
Equivalence of System F and λ2:

A Case Study of Context Morphisms
— Extended Abstract —

Jonas Kaiser, Tobias Tebbi, and Gert Smolka

Abstract. We give a machine-checked proof of the equivalence of the usual, two-sorted

presentation of System F and its single-sorted pure type system variant λ2. This is

established by reducing the typing problem of F to λ2 and vice versa. The difficulty

lies in aligning different binding-structures and different contexts (dependent vs. non-

dependent). The use of de Bruijn syntax, parallel substitutions, and context morphism

lemmas leads to a surprisingly elegant proof. We use the Coq proof assistant and the

substitution library Autosubst.

1 Introduction

There are different presentations of “System F” in the literature, and we often found that

properties that have been proven for presentation X are assumed for presentation Y, without

verifying that the presentations are in fact equivalent. As it turns out, such an equivalence

proof, if done in full formal detail, is surprisingly intricate. The arising proof obligations

become particularly involved when the syntax of one presentation has to be translated to that of

another. Our goal is to demonstrate that a pure de Bruijn setup with parallel substitutions and

the systematic use of context morphism lemmas leads to an elegant treatment of the hidden

complexities. Parallel substitutions (i.e. multi-variable substitutions) lead to clear and natural

lemma statements [7], contradicting the usual criticism [2] of de Bruijn formalisations.

Here we consider the usual two-sorted presentation, as given by Harper in [6], and a pure

type system (PTS) variant λ2, closely related to the one found in Barendregt’s λ-cube [3]. The

respective type systems are given in Figures 1 and 2. Further details are given in Section 2.

In his doctoral thesis, Geuvers [4] presents a proof sketch that valid typing judgements

can be translated between these two presentations. Apart from that we are not aware of

other treatments of this correspondence. We improve upon Geuvers’ result in two ways. First,

we also translate invalid typing judgements to invalid typing judgements, thus obtaining full

computational reductions for the decision problem of typability. Second, our proof is completely

formalised with the Coq proof assistant.1

Our equivalence result defines syntactic translations b·c and d·e and asserts the following

equivalences:

(1) F̀ s : A iff 2̀ bsc : bAc (2) 2̀ a : b iff F̀ dae : dbe

Note that the systems differ in two main aspects. First, F syntactically distinguishes terms

and types, while λ2 only possesses a single sort of terms. In addition, their inference systems

1 The accompanying formalisation can be found at https://www.ps.uni-saarland.de/extras/hor16/.

1

https://www.ps.uni-saarland.de/extras/hor16/

A,B,C := xty | A→ B | ∀. A s, t := xter | s t | λA. s | s A | Λ. s x ∈ N

x < N

N `tyF xty

N `tyF A N `tyF B
N `tyF A→ B

(N + 1)`tyF A
N `tyF ∀. A

Ax = A N `tyF A
N ;An, . . . , A0 `ter

F xter : A

N ; Γ `ter

F s : A→ B N ; Γ `ter

F t : A

N ; Γ `ter

F s t : B

N ; Γ , A`ter

F s : B N `tyF A
N ; Γ `ter

F λA. s : A→ B

N ; Γ `ter

F s : ∀. A N `tyF B
N ; Γ `ter

F s B : A[B · id]

(N + 1); Γ[+1]`ter

F s : A

N ; Γ `ter

F Λ. s : ∀. A

Figure 1: System F – two-sorted de Bruijn syntax, type formation and typing rules.

a,b, c, d := u | x | ab | λa.b | Πa.b u ∈ {*,�} x ∈ N

0 : s[+1] ∈ Γ , s

x : s ∈ Γ

(x + 1) : s[+1] ∈ Γ , t Γ 2̀ * : �

x : a ∈ Γ Γ 2̀ a : u

Γ 2̀ x : a

Γ 2̀ a : u Γ , a 2̀ b : *

Γ 2̀ Πa.b : *

Γ 2̀ a : Πc.d Γ 2̀ b : c

Γ 2̀ ab : d[b · id]

Γ , a 2̀ b : c Γ 2̀ a : u Γ , a 2̀ c : *

Γ 2̀ λa.b : Πa. c

Figure 2: PTS – single-sorted de Bruijn syntax, dependent context lookup, and typing rules of λ2.

exhibit a number of structural differences. We are going to treat these issues separately by

decomposing the above equivalence result into two parts.

First we will introduce an auxiliary type system P (Figure 3) for the PTS syntax that matches

the inference structure of F and is equivalent to λ2. We then proceed to prove the equivalence

of F and P under the given syntax translations. This latter part is involved as the translations

d·e from the PTS syntax into the two sorts of F are necessarily partial.

We found that systematically phrasing all essential statements for both parts of the proof as

context morphism lemmas [5, 1] leads to a clear and elegant formalisation.

In summary, our contributions are:

• A proof of the equivalence, via the computational reduction of the decision problem of

typability, of two common presentations of F that is fully machine-checked with the proof

assistant Coq.

• A case-study illustrating that working with pure de Bruijn syntax and parallel substitutions

is not only possible but desirable as it leads to elegant theorem statements and proofs.

• The observation that context morphisms are a powerful tool for relating syntaxes and type

systems with different binding structures.

2 Parallel Substitutions and Context Morphisms

We are treating syntax in a formal setting and hence opt for a pure de Bruijn presentation

throughout this work. Instead of using names, variables are represented as indices, that is,

natural numbers that designate their corresponding (nameless) binder, counting upwards in the

2

x : * ∈ Γ
Γ `tyP x

Γ `tyP a Γ , a`tyP b
Γ `tyP Πa.b

Γ , *`tyP a
Γ `tyP Π*. a

x : a ∈ Γ Γ `tyP a
Γ `ter

P x : a

Γ `ter

P a : Πc.d Γ `ter

P b : c

Γ `ter

P ab : d[b · id]

Γ , a`ter

P b : c Γ `tyP a
Γ `ter

P λa.b : Πa. c

Γ `ter

P a : Π*. b Γ `tyP c
Γ `ter

P ac : b[c · id]

Γ , *`ter

P a : b

Γ `ter

P λ*. a : Π*. b

Figure 3: PTS – auxiliary type system P.

syntax tree.

Parallel substitutions (written σ,τ) are functions from variables to terms. A variable x
is free in a term s if x + k occurs in s under k binders. We write s[σ] for s with every free

variable x being replaced by σ(x). The composition σ◦τ is defined as (σ◦τ)(x) := σ(x)[τ].
We also frequently encounter the identity substitution id, defined as id(x) := x, and the shift

substitution +1, defined as +1(x) := x+1, both of which also constitute examples of renamings2

(written ξ, ζ), that is, substitutions that map variables to variables. Note that a substitution σ
can be viewed as the infinite stream σ(0), σ(1), . . . of terms. This motivates the definition of a

cons operation s · σ = s, σ(0), σ(1), . . ., which allows us to succinctly handle beta reduction:

the term (λ. s)t reduces to s[t · id]. The renaming -1 := 0 · id is a right inverse of +1. For a

detailed treatment of the underlying theory and its implementation in the Autosubst library,

see [7].

Working with parallel substitutions can be seen as a “big-step” approach, a phrase coined

by Adams in [1], since they act on all variables at once. The approach avoids an auxiliary shift

operation on terms, lemmas generalised to add a type in the middle of a context and other

ad-hoc techniques contributing to the bad reputation of de Bruijn indices.

A substitution σ is a context morphism3 from a context Γ to a context ∆ for a judgement `
if it maps variable judgements under the context Γ into judgements under σ and under the

context ∆:

`σ : Γ → ∆ := ∀x, t. Γ ` x : t → ∆ ` x[σ] : t[σ]

If we consider weakening – below left in its usual de Bruijn presentation – as a “small step”

lemma, in that it only changes the context in a single position, we can formulate a context

morphism lemma as its “big step” variant – below right – that has the potential to change the

complete context. Weakening is then a corollary of the context morphism lemma, using the

context morphism `+1 : Γ → Γ , u.

Γ ` s : t

Γ , u ` s[+1] : t[+1]

Γ ` s : t `σ : Γ → ∆
∆ ` s[σ] : t[σ]

A context morphism is a typed substitution and the context morphism lemma is a substi-

tutivity property of the typing judgement. Context morphism lemmas admit direct proofs by

induction on the typing derivation.

2 Note that we do not require renamings to be injective or surjective. For example, +1 is not surjective.
3 Context morphisms are written as σ : ∆ -→ Γ (note the inverted order of contexts) in [5] and correspond to

Adams’ [1] satisfaction relation ∆ î σ :: Γ .

3

⌊
xty
⌋

:= x dxeΓty := xty if x : * ∈ Γ
bA→ Bc := ΠbAc. bBc[+1] dΠ*. aeΓty := ∀. daeΓ ,*ty

b∀. Ac := Π*. bAc dΠa.beΓty := daeΓty → dbeΓ ,aty [-1]

bxterc := x dxeΓter := xter for some a ≠ * with x : a ∈ Γ
bs tc := bsc btc dabeΓter := daeΓter dbeΓty

bλA. sc := λ bAc . bs[+1, id]c dabeΓter := daeΓter dbeΓter

bs Ac := bsc bAc dλ*. aeΓter := Λ. daeΓ ,*ter[id, -1]

bΛ. sc := λ*. bs[id, +1]c dλa.beΓter := λ daeΓty . dbeΓ ,ater [-1, id]

Figure 4: Syntax translations.

3 The Equivalence Proof

The proof of the equivalence of λ2 and P is straightforward if propagation (Γ `ter
P s : t → Γ `tyP t)

holds for P. Propagation follows from substitutivity of type formation, which is relatively easy

to prove when phrased as a context morphism lemma. We omit further details here in favour of

the more involved equivalence proof of F and P.

As the syntaxes of F and P are different, we have to introduce translations bAc and bsc
from F-types and terms to PTS terms, as well as the necessarily partial translations daeΓty and

daeΓter that try to construct, from a PTS term a, an F-type or, respectively, an F-term. The latter

translations depend on a context Γ to disambiguate type and term variables. To avoid clutter,

we omit side conditions asserting that a given translation result is defined. The full definition is

given in Figure 4. Note that if b appears in a valid PTS judgement under Γ , then exactly one

of dbeΓter and dbeΓty is defined. This explains the two defining equations for dabeΓter. We further

observe that terms of F contain both term and type variables, so we write s[τ,σ] for the parallel

application of a type substitution τ and a term substitution σ .

Theorem 1 The typing problem under the empty context 〈〉 can be reduced from P to F and vice

versa.

(1) `ter

F s : A iff `ter

P bsc : bAc (2) `ter

P a : b iff `ter

F dae
〈〉
ter : dbe〈〉ty

To prove this theorem, we need to generalise to non-empty contexts. This requires relating

equivalent contexts. We do this using context morphisms generalised to work between different

judgements. For example:

ξ, ζ : (Γ `ter

P)→ (N ;∆`ter

F) := ∀xa. Γ `ter

P x : a → N ;∆`ter

F ζ(x) : daeΓty[ξ]

The overall proof involves several such morphisms, which are all defined analogously. With

context morphisms, stating an inductively provable version of the fact that the translation

preserves typing becomes a matter of routine.

Lemma 2 (Preservation of Typing under Translations)

N ;∆`ter

F s : A ξ : (N `tyF)→ (Γ `
ty

P) ξ, ζ : (N ;∆`ter

F)→ (Γ `
ter

P)

Γ `ter

P

⌊
s[ξ, ζ]

⌋
: bAc[ξ]

Γ `ter

P a : b ξ : (Γ `tyP)→ (N `
ty

F) ξ, ζ : (Γ `ter

P)→ (N ;∆`ter

F)

N ;∆`ter

F dae
Γ
ter[ξ, ζ] : dbeΓty[ξ]

4

The proof relies on the substitutivity of the translation functions, which is also proven using

context morphisms. Lemma 2 yields the forward direction of Theorem 1 as a corollary. For the

backwards direction, we additionally need the fact that our translations are partial inverses of

each other.

Lemma 3 (Cancellation of Term Translations)⌈
a[ξ]

⌉Γ
ter = s

bsc = a[ξ]
Γ `ter

P

⌊
s[ξ, ζ]

⌋
: c Γ P̀ ξ ‖ ζ⌈⌊

s[ξ, ζ]
⌋⌉Γ

ter = s[ξ, ζ]

The left rule, PFP-cancellation, is proven without assumptions by induction on a, generalising

over all renamings to accommodate for the renamings in the definition of the translation. The

right rule, FPF-cancellation, is more involved, because we need to make sure that no structure

was lost when translating to PTS syntax. We assert a P-typing, but this is not enough. We also

have to forbid reinterpretation of variables by enforcing that ξ maps only to type variables

and ζ maps only to term variables according to Γ , written Γ P̀ ξ ‖ ζ.

4 Conclusions

It has been observed [1, 7] that context morphism lemmas provide elegant proofs for properties

of a single type system. In a single type system, the changes to the context in each step of a

type derivation are small and localised. Thus working without context morphisms is tolerable.

In contrast to this, modelling the precise relationship between a two-sorted context and a

single-sorted dependent context results in an explosion of complexity that quickly becomes

unmanageable, as we had to painfully experience. Context morphism lemmas, applied in a

systematic manner, have provided substantial relief. They serve as a template to state provable

lemmas and avoid the construction of monolithic, fragile and design-dependent invariants.

References

[1] Robin Adams. Formalized metatheory with terms represented by an indexed family of types.

In Types for Proofs and Programs, volume 3839 of Lecture Notes in Computer Science, pages

1–16. Springer Berlin Heidelberg, 2006.

[2] Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie

Weirich. Engineering formal metatheory. In POPL, pages 3–15. ACM, 2008.

[3] Henk Barendregt. Introduction to generalized type systems. Journal of Functional Program-

ming, 1(2):125–154, 1991.

[4] Jan Herman Geuvers. Logics and type systems. PhD thesis, Katholieke Universiteit Nijmegen,

1993.

[5] Healfdene Goguen and James McKinna. Candidates for substitution. LFCS report series -

Laboratory for Foundations of Computer Science ECS LFCS, 1997.

[6] Robert Harper. Practical foundations for programming languages. Cambridge University

Press, 2013.

[7] Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with de Bruijn terms

and parallel substitutions. In Interactive Theorem Proving, Proceedings, volume 9236 of

Lecture Notes in Computer Science, pages 359–374. Springer, 2015.

5

	Introduction
	Parallel Substitutions and Context Morphisms
	The Equivalence Proof
	Conclusions

