions. We direct
the reader to [18] for further details.

For the types of F, parallel substitutions, written σ, τ , are
functions from variables to types. Two particular functions
are considered as primitive substitutions, namely the identity
substitution id and the shift substitution +1, defined as:

id(xty) := xty

+1(xty) := (x+ 1)ty

These also constitute examples of renamings3, written
ξ, ζ, that is, substitutions that map variables to variables. We
further observe that a substitution σ can be viewed as the
infinite stream σ(0), σ(1), . . . of types. This motivates the
definition of a cons operation

A · σ := A, σ(0), σ(1), . . .

which allows us to, e.g., succinctly define –1 := 0ty · id as
a right inverse of +1. Note thatB · id is the correct de Bruijn
form of β-substitution, mapping 0ty to B and reducing all
other indices by 1.

We then define the application of a substitution to a type,
written A[σ], mutually recursive with the forward composi-
tion of two substitutions, written σ ◦τ , as follows

xty[σ] := σ(x) (σ ◦τ)xty := σ(x)[τ ]

(A→ B)[σ] := A[σ]→ B[σ]

(∀. A)[σ] := ∀. A[⇑σ] ⇑σ := 0ty · σ ◦+1

Note that we give composition higher precedence than
cons, that is, A · σ ◦τ should be read as A · (σ ◦τ).

Let us now take a closer look at the PTS syntax4 defined
in Figure 2. Here we only have a single syntactic sort of

3 Note that we do not require renamings to be injective or surjective. For
example, +1 is not surjective.
4 We opted for the somewhat non-standard syntactic term alphabet a, b, c, d
to clearly distinguish it from both the types of F (A,B,C) as well as its
terms (s, t). All of these entities will later appear in close proximity.

terms, in contrast to the distinguished sorts of types and
terms we have seen for F.

We summarise the basic structure. Abstractions, λa. b,
live in dependent products, Πc. d, which form the function
spaces and live in the universe ∗. The hierarchy is capped
with the top universe � which has ∗ as its only inhabitant. In
short, the stratification into terms and types5 is internalised
as

a : b : ∗ : �

The PTS syntax is uniform. That is, implication and uni-
versal quantification are both expressed as dependent prod-
ucts. We can distinguish the two concepts based on whether
the argument type is ∗ or lives in ∗. This design also extends
to abstractions and applications.

Since we do not syntactically distinguish types from
terms, we also only have a single class of variables. This
heavily affects the definition of contexts. For F we have seen
that a term variable context Γ is a list of types, which may
have free type variables. These, in turn, referenced a type
variable context ∆. For PTSs, these two context levels are
merged to form a single self-referential, dependent context.
Take for example the context Γ1, a,Γ2. Free variables in a
index into Γ1. As a consequence, free variables have to be
adjusted when we extract them from a context. We achieve
this by inductively defining the lookup operation x : a ∈ Γ
via the first two rules in Figure 2.

We illustrate the binding structure with respect to depen-
dent contexts with a simple judgement (the named variant on
the right is provided for reference):

∗, 0
2̀

0 : 1 X;x :X `ter
F
x :X

Our primary type system for the PTS syntax and its de-
pendent contexts is λ2, shown in Figure 2. The rules of λ2
are very close to the usual presentation of PTSs [2, 5]. That
is, there is only a single judgement with one rule for each
syntactic construct and type formation is internalised with
judgements of the form Γ

2̀
a : ∗.

Since dependent de Bruijn contexts are constructed in
such a way that cyclic dependencies or duplicate entries for
a single variable are impossible we do not require a well-
formedness judgement for contexts. In order to still obtain
a reasonable typing judgement, we ensure well-formedness
for every term added to, or extracted from, the context in a
typing derivation.

A further difference of our presentation of λ2 and the one
found in [5] is the omission of the conversion rule. This is
justified since for λ2 it has no nontrivial applications: well-
formed types do not contain β-redices.

5 Since the distinction of terms and types only arises through the typing rela-
tion, we refrain from partitioning the meta-variables a, b, c, . . . accordingly
and simply assign them in alphabetical order.
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In λ2 we can express our running example as

∗, (Π∗.Π0. 1), 1
2̀

1 2 0 : 2

When we compare this to the F version above, it becomes
clear that the correct mapping of the indices is going to be a
major challenge of the syntax translation.

We conclude with a few remarks regarding P (Figure 3).
In order to bridge the gap between λ2 and F it utilises the
PTS syntax of the former, but its type system mirrors the
latter and is thus equipped with a separate type formation
judgement. Further note that there are two abstraction rules
and two application rules which correspond to the syntac-
tically different abstraction and application mechanisms we
have introduced for F. Our running example in P is identical
to the λ2 version, with (

2̀
) replaced by (`ter

P
).

3. Context Morphism Lemmas
Pure de Bruijn syntax and parallel substitutions are a natural
fit [9, 17, 18]. When it comes to reasoning about judgements
of such de Bruijn style systems, context morphism lemmas
(CMLs) elegantly complete the picture.

The purpose of a CML is to handle the situation where
one valid judgement is transformed into another, either of the
same system, or possibly another. The admissibility proofs
of such transformations usually involve an induction over
the derivation of the initial judgement. For this induction
to go through it is often necessary to devise a non-trivial
generalisation of the original statement.

The intuition behind CMLs is to decompose these proofs
into the base case that deals with typable variables and the
inductive lifting to arbitrary typable terms. The benefit of
this decomposition is twofold. Firstly, the variable case alone
is often easy to handle. Secondly, when the variable condi-
tion is sufficiently general, the inductive lifting to arbitrary
terms is usually rather mechanic. The CML itself can then
be seen as a reduction of the original statement to one that
only talks about variables.

To illustrate this idea, we are going to prove the admissi-
bility of weakening for P:

Γ `ter
P
a : b ⇒ Γ, c `ter

P
a[+1] : b[+1]

As it turns out, it is surprisingly tricky to prove this
directly with an induction over the initial judgement. We
have to be able to insert the new context element c at an
arbitrary position of the context, not just at the head position.
The substitution +1 needs to be modified to reflect this
generalisation as well. Moreover, the context Γ is dependent.
That is, we require a generalisation of the following form:

Γ1,Γ2 `
ter

P
a : b ⇒ Γ1, c,Γ

′
2 `

ter

P
a[ξ] : b[ξ]

where ξ is a suitable renaming that reflects the context re-
arrangement and Γ′2 is a suitably adjusted context. A con-
crete ξ can be given, and Γ′2 can be implemented as a certain

fold over Γ2, but the resulting proof is intricate. Taking into
consideration that we still aim for a relatively simple prop-
erty, these ad hoc technicalities are rather unsatisfactory.

So let us now backtrack and imagine that we instead had
the following CML at our disposal:

∀xb. Γ `ter
P
x : b ⇒ ∆ `ter

P
x[σ] : b[σ]

Γ `ter
P
a : b ⇒ ∆ `ter

P
a[σ] : b[σ]

Note how the proof obligation to show the result for all
terms a typable under Γ has been reduced to only those
variables x typable under Γ. Now weakening follows from

Γ `ter
P
x : b ⇒ Γ, c `ter

P
x[+1] : b[+1]

which is straightforward to prove.

4. CMLs for P

In the previous section we introduced, without proof, a CML
for the typing relation of P. We glossed over several techni-
calities and we completely ignored the fact that we require
a CML for type formation before we can properly deal with
typing. We are going to rectify this here and provide formal
proofs of the CMLs for both type formation and typing.

The CML for type formation in P looks like this:

∀x. Γ `ty
P
x ⇒ ∆ `ty

P
x[σ]

Γ `ty
P
a ⇒ ∆ `ty

P
a[σ]

To organise its proof, let us first introduce a notation for
the premise, that is, the variable condition:

`ty
P
σ : Γ→ ∆ := ∀x. Γ `ty

P
x ⇒ ∆ `ty

P
σ(x)

The notation alludes to the fact that this assigns a type to
the substitution σ. Concretely, σ can be seen as a type for-
mation preserving morphism from initial context Γ to final
context ∆. For this reason σ is called a context morphism6

from Γ to ∆. Observe, how the appropriate notion of context
morphism is determined by the CML.

The proof of the CML will proceed by induction on
Γ `ty

P
a. This raises two issues. Firstly, `ty

P
σ :Γ→ ∆ acts as a

proof invariant. Since the binder rules extend the context we
have to ensure that `ty

P
σ : Γ → ∆ is preserved under such

context extensions.
The bigger problem, though, is that the induction on the

derivation follows the termination order of the type structure,
rather than that for the application of substitutions to types.
The latter is the one we need as the former is going to
produce a circularity in the proof. We achieve this with an
idea borrowed from [2] and [18]: before proving the CML
for arbitrary substitutions σ, we will first prove it for the

6 Context morphisms are written as σ : ∆ → Γ (note the inverted order
of contexts) in [14] and correspond to Adams’ [2] satisfaction relation
∆ � σ :: Γ.
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special case of renamings ξ. This fixes the issue of the
termination order at the cost of duplicating proof structures.

As we will see shortly, though, interesting properties can
already be obtained from the renaming version. Moreover,
it is sometimes not even necessary to generalise to arbitrary
substitutions. We will exploit this in the later parts of our
work.

So we begin with renamings. We are going to add a
second renaming ρ to the initial context, in order to later be
able to also obtain a strengthening result. Our definition of a
context morphism thus is

`ty
P
ρ/ξ : Γ→ ∆ := ∀x. Γ `ty

P
ρ(x) ⇒ ∆ `ty

P
ξ(x)

Before we continue it is worth noting that the addition
of ρ leads to a non-standard form of context morphism. That
is, the ρ cannot be generalised to arbitrary substitutions. For
arbitrary substitutions we would lose the crucial property
that the quantification is over variable typings. Fortunately,
we only need strengthening for P type formation. Thus the
present CML is the only one that has to deal with the added
complexity of a second renaming. All other CMLs presented
throughout this work will use standard context morphism
definitions.

The first step of our present CML proof, then, is to estab-
lish that `ty

P
ρ/ξ : Γ→ ∆ is closed under context extensions.

Lemma 1

`ty
P
ρ/ξ : Γ→ ∆

`ty
P
⇑ρ/⇑ξ : Γ, c[ρ]→ ∆, c[ξ]

PROOF Assume `ty
P
ρ/ξ : Γ → ∆ and also Γ, c[ρ] `ty

P
⇑ρ(x)

for some variable x. We have to show ∆, c[ξ] `ty
P
⇑ξ(x). Now

discriminate on whether x = 0 or x = 1 + y for some y.
Let x = 0, then we have c[ρ][+1] = ∗, that is c = ∗. Our
proof obligation becomes ∆, ∗ `ty

P
0, which trivially holds.

Let now x = 1 + y for some y. Then we know Γ `ty
P
ρ(y) and

from the morphism assumption it follows that ∆ `ty
P
ξ(y).

Now since ξ is a renaming, ξ(y) is a variable. We can thus
use the variable rule and the definition of variable lookup to
obtain ∆, c[ξ] `ty

P
ξ(y)[+1] without resorting to any notion of

weakening. Since ξ ◦+1 = +1◦⇑ξ, this finishes the proof.

With this we can now prove the renaming variant of
our CML and obtain both weakening and strengthening as
special cases. Note that we have slightly rearranged the
premises to more closely reflect that the CML can be seen
as an admissible rule for P.

Lemma 2 (Renaming CML for P Type Formation)

Γ `ty
P
a[ρ] `ty

P
ρ/ξ : Γ→ ∆

∆ `ty
P
a[ξ]

PROOF By induction on Γ `ty
P
a[ρ], using Lemma 1 for the

binder cases.

Theorem 3 (Weakening for P Type Formation)

Γ `ty
P
a

Γ, c `ty
P
a[+1]

PROOF Instantiate Lemma 2. It is straightforward to show
that `ty

P
id/+1 : Γ→ Γ, c.

Theorem 4 (Strengthening for P Type Formation)

Γ, c `ty
P
a[+1]

Γ `ty
P
a

PROOF Instantiate Lemma 2. It is straightforward to show
that `ty

P
+1/id : Γ, c→ Γ.

While it is possible to obtain weakening and strength-
ening from the renaming CML, we will later require β-
substitutivity for type formation in P. This, in turn, is a con-
sequence of the full CML, which we are going to prove next.
Note that we can, at this point, switch back to the standard
context morphism definition.

The first step is again the closure of `ty
P
σ : Γ→ ∆ under

context extensions which then allows us to prove the CML,
as well as its specific instances for β-substitutivity.

Lemma 5

`ty
P
σ : Γ→ ∆

`ty
P
⇑σ : Γ, c→ ∆, c[σ]

PROOF The proof mostly follows that of Lemma 1, al-
beit without the added complexity of a second substitu-
tion. The interesting step is the one from ∆ `ty

P
σ(y) to

∆, c[σ] `ty
P
σ(y)[+1], which now relies on weakening (The-

orem 3), since σ(y) is an arbitrary term. +1◦⇑σ = σ ◦+1
holds for arbitrary substitutions.

Lemma 6 (CML for P Type Formation)

Γ `ty
P
a `ty

P
σ : Γ→ ∆

∆ `ty
P
a[σ]

PROOF By induction on Γ `ty
P
a, using Lemma 5 for the

binder cases.

Theorem 7 (β-Substitutivity for P Type Formation)

Γ, d `ty
P
a Γ `ter

P
c : d Γ `ty

P
d

Γ `ty
P
a[c · id]

Γ, ∗ `ty
P
a Γ `ty

P
c

Γ `ty
P
a[c · id]

PROOF Both follow from Lemma 6. It is straightforward to
show that Γ `ty

P
d and Γ `ter

P
c : d entail `ty

P
c · id : Γ, d → Γ.

Similarly, Γ `ty
P
c entails `ty

P
c · id : Γ, ∗ → Γ.

This completes the treatment of type formation for P. Let
us next consider the CML for typing. The proof structure is
very similar, so we will only present the renaming version
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to obtain weakening. The full CML can be found in the
formalisation. It is, however, not relevant for the remainder
of this work.

We again define a suitable notion of context morphism:

`ter
P
σ : Γ→ ∆ := ∀xb. Γ `ter

P
x : b ⇒ ∆ `ter

P
σ(x) : b[σ]

We show that this is closed under context extensions, then
prove the CML and obtain weakening as a special case.

Lemma 8

`ter
P
ξ : Γ→ ∆ `ty

P
id/ξ : Γ→ ∆

`ter
P
⇑ξ : Γ, c→ ∆, c[ξ]

PROOF Assume `ter
P
ξ :Γ→ ∆ and also Γ, c `ter

P
x:d for some

variable x. We have to show ∆, c[ξ] `ter
P
⇑ξ(x) : d[⇑ξ]. Now

discriminate on whether x = 0 or x = 1 + y for some y.
Let x = 0, then we have d = c[+1] and our proof obligation
becomes ∆, c[ξ] `ter

P
0 : c[ξ][+1], which trivially holds. Let

now x = 1 + y for some y. Then we know Γ `ter
P
y : b

with d = b[+1]. Since ξ is a context morphism, it follows
that ∆ `ter

P
ξ(y) : b[ξ]. Now since ξ is a renaming, ξ(y) is a

variable. We can thus use the variable rule and the definition
of context lookup, as well as strengthening (Theorem 4)
and weakening (Theorem 3) for type formation to obtain
∆, c[ξ] `ter

P
ξ(y)[+1] : b[ξ][+1]. Some trivial rearrangement

of renamings yields our goal.

Lemma 9 (Renaming CML for P Typing)

Γ `ter
P
a : b `ty

P
id/ξ : Γ→ ∆ `ter

P
ξ : Γ→ ∆

∆ `ter
P
a[ξ] : b[ξ]

PROOF By induction on Γ `ter
P
a : b, using Lemma 8 for the

binder cases.

Theorem 10 (Weakening for P)

Γ `ter
P
a : b

Γ, c `ter
P
a[+1] : b[+1]

PROOF Instantiate Lemma 9. The proof of `ter
P

+1:Γ→ Γ, c
is straightforward.

The proof of each CML we are going to encounter
throughout the remainder of this work will follow along
the same lines.

5. Equivalence of λ2 and P

We are now going to prove the first half of our equivalence
result, that is, the equivalence of λ2 and P. This is the easier
part as both systems use the same PTS syntax. There are
three main issues we have to consider:
1. We have to separate the single typing relation of λ2 into

the two relations, typing and type formation, of P.

2. The type system of λ2 is aligned with the uniform PTS
syntax. That is, there is only one abstraction and one
application rule. P, on the other hand, distinguishes type
and term level abstraction and application with separate
rules.

3. Some of λ2’s typing rules have more premises than
their P counterparts.
For the first issue, it is sufficient to observe that, in λ2,

type formation is expressed as Γ
2̀
a : ∗.

The second is also not very hard, but mostly tedious, as
it boils down to discriminating on the type of the abstracted
variable to determine exactly what kind of product is being
formed, or what kind of abstraction is being introduced or
applied.

The hardest part is handling the third aspect. Consider,
for example, the abstraction rule of λ2 (Figure 2),

Γ
2̀
a : u Γ, a

2̀
b : c Γ, a

2̀
c : ∗

Γ
2̀
λa. b : Πa. c

and observe in particular the third premise, which enforces
that the type of the body of the abstraction, c, is a well-
formed type. Contrast this to the two corresponding abstrac-
tion rules of P (Figure 3):

Γ `ty
P
a Γ, a `ter

P
b : c

Γ `ter
P
λa. b : Πa. c

Γ, ∗ `ter
P
a : b

Γ `ter
P
λ∗. a : Π∗. b

Neither of the rules has a counterpart to the third premise
of the λ2 rule. We can bridge this gap with a property
variously known as propagation, type correctness or validity
of the type system:

Lemma 11 (Propagation for P) If Γ `ter
P
a : b, then Γ `ty

P
b.

PROOF By induction on Γ `ter
P
a : b. In the two application

cases, β-substitutions are added to the types. We handle
these with Theorem 7.

Now that we have propagation, we can formulate the first
major part of our equivalence proof:

Lemma 12 (Correspondence of λ2 and P)

Γ `ty
P
a ⇒ Γ

2̀
a : ∗(a)

Γ `ter
P
a : b ⇒ Γ

2̀
a : b(b)

Γ
2̀
a : b ⇒


a = ∗ if b = �
Γ `ty

P
a if b = ∗

Γ `ter
P
a : b otherwise

(c)

PROOF Each by induction on the respective premise. The
proof of (a) is routine. The proof of (b) requires propagation
(Lemma 11) and (a), but is otherwise also routine. The proof
of (c) repeatedly requires discrimination on the particular
syntactic form of the argument type of an abstraction.

Since Lemma 12 is somewhat technical, we summarise our
understanding of the equivalence of λ2 and P in the follow-
ing theorem.
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bxtyc := x

b∀. Ac := Π∗. bAc
bA→ Bc := Π bAc . bBc [+1]

bxterc := x

bs tc := bsc btc
bsAc := bsc bAc
bΛ. sc := λ∗. bs[id, +1]c
bλA. sc := λ bAc . bs[+1, id]c

Figure 5. Syntax translations from F to PTS.

Theorem 13 (Equivalence of λ2 and P)

Γ `ter
P
a : b ⇐⇒ Γ

2̀
a : b ∧ Γ

2̀
b : ∗

PROOF Repeated application of Lemma 12. Note that Γ `ty
P
b

entails b 6= ∗ and b 6= �.

6. Syntax Translations between F and PTS
The next part of our equivalence proof will establish the
equivalence of F and P. In order to understand the difficul-
ties of this step, let us recall the main example from Sec-
tion 2. We have presented the F typing judgement

1; (∀. 0ty → 0ty), 0ty `
ter

F
1ter 0ty 0ter : 0ty

and introduced

∗, (Π∗.Π0. 1), 1 `ter
P

1 2 0 : 2

as a potential PTS counterpart. Equally valid, though, is

(Π∗.Π0. 1), ∗, 0 `ter
P

2 1 0 : 1

That is, the correspondence of F and P typing judgements
is not a one-to-one mapping. We can also see that the corre-
spondence of the indices is involved. Finally, applications
are problematic. While the F term 1ter 0ty 0ter clearly distin-
guishes type and term application, it is impossible to make
this distinction for a P term like 1 2 0 unless the context is
known.

To state the equivalence of these systems we have to
introduce syntactic translations. Instead of lifting these to
the level of contexts and attempting a direct proof, we will
use CMLs to relate corresponding judgements. This will
circumvent most of the obstacles outlined above.

The two (total) translation functions bAc and bsc from the
types and terms of F to PTS terms are defined in Figure 5.
Note that the presentation is somewhat simplified to enhance
readability. More precisely, the recursive calls for bΛ. sc and
bλA. sc are not structurally recursive. In the formalisation,
this issue is handled via two additional arguments that act

dxeΓty := xty if x : ∗ ∈ Γ

dΠ∗. aeΓty := ∀. daeΓ,∗
ty

dΠa. beΓty := daeΓty → dbe
Γ,a
ty [–1]

dxeΓter := xter if x : a ∈ Γ, a 6= ∗

da beΓter := daeΓter dbe
Γ
ty

da beΓter := daeΓter dbe
Γ
ter

dλ∗. aeΓter := Λ. daeΓ,∗
ter [id, –1]

dλa. beΓter := λ daeΓty . dbe
Γ,a
ter [–1, id]

Figure 6. Syntax translations from PTS to F.

as accumulators for a type and, respectively, a term substitu-
tion. The accumulators provide a conduit when we wish to
move a substitution through the translation in either direc-
tion.

For the inverse translation we introduce daeΓty and daeΓter
in Figure 6. These two are necessarily partial as there are
certain PTS terms that have no counterpart in F, neither as
a type nor as a term. The context Γ is required to disam-
biguate type and term variables7. The translations daeΓter and
daeΓty are given with the implicit assumption that a particu-
lar translation is defined iff all of its constituent components
are defined. Note, in particular, that for a given Γ and a, at
most one of daeΓter and daeΓty is defined. This justifies the two
defining equations for da beΓter.

The variable cases of the translations may also appear sur-
prising, given that they transport de Bruijn indices directly
from one side to the other. This only works under the as-
sumption that all free variables are correctly mapped prior
to the translation of a term. For closed terms this obviously
holds and all the binder cases are carefully set up to preserve
this property through the application of suitable renamings.
For open terms, on the other hand, we will usually have a
typing context at our disposal and the variable condition of
the associated CML will ensure a correct mapping of vari-
ables.

We are going to exploit the fact that both F and P are able
to internalise their contexts, and also that CMLs are very
easy to instantiate when the context of the initial judgement
happens to be empty. Hence we formulate our equivalence
result as

`ter
F
s :A ⇐⇒ `ter

P
bsc : bAc

`ter
P
a : b ⇐⇒ `ter

F
dae〈〉ter : dbe〈〉ty

7 Since all that is required is a partition of the free variables into term and
type variables, we realise this context argument in the formalisation as a
boolean function γ, which abstracts away the overhead of context lookups
and syntactic comparisons.
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The final proof of this result will be given towards the end
of Section 7 (Theorems 27 and 28). It relies on a number
of carefully chosen steps. We first prove the two forward
implications. To obtain each of the inverse implications, we
will then suitably instantiate the respective other forward
implication. The proof is then closed by establishing that
accumulated translation steps cancel.

In this section we are going to establish the forward im-
plications which state that the translations preserve typing.
These implications can also be viewed as transforming valid
judgements of F into valid judgements of P, and vice versa.
This motivates our use of CMLs to handle the preservation
statements. We will in fact only require the renaming vari-
ants of these CMLs.

We begin with the preservation of type formation from F
to P. In order to formulate the correct CML, it is helpful to
recall that we want a reduction from arbitrary judgements
to variable judgements. That is, we would like to prove the
following:

∀x. N `ty
F
xty ⇒ Γ `ty

P
bxtyc [ξ]

N `ty
F
A ⇒ Γ `ty

P
bAc [ξ]

which determines the required definition of context mor-
phisms:

ξ : (N `ty
F
)→ ( Γ `ty

P
) := ∀x. N `ty

F
xty ⇒ Γ `ty

P
ξ(x)

Note that we have simplified the translation step on the
right from bxtyc [ξ] to ξ(x). We also adjusted the notation to
reflect that we are now moving from one system to another.

It should come as no surprise that the proof of the CML
will rely on the closure of ξ : (N `ty

F
) → ( Γ `ty

P
) under

context extensions. What is new though, is that we obtain
two separate closure rules. One for the addition of a new
type variable and another for a new term variable.

Lemma 14

ξ : (N `ty
F
)→ ( Γ `ty

P
)

⇑ξ : (N + 1 `ty
F
)→ ( Γ, ∗ `ty

P
)

ξ : (N `ty
F
)→ ( Γ `ty

P
)

ξ ◦+1 : (N `ty
F
)→ ( Γ, bAc [ξ] `ty

P
)

PROOF The first is by discrimination on the quantified vari-
able (cf. proof of Lemma 8). The second is straightforward
given weakening for type formation in P (Theorem 3).

Lemma 15 (CML: F to P – Type Formation) Type for-
mation is preserved under b·c, where ξ ensures a suitable
renaming of the free type variables in A:

N `ty
F
A ξ : (N `ty

F
)→ ( Γ `ty

P
)

Γ `ty
P
bAc [ξ]

PROOF By induction on N `ty
F
A. Lemma 14 is used for the

binder cases.

Before we can play the same game for the typing level,
we have to consider the issue of a variable clash. A term of F
that contains the same index as a type and a term variable is
potentially problematic. To avoid a clash we have to adjust
the free type and term variables in a term with a pair of
renamings with disjoint ranges. As mentioned above, we
are going to build this idea of separating the free variables
implicitly into our formulation of the CML. That is, when a
pair 〈ξ, ζ〉 constitutes a context morphism then it necessarily
separates the free variables in a suitable manner.

Also note that since typing derivations contain type for-
mation derivations, we are going to need Lemma 15, and
thus also have to assume that the renaming ξ that is used
on the type variables is a suitable context morphism in this
regard. Thus our CML will take the following form:

ξ : (N `ty
F
)→ ( Γ `ty

P
)

∀xA. N ; ∆ `ter
F
xter :A ⇒ Γ `ter

P
bxter[ξ, ζ]c : bAc [ξ]

N ; ∆ `ter
F
s :A ⇒ Γ `ter

P
bs[ξ, ζ]c : bAc [ξ]

We define

〈ξ, ζ〉 : (N ; ∆ `ter
F

)→ ( Γ `ter
P

) :=

∀xA. N ; ∆ `ter
F
xter :A ⇒ Γ `ter

P
ζ(x) : bAc [ξ]

and proceed to first establish closure under context exten-
sions and then prove the CML for typing under translations
from F to P.

Lemma 16

〈ξ, ζ〉 : (N ; ∆ `ter
F

)→ ( Γ `ter
P

)

〈⇑ξ, ζ ◦+1〉 : (N + 1; ∆[+1] `ter
F

)→ ( Γ, ∗ `ter
P

)

〈ξ, ζ〉 : (N ; ∆ `ter
F

)→ ( Γ `ter
P

) ξ : (N `ty
F
)→ ( Γ `ty

P
)

〈ξ ◦+1,⇑ζ〉 : (N ; ∆, A `ter
F

)→ ( Γ, bAc [ξ] `ter
P

)

PROOF The first is relatively easy, with some minor tech-
nicalities to handle the operation ∆[+1]. The second is the
extension step that requires the case distinction on the quan-
tified variable, while the side condition is needed to handle
the type of that variable with Lemma 15.

Lemma 17 (CML: F to P – Typing) Typing is preserved
under b·c, where 〈ξ, ζ〉 ensures a suitable renaming of the
free type and term variables in s and A:

N ; ∆ `ter
F
s :A

ξ : (N `ty
F
)→ ( Γ `ty

P
) 〈ξ, ζ〉 : (N ; ∆ `ter

F
)→ ( Γ `ter

P
)

Γ `ter
P
bs[ξ, ζ]c : bAc [ξ]

PROOF By induction on N ; ∆ `ter
F
s : A. Lemmas 14 and 16

are used for the binder cases. Nested type formation deriva-
tions are handled with Lemma 15.
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Lemma 18 (Preservation of Typing from F to P)

`ter
F
s :A ⇒ `ter

P
bsc : bAc

PROOF Instantiate Lemma 17 with the following:

id : ( 0 `ty
F
)→ ( 〈〉 `ty

P
) 〈id, id〉 : ( 0; 〈〉 `ter

F
)→ ( 〈〉 `ter

P
)

Both hold vacuously.

For the preservation law from P to F we use the same
setup and will only highlight a few points of interest. Note
that since the translations from P to F are partial, all of the
following results have to establish that all relevant instances
of translation steps are in fact defined. In each of the proofs
enough information is available to ensure this. Hence we are
not going to further discuss the treatment of partiality.

We define context morphisms as

ξ : ( Γ `ty
P
)→ (N `ty

F
) := ∀x. Γ `ty

P
x ⇒ N `ty

F
ξ(x)

and then prove the closure step and the CML.

Lemma 19
ξ : ( Γ `ty

P
)→ (N `ty

F
)

⇑ξ : ( Γ, ∗ `ty
P
)→ (N + 1 `ty

F
)

ξ : ( Γ `ty
P
)→ (N `ty

F
) Γ `ty

P
a

–1◦ξ : ( Γ, a `ty
P
)→ (N `ty

F
)

PROOF Both are by discrimination on the quantified vari-
able. The side condition on the second rule is necessary to
ensure that the index 0 is a term variable. This in turn entails
that all type variables are non-zero and hence the application
of the renaming –1 to a type variable can be inverted.

Lemma 20 (CML: P to F – Type Formation) Type for-
mation is preserved under d·eΓty, where ξ ensures a suitable
renaming of the free variables in a:

Γ `ty
P
a ξ : ( Γ `ty

P
)→ (N `ty

F
)

N `ty
F
daeΓty [ξ]

PROOF By induction on Γ `ty
P
a. Lemma 19 is used for the

binder cases.

For the preservation of typing from P to F we define
context morphisms as

〈ξ, ζ〉 : ( Γ `ter
P

)→ (N ; ∆ `ter
F

) :=

∀xb. Γ `ter
P
x : b ⇒ N ; ∆ `ter

F
ζ(x) : dbeΓty [ξ]

and again prove the extension lemma as well as the CML.

Lemma 21
〈ξ, ζ〉 : ( Γ `ter

P
)→ (N ; ∆ `ter

F
) ξ : ( Γ `ty

P
)→ (N `ty

F
)

〈⇑ξ, –1◦ζ〉 : ( Γ, ∗ `ter
P

)→ (N + 1; ∆[+1] `ter
F

)

〈ξ, ζ〉 : ( Γ `ter
P

)→ (N ; ∆ `ter
F

) ξ : ( Γ `ty
P
)→ (N `ty

F
)

〈–1◦ξ,⇑ζ〉 : ( Γ, a `ter
P

)→ (N ; ∆, daeΓty [ξ] `ter
F

)

PROOF Both are by discrimination on the quantified vari-
able.

Lemma 22 (CML: P to F – Typing) Typing is preserved
under d·eΓter, where 〈ξ, ζ〉 ensures a suitable renaming of the
free variables in a and b:

Γ `ter
P
a : b

ξ : ( Γ `ty
P
)→ (N `ty

F
) 〈ξ, ζ〉 : ( Γ `ter

P
)→ (N ; ∆ `ter

F
)

N ; ∆ `ter
F
daeΓter [ξ, ζ] : dbeΓty [ξ]

PROOF By induction on Γ `ter
P
a : b. Lemmas 19 and 21 are

used for the binder cases. Nested type formation derivations
are handled with Lemma 20.

Lemma 23 (Preservation of Typing from P to F)

`ter
P
a : b ⇒ `ter

F
dae〈〉ter : dbe〈〉ty

PROOF Instantiate Lemma 22 with the following:

id : ( 〈〉 `ty
P
)→ ( 0 `ty

F
) 〈id, id〉 : ( 〈〉 `ter

P
)→ ( 0; 〈〉 `ter

F
)

Both hold vacuously.

7. Cancellation Laws and Equivalence
Theorems

At this point we know that the introduced translations pre-
serve judgements. To obtain a full reduction result we re-
quire the inverse implications as well. Proving these is the
objective of this section.

The basic idea is relatively straightforward: we simply
instantiate the preservation laws with the result of a first
translation step. Thus to obtain the inverse of Lemma 18,
we take Lemma 23 and instantiate it as follows:

`ter
P
bsc : bAc ⇒ `ter

F
dbsce〈〉ter : dbAce〈〉ty

The proof is complete, if we can ensure that dbsce〈〉ter = s

and dbAce〈〉ty = A. That is, we require a notion of cancel-
lation for our translations. In total we will have to provide
four such cancellation laws, the two we just mentioned for
the round trip F–P–F, and another two for P–F–P.

Stating these cancellation laws requires a little care. Con-
sider again the case of dbsce〈〉ter = s. It will be used to es-
tablish a typing for s, so we must not already assume such
a typing for s, for otherwise the law would be unusable. It
is, however, perfectly reasonable to assume a typing for bsc,
which holds in the situation where the law is going to be
used.

We again have to generalise over arbitrary renamings, and
also contexts, in order to prove these laws.

Let us first consider the P–F–P round trip, which, despite
the partiality of the first translation step, is the easier of the
two.
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Lemma 24 (P–F–P Cancellation)

da[ξ]eΓty = A ⇒ bAc = a[ξ]

da[ξ]eΓter = s ⇒ bsc = a[ξ]

PROOF Both are by induction on a and mostly routine.
Some minor groundwork is required to ensure that, e.g.,
a[ξ1] = a[ξ2] whenever ξ1 and ξ2 agree on the free variables
of a. The proof of the second implication requires the first.

Next we consider the F–P–F round trip. The cancellation
for the type translation does not cause any major issues once
we assume that the result of the first translation step is a
well-formed type in P under some Γ.

Lemma 25 (F–P–F Cancellation of Type Translation)

Γ `ty
P
bA[ξ]c ⇒ dbA[ξ]ceΓty = A[ξ]

PROOF By induction on A.

For the term translation, the situation is slightly more
involved. We are again faced with the issue that a naive term
translation step from F to P could potentially confuse free
term and type variables. Since we are effectively proving
the cancellation prior to typing, we cannot rely on typing to
implicitly fix this issue (as we did for Lemma 17). In order
to prevent this from happening here, we have to explicitly
express that a pair or renamings sufficiently separates the
free variables.

Γ
P̀
ξ ‖ ζ := (∀xa. ξ(x) : a ∈ Γ ⇒ a = ∗) ∧

(∀xa. ζ(x) : a ∈ Γ ⇒ a 6= ∗)

Note in particular, that Γ is a PTS context, namely the one
under which bs[ξ, ζ]c should be typable.

Lemma 26 (F–P–F Cancellation of Term Translation)

Γ `ter
P
bs[ξ, ζ]c : c ⇒ Γ

P̀
ξ ‖ ζ ⇒ dbs[ξ, ζ]ceΓter = s[ξ, ζ]

PROOF By induction on s and using Lemma 25 for the
occurring instances of type translations. We also require two
closure conditions for Γ

P̀
ξ ‖ ζ to handle the binder cases:

Γ
P̀
ξ ‖ ζ

Γ, ∗
P̀
⇑ξ ‖ ζ ◦+1

Γ
P̀
ξ ‖ ζ Γ `ty

P
c

Γ, c
P̀
ξ ◦+1 ‖ ⇑ζ

Both are easy to verify.

At this point we have all the ingredients we require to
prove the inverse directions of the preservation results from
Section 6. This in turn allows us to obtain the equivalences
that state the full reduction of the typability problem from F
to λ2, and vice versa.

Theorem 27 (Reduction of Typability from F to P)

`ter
F
s :A ⇐⇒ `ter

P
bsc : bAc

PROOF Lemma 18 yields the forward implication. For the
inverse direction we instantiate Lemma 23 to

`ter
P
bsc : bAc ⇒ `ter

F
dbsce〈〉ter : dbAce〈〉ty

The accumulated translations cancel according to Lem-
mas 25 and 26. Observe that 〈〉

P̀
id ‖ id vacuously holds.

Theorem 28 (Reduction of Typability from P to F)

`ter
P
a : b ⇐⇒ `ter

F
dae〈〉ter : dbe〈〉ty

PROOF Lemma 23 yields the forward implication. For the
inverse direction we instantiate Lemma 18 to

`ter
F
dae〈〉ter : dbe〈〉ty ⇒ `ter

P

⌊
dae〈〉ter

⌋
:
⌊
dbe〈〉ty

⌋
and use Lemma 24 to cancel the accumulated translations.

Lemma 29 (Reduction of Typability from F to λ2)

`ter
F
s :A ⇐⇒

2̀
bsc : bAc ∧

2̀
bAc : ∗

PROOF

`ter
F
s :A ⇐⇒ `ter

P
bsc : bAc (Thm. 27)

⇐⇒
2̀
bsc : bAc ∧

2̀
bAc : ∗ (Thm. 13)

Lemma 30 (Reduction of Typability from λ2 to F)

2̀
a : b ∧

2̀
b : ∗ ⇐⇒ `ter

F
dae〈〉ter : dbe〈〉ty

PROOF

2̀
a : b ∧

2̀
b : ∗ ⇐⇒ `ter

P
a : b (Thm. 13)

⇐⇒ `ter
F
dae〈〉ter : dbe〈〉ty (Thm. 28)

Theorem 31 (Equivalence of F and λ2) The typability
problem under the empty context can be reduced from F to
λ2, and vice versa.

`ter
F
s :A ⇐⇒

2̀
bsc : bAc ∧

2̀
bAc : ∗

2̀
a : b ∧

2̀
b : ∗ ⇐⇒ `ter

F
dae〈〉ter : dbe〈〉ty

PROOF Conjunction of Lemmas 29 and 30.

8. Related Work
Context morphism lemmas appear in [2, 14, 18]. The basic
idea appears to be due to McKinna: see footnote on p. 104
of [11]. Together with Goguen, he presents it in [14] as a
proof device to obtain a generic substitutivity result for a
PTS.

In [2] Adams adapts this approach to work with syntactic
families, indexed with an upper bound on the set of free
variables. In his work he also presents a number of high level
design principles for the formal treatment of PTS theory that
he collectively calls a “big-step” approach. His proofs are
formalised in Coq.
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Several formalised CMLs for a pure de Bruijn setting can
also be found in the examples that accompany the Autosubst
framework. The core principles are nicely laid out in [18].

An interesting remark can be found in [19] where cer-
tain aspects of the F*-language and its type system are dis-
cussed. F*’s support for inductions with custom termination
arguments allows the authors to give a direct inductive prove
of a CML, without establishing the renaming case first. We
did not attempt to port this technique to our Coq proofs. The
explicit formulation of the correct termination order is com-
plicated, and additional overhead would be caused by sim-
ulating the required features of F* in Coq. Meanwhile, the
gain would have been small, as most of our results only rely
on renaming CMLs.

Several of the complications of our proofs stem from the
various explicit representations of variable binding. Thus it
is worth discussing a higher-order abstract syntax (HOAS)
presentation as an alternative. Unfortunately the type theory
of Coq is too strong to natively support HOAS-reasoning.
Workarounds to this problem exist but neither Chlipalas
parametric HOAS (PHOAS) [8] nor the various instances
of the HYBRID framework [6, 7, 10] turned out to be vi-
able options. It is not clear how PHOAS would handle the
translation of syntax, and the most suitable variant of HY-
BRID [7] could not sensibly support the single-sorted PTS
syntax. In addition both techniques introduce extra layers of
abstraction that increase the cognitive gap between an infor-
mal paper presentation and a corresponding formalisation. It
appears to us as if the gap is even bigger than the one for a
pure de Bruijn presentation, though this is subjective and we
may be biased.

9. Conclusion and Future Work
We have demonstrated that context morphism lemmas,
which were originally designed as a proof device for a sin-
gle type system, can be extended to a multi-system setting.
Moreover, the technique is capable of handling the transla-
tion from one syntactic system to another.

We have used this technique to formalise the equivalence
of two variants of System F, by showing that judgements are
preserved under translations from one system to another and
by establishing cancellation laws. That is, a judgement holds
in one system if and only if its translated version holds in the
other. The formalisation is about 1200 LOC, excluding the
Autosubst framework.

Our result further demonstrates that the combination of
pure de Bruijn syntax, parallel substitutions and context
morphism lemmas leads to elegant proofs for non-trivial
results.

There are a number of future research directions this
work could take. An obvious next step is the extension of
the equivalence result to further variants of System F. This
would test the proposed techniques on new scenarios as well

as strengthen the idea that all variants of F discussed in the
literature are essentially the same.

Another open question is that of the faithfulness of the
syntax translations with respect to β-reduction behaviour.
It is unlikely that we defined an unfaithful translation that
still satisfied the strong results we have shown in this work,
but this is not a formal argument. Thus we have taken some
preliminary steps to establish that (weak) β-reduction is
preserved under the syntactic translations. So far we have
proven that b·c preserves weak β-reduction. The inverse
direction will require additional work, since λ2 has (ill-
typed) reductions that F cannot mirror.

Finally it would be interesting to compare our proof to
other formalisations using locally nameless syntax [3] or
higher-order abstract syntax. With respect to the latter it
might be interesting to first build a slim, elegant and flex-
ible HOAS abstraction layer. A good starting point is the
HYBRID variant of [6] which already uses de Bruijn syntax
internally. It is, however, burdened by the somewhat cum-
bersome single-variable substitutions. It may be possible to
improve upon this using the Autosubst library.

Alternatively, we could imagine replaying this proof in
some form in another proof system, say one that natively
supports a HOAS approach. This would allow us to analyse
which parts of the proof are inherently complicated and
which issues are artefacts of the de Bruijn setup. The Abella
proof system [4] could be an interesting candidate for such
a comparison.
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