HF Sets in Constructive Type Theory

Gert Smolka and Kathrin Stark

Interactive Theorem Proving, Nancy, August 24, 2016

A minimal computational axiomatization of HF sets with a unique model.

What are Hereditarily Finite sets?

= all finite, well-founded sets whose elements are HF again

What are HF sets useful for? Świerczkowski (1994), Paulson (2015)

A minimal computational axiomatization of HF sets with a unique model.

What is needed for HF sets?

1 Constants: hf, \emptyset , a.x $x \in y := x.y = y$

2 A characterization of equality

$$x.x.y$$
 = $x.y$ (cancellation)
 $x.y.z$ = $y.x.z$ (swap)
 $x.y.z = y.z \rightarrow x = y \lor x.z = z$ (membership)

3 A strong induction principle

$$\forall p: \mathsf{hf} \to \mathsf{Type.} \ p \ \emptyset \\ \to (\forall x \ y. \ p \ x \to p \ y \to p \ (x.y)) \to \forall x. \ p \ x$$

Working with the Induction Principle

$$R: p \emptyset \rightarrow (\forall x \ y. \ p \ x \rightarrow p \ y \rightarrow p \ (x.y)) \rightarrow \forall x. \ p \ x$$

$$R p_0 p_S \emptyset \stackrel{?}{=} p_0$$

$$R p_0 p_S (a.x) \stackrel{?}{=} p_S (R p_0 p_S a) (R p_0 p_S x)$$

$$\pi_1 \emptyset = \text{None}$$

$$\pi_1 (a.x) = \text{Some } a$$

Working with the Induction Principle

$$R: p \emptyset \rightarrow (\forall x \ y. \ p \ x \rightarrow p \ y \rightarrow p \ (x.y)) \rightarrow \forall x. \ p \ x$$

Recursive Specification

$$\emptyset \quad \cup \quad y = y \\
a.x \quad \cup \quad y = a.(x \cup y)$$

Membership Specification

$$z \in x \cup y \leftrightarrow z \in x \lor z \in y$$

1 Membership Specification

$$\sum u. \ \forall z. \ z \in u$$

 $\leftrightarrow z \in x \lor z \in y$

2 Recursive Specification

Needed: extensionality

What is **not** needed as primitives?

1 Membership

$$x \in y := x.y = y$$

- 2 Recursion equations
- 3 Decidability of equality: dep. on extensionality
- 4 Extensionality: dep. on decidability of equality

Extensionality and Decidability Results

$$dec\ (x \in \underline{y})$$

$$dec (y \in \underline{x})$$

Extensionality

$$x \subseteq y \to y \subseteq x \to \underline{x} = \underline{y}$$

$$dec(\underline{x} \subseteq y)$$

$$dec(\underline{y}\subseteq x)$$

Extensionality and Decidability Results

A minimal computational axiomatization of HF sets with a unique model.

A Tree Model for HF Sets

HF sets = $\emptyset + a.x + \text{equality} + \text{induction principle}$

A Tree Model for HF Sets

1 An inductive type representing the tree structure:

$$T := 0 \mid T.T$$

- 2 An equivalence relation $\approx: T \to T \to \mathsf{Prop}$
- **3** An idempotent normalizer $\sigma: T \to T$ s.t.

$$s \approx t \leftrightarrow \sigma s = \sigma t$$

4 Construct a subtype X of T only containing normalized trees.

Definition of \approx

Equivalence

$$\overline{s.s.t} \approx s.t$$
 $\overline{s.t.u} \approx t.s.u$

$$\frac{s \approx t}{s \approx s} \qquad \frac{s \approx t}{t \approx s} \qquad \frac{s \approx t}{s \approx u} \qquad \frac{s \approx s'}{s.t} \approx \frac{t'}{s'}$$

To show: \approx satisfies the equality axioms of HFs, for example

- 1 $s.s.t \approx s.t$
- 2 $s.t.u \approx t.u \rightarrow s \approx t \lor s.u \approx u$

A Normalization Function

Idea: Use sorted trees as normal form.

Lexical Tree Order

$$\frac{s < s'}{0 < s.t} \qquad \frac{s < s'}{s.t < s'.t'} \qquad \frac{t < t'}{s.t < s.t'}$$

Define a sort function $\sigma: T \to T$ according to the above order satisfying

2
$$s \approx t \leftrightarrow \sigma s = \sigma t$$

 \Rightarrow There exists a type $\{t \mid \sigma t = t\}$.

A minimal computational axiomatization of HF sets with a unique model.

Are all HF structures the same?

 $f: X \to Y$ homomorphism:

$$f \emptyset = \emptyset$$

 $f (a.x) = (f a).(f x)$

Are all HF structures the same?

- **1** Totality $\forall x$. Σy . $R \times y$.
- **2** Functionality $R \times y \rightarrow R \times y' \rightarrow y = y'$
 - ▶ **Simulation** $R \times y \rightarrow a \in x \rightarrow \exists b.b \in y \land R \ a \ b$
- 3 f homomorphism $\Rightarrow R \times (f \times f)$
- 4 All homomorphisms between HF structures are equivalent.
- 5 All HF structures are isomorphic.

A minimal computational axiomatization of HF sets with a unique model.

Axiomatization + Discreteness +
Operations + Ordinals + Categoricity +
Model Construction

Everything is formalized in Coq.

 \sim 2000 lines

Everything is formalized in Coq.

similar to proofs in paper special-purpose tactic based on intro-elim rules

Everything is formalized in Coq.

no inductive types except for the model construction

Everything is formalized in Coq.

Where? - www.ps.uni-saarland.de/extras/hfs

Contribution

- First minimal, computationally complete axiomatization of HF sets
- Operationally complete axiomatization
- First proof of categoricity

Further Work

- A recursor with equations
- Axiomatization of non-wellfounded sets

Thank you for your attention!

Where? - www.ps.uni-saarland.de/extras/hfs