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Abstract

In this thesis, we investigate several key results in the canon of metamathematics, ap-
plying the contemporary perspective of formalisation in constructive type theory and
mechanisation in the Coq proof assistant. Concretely, we consider the central complete-
ness, undecidability, and incompleteness theorems of first-order logic as well as properties
of the axiom of choice and the continuum hypothesis in axiomatic set theory. Due to
their fundamental role in the foundations of mathematics and their technical intricacies,
these results have a long tradition in the codification as standard literature and, in more
recent investigations, increasingly serve as a benchmark for computer mechanisation.
With the present thesis, we continue this tradition by uniformly analysing the afore-

mentioned cornerstones of metamathematics in the formal framework of constructive type
theory. This programme offers novel insights into the constructive content of complete-
ness, a synthetic approach to undecidability and incompleteness that largely eliminates
the notorious tedium obscuring the essence of their proofs, as well as natural repre-
sentations of set theory in the form of a second-order axiomatisation and of a fully
type-theoretic account. The mechanisation concerning first-order logic is organised as
a comprehensive Coq library open to usage and contribution by external users.
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Zusammenfassung

In dieser Doktorarbeit werden einige Schlüsselergebnisse aus dem Kanon der Metama-
thematik untersucht, unter Verwendung der zeitgenössischen Perspektive von Formali-
sierung in konstruktiver Typtheorie und Mechanisierung mit Hilfe des Beweisassistenten
Coq. Konkret werden die zentralen Vollständigkeits-, Unentscheidbarkeits- und Unvoll-
ständigkeitsergebnisse der Logik erster Ordnung sowie Eigenschaften des Auswahlaxioms
und der Kontinuumshypothese in axiomtischer Mengenlehre betrachtet. Aufgrund ihrer
fundamentalen Rolle in der Fundierung der Mathematik und ihrer technischen Schwie-
rigkeiten, besitzen diese Ergebnisse eine lange Tradition der Kodifizierung als Standard-
literatur und, besonders in jüngeren Untersuchungen, eine zunehmende Bedeutung als
Maßstab für Mechanisierung mit Computern.
Mit der vorliegenden Doktorarbeit wird diese Tradition fortgeführt, indem die zuvorge-

nannten Grundpfeiler der Methamatematik uniform im formalen Rahmen der konstruk-
tiven Typtheorie analysiert werden. Dieses Programm ermöglicht neue Einsichten in den
konstruktiven Gehalt von Vollständigkeit, einen synthetischen Ansatz für Unentscheid-
barkeit und Unvollständigkeit, der großteils den berüchtigten, die Essenz der Beweise
verdeckenden, technischen Aufwand eliminiert, sowie natürliche Repräsentationen von
Mengentheorie in Form einer Axiomatisierung zweiter Ordnung und einer vollkommen
typtheoretischen Darstellung. Die Mechanisierung zur Logik erster Ordnung ist als ei-
ne umfassenden Coq-Bibliothek organisiert, die offen für Nutzung und Beiträge externer
Anwender ist.
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1. Introduction

1.1. Background and Motivation
Wer von der Weltfremdheit der Mathematik spricht, dem muss die

moderne Welt wahrlich sehr fremd geworden sein.1 – Harro Heuser

The present PhD thesis revisits the traditional subject of metamathematics in the sense
of Kleene [134] and other authors of his time, using contemporary means from computer
science. The goal of this investigation is to illustrate that by switching to a formal and
constructive setting many new observations can be made and many old theorems can be
reinterpreted computationally. Moreover, the accompanying computer mechanisation of
all results advances the metamathematical quest for secure foundations of mathematics
and emphasises the computational nature of constructive proofs by yielding executable
code. The following introductory section provides some background for the relevant
concepts as well as some motivation for the goals of this thesis.
With its continuous evolution spanning several millennia and its evergrowing influence

on innumerable aspects of science and culture, the conception of mathematics clearly
resides among the high achievements of our civilisation. Foundational mathematical in-
sights paved the way for our present understanding of the cosmos as well as its inhabitants,
and enabled the development of the technical devices shaping our everyday life.
After its disentanglement from the shared origins with philosophy, physics, and other

nowadays separate academic fields, modern mathematics is based on a particular method
balancing elaborate reasoning with formal precision. Simplifying matters, this method
consists of an agreed upon language used to express mathematical definitions and the-
orems unambiguously, and a systematic way to deduce new mathematical facts from
previous ones. By this process, a vast body of results has been accumulated over the
years, which is often compared to a tower with a collection of initial and elementary facts
as a foundation supporting higher and higher levels of theories built on top of each other.
Towards the end of the 19th century, this tower grew high enough that the interest

to secure its foundation increased up to a point where mathematical methods were used
to study the method of mathematical reasoning itself – the birth of metamathematics.
As the name suggests, the fascinating programme of metamathematics is based on an
external perspective used to model the mathematical language and systematic deduction
to gain insights into their properties. Turning these abstract notions into formal subjects
of study already turned out to be a complicated project on its own, which after its
consolidation was succeeded by the observation of expected properties like soundness and
completeness but also rather unexpected ones like incompleteness and undecidability.
These phenomena together with the identification of a universal foundational system
embody the technical core of metamathematics.

1This quote roughly translates to “Whoever speaks of the unworldliness of mathematics must truly
have become very alien to the modern world” and has left an ongoing impression on me since I
stumbled over it in Heuser’s textbook on calculus [96] during my first term at university. Making
an exception for this personal anecdote, I will from now on adhere to academic custom and replace
the first person singular by the first person plural and refer to myself as “the author of this thesis”.

1



1. Introduction

Before we continue with a sketch of the main outcomes of the metamathematical pro-
gramme, we clarify its difference to ordinary mathematics with an example. The proposi-
tion “there are infinitely many prime numbers” is a well-known ordinary number-theoretic
observation discovered more than 2,000 years ago by Euclid. Of a metamathematical na-
ture is the proposition “the proposition ‘there are infinitely many prime numbers’ is
provable in number theory” as it refers to the concepts of being a proposition, being
provable, and the particular system of number theory. These concepts only became ex-
pressible in full formality with the development of formal syntax, proof theory, and axiom
systems less than 200 years ago.
Of the many considered approaches to fix a formal language of discourse, first-order

logic historically served as a suitable compromise providing a simple, fully symbolic syn-
tax yet expressible enough to accommodate all mathematical areas. Therefore, it was
soon adopted as universal language underlying the metamathematical project in the
sense that all the properties mentioned above could in particular be framed as results
about first-order logic. Concretely, this framework provides a notion of formal sentences
ϕ constructed by logical operations such as negation ¬ϕ or existential quantification over
individuals ∃x. ϕ(x). Then by identifying the acceptable rules of reasoning, the provabil-
ity relation T ` ϕ, characterising the sentences ϕ deducible from a (possibly infinite)
context T , can be modelled. Moreover, the intended preformal meaning of symbolic
formulas ϕ is recovered by a model-theoretic form of semantics, inducing a semantic en-
tailment relation T � ϕ specifying the sentences ϕ that hold in all models validating the
context T . In this framework, the main metamathematical properties can be stated as:

• Soundness: for all ϕ and T it holds that T ` ϕ implies T � ϕ.

• Completeness: for all ϕ and T it holds that T � ϕ implies T ` ϕ.

• Incompleteness: for some T there are ϕ with neither T ` ϕ nor T ` ¬ϕ.

• Undecidability: it cannot always be effectively decided whether T ` ϕ or T 6` ϕ.

Coming back to the tower metaphor, these observations characterise the laws of reasoning
governing the process how new levels can be added on top of each other. Of course,
everyday mathematical reasoning by no means takes this fully formalised form, but the
folklore is that all arguments could in principle be formalised in the framework of first-
order logic and then would obey the observed laws.
Next to the formal theory of reasoning, a second aspect of metamathematics is the

search for a universal system in whose terms every mathematical area can be expressed
by reduction to the same abstract notions. Again judged historically, the standard system
accomplishing this goal was set theory, introducing the formal concept of sets as collections
of objects characterised by a list of axioms clarifying their construction and behaviour.
Set theory is usually formulated in first-order logic, where the atomic formulas have
the form x ∈ X denoting that x is an element of X and where the axioms are just a
particular context T of specific formulas about sets and their elements. Most of these
axioms, like the existence of an empty set ∅ or unions ⋃X, were promptly accepted for
their intuitive self-evidence and attractiveness to easily encode basic objects like natural
numbers n ∈ N, real numbers r ∈ R, and functions f : X → Y , while a few axioms remain
contested for their mathematical consequences and philosophical grounds. Probably the
most prominent examples of this kind are the following two statements:

• Axiom of choice (AC): for all sets X there is a function f : X → ⋃
X with f(x) ∈ x

for all non-empty x ∈ X, i.e. f chooses a specific element f(x) out of each set x ∈ X.

2



1.1. Background and Motivation

• Continuum hypothesis (CH): there is no set X of cardinality strictly between N and
R, i.e. the smallest uncountable cardinality is that of the continuum R.

Concluding the tower metaphor, axiomatic set theory provides a possible foundation the
rest of the tower can be built upon. Again, the axioms of formal set theory do not nec-
essarily play a role in everyday mathematics, but the folklore is that every mathematical
object can be encoded as a set.
The idea of this thesis is to continue in the tradition of the metamathematical pro-

gramme by adding two modern perspectives. First, we mechanise the meta-theory of
first-order logic and various forms of axiomatic set theory in a proof assistant, which
advances the original idea to formalise and secure mathematical reasoning using mathe-
matical means. Secondly, although we keep the historically central systems of first-order
logic and set theory as subjects of our investigation, we conduct this investigation in the
setting of constructive type theory, which constitutes an appealing alternative foundation.
By mechanisation we refer to the use of proof assistants (also called interactive the-

orem provers), which are computer programs that allow a user to specify definitions,
theorems, and proofs in a computer-checkable language. Mechanising the example from
above regarding the infinitude of primes then means to input definitions of the involved
notions like numbers, primes, and infinite collections, to state the desired theorem, and
to construct a proof. Most proof assistants provide standard libraries containing such
elementary notions and an interactive mode in which the proof is constructed interac-
tively with full control over the current proof state. Once a theorem is mechanised, the
user obtains the guarantee that the proof has no gaps and is correct, at least relative to
the implementation of the proof assistant itself and the underlying logical calculus. Such
mechanisations can be shared and collaboratively developed in research communities,
resulting in the ermergence of large libraries codifying broad areas of mathematics (see
for instance the MathComp library [168], the mathlib [248], and the Archive of Formal
Proofs [165]). Moreover, mechanisation is of great importance not only in mathemat-
ical research but, allowing also the verification of programs, has many applications in
computer science (see for instance the CompCert project [158], the VST library [7], and
the CakeML project [149]). Of the currently most prominent proof assistants Coq [247],
Agda [182], Lean [47], and Isabelle [181], we use Coq throughout this thesis.
At its core, the Coq proof assistant implements a variant of constructive type theory

called calculus of inductive constructions (CIC) [40, 187], in which we formalise the math-
ematical development of this thesis. In contrast to set-theoretic foundations, constructive
type theory can be seen as a dependently typed functional programming language centred
around the notion of functions f : X → Y applicable to terms x : X of matching type.
The imposed typing discipline ensures that only well-typed functions can be constructed
and a logical system arises internally from the reinterpretation of some types as propo-
sitions and some programs as proofs. If no additional axioms are assumed, this logic is
intuitionistic, approximately meaning that it is impossible to prove an existential propo-
sition like ∃x. ϕ(x) without constructing a concrete witness – a phenomenon which often
occurs in a classical (i.e. non-constructive), set-theoretic world where every proposition
is either true or false. By this more informative interpretation of the logical connectives,
constructive type theory is particularly well-suited to represent results involving compu-
tation more compactly than classical set theory, where an indirect and harder to handle
(let alone mechanise) explicit model of computation like Turing machines is unavoidable.
In this thesis, the mentioned and further advantages of type-theoretic foundations will
be discussed on a rather technical level while more conceptual comparisons of different
foundations have been conducted elsewhere (e.g. [167, 5, 119]).
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1. Introduction

1.2. Contributions and Publications
We summarise the overall contributions of this thesis below. More local and concrete
contributions will be stated in each chapter introduction and will then often be categorised
by joint and personal contributions up to a reasonable degree.

• Formalisation: We work in the concrete setting of the calculus of inductive con-
structions CIC to formalise the metamathematical standard results discussed in this
thesis. Although most of these results are well-known and have been codified in pop-
ular textbooks (e.g. Kleene’s pivotal “Introduction to Metamathematics” [134]), the
uniform adaptation to CIC allows for an exposition combining a high level of preci-
sion with an accessible and modern presentation especially for a computer scientist
audience. Furthermore, the formalisation constitutes novel results about CIC itself,
in particular with our discussion of second-order set theory (Chapter 9) and syn-
thetic set theory (Chapter 10) including the classification of the available models of
set theory and the type-theoretic adaptation of Sierpiński’s theorem.

• Constructivisation: Given that CIC hosts an intuitionistic logic, our approach
allows for distinguishing classically equivalent but constructively very much distinct
formulations of the main results. For results that inherently rely on classical logic,
we discuss known (and contribute new) equivalences to the necessary assumptions,
and use techniques to obtain constructive variants exhibiting the computational
content of the proofs. The prime example is the completeness theorem of first-order
logic (Chapter 4), where in the standard formulation at least the assumption of
Markov’s principle is necessary, but where a slight generalisation of the semantics
yields a constructive proof, thus conveying an effective procedure reifying meta-level
validity proofs to syntactic derivations in a proof calculus. A second example is our
analysis of Tennenbaum’s theorem (Section 6.3), where we show that Markov’s
principle suffices for a careful reformulation of the often classically presented result.

• Mechanisation: All results in this thesis have been mechanised in Coq, with
the code being publicly available and hyperlinked with every formal statement in
the PDF version of the text for seamless reading on both levels. In particular, all
developments concerned with the meta-theory of first-order logic have been collected
into a unified Coq library described in Chapter 3, following a design that evolved
over several years of experience with the intricate engineering of the first-order
syntax and semantics in a proof assistant. We are confident that the library can
serve as a reasonable starting point for future developments, also for external users
who do not want to redo the basic formalisation of first-order logic themselves or
who want to reuse the metamathematical results we already mechanised.

• Simplification: Due to the fact that, despite the increasing maturity of proof
assistants, computer mechanisation may still come with a considerable overhead
over pen-and-paper formalisation, we usually pay a lot of attention to first simpli-
fying definitions and proofs as much as possible before we work in Coq. Therefore
the mathematical development presented in this thesis contributes several simplifi-
cations of the canonical proofs from the literature, the biggest such simplification
being the synthetic approach to computability exploited in Chapters 5 to 8 to obtain
various undecidability and incompleteness results. By this approach we completely
sidestep the extremely tedious manipulation of a formal model of computation, al-
lowing a presentation to focus on the computational essence of undecidability and
incompleteness without sacrificing formal rigour.

4



1.2. Contributions and Publications

• Orientation: Although we certainly do not claim to provide a comprehensive
overview of the broad field of metamathematics, with this thesis we hope to offer
some orientation for several audiences concerned with this and related fields. First,
for researchers mechanising mathematics with proof assistants, parts of our Coq
code could be reusable and the engineering tricks and shortcuts we report on might
apply to their projects. Secondly, for researchers working in constructive mathe-
matics, the chosen formalisation of all results in CIC is general enough to apply to
other constructive systems and agnostic enough to allow a fine analysis of the non-
constructive assumptions where necessary. Lastly, for students in computer science
or related fields like logic, mathematics, or philosophy, the presentation followed in
this thesis is designed to be accessible enough to provide a first exposition of the
main concepts and proofs in metamathematics.

Most of the material presented in this thesis has been published previously, as listed
below in chronological order. These publications subsume all main results reported here,
only a few smaller refinements and observations are novel. In the main text, the material
will be discussed in an adequate and coherent order often deviating from the paper
presentation and overall chronology. Nevertheless, as broken down locally in the chapter
introductions, some passages of the papers written mostly by the author of this thesis
and a few passages written jointly with the respective co-authors are included with only
minor adjustments. This especially applies to the chapter introductions themselves as
well as the discussion sections, without being mentioned locally for every chapter.
The bulk of the material is contained in the following conference contributions:
1. D. Kirst and G. Smolka. Categoricity results for second-order ZF in dependent

type theory. In International Conference on Interactive Theorem Proving. Springer,
2017.

2. D. Kirst and G. Smolka. Large model constructions for second-order ZF in depen-
dent type theory. In International Conference on Certified Programs and Proofs.
ACM, 2018.

3. Y. Forster, D. Kirst, and G. Smolka. On synthetic undecidability in Coq, with an
application to the Entscheidungsproblem. In International Conference on Certified
Programs and Proofs. ACM, 2019.

4. Y. Forster, D. Kirst, and D. Wehr. Completeness theorems for first-order logic
analysed in constructive type theory. In International Symposium on Logical Foun-
dations of Computer Science. Springer, 2020.

5. D. Kirst and D. Larchey-Wendling. Trakhtenbrot’s theorem in Coq: A constructive
approach to finite model theory. In International Joint Conference on Automated
Reasoning. Springer, 2020.

6. D. Kirst and F. Rech. The generalised continuum hypothesis implies the axiom
of choice in Coq. In International Conference on Certified Programs and Proofs.
ACM, 2021.

7. D. Kirst and M. Hermes. Synthetic undecidability and incompleteness of first-order
axiom systems in Coq. In International Conference on Interactive Theorem Proving.
LIPIcs, 2021.

8. C. Hagemeier and D. Kirst. Constructive and mechanised meta-theory of intu-
itionistic epistemic logic. In International Symposium on Logical Foundations of
Computer Science. Springer, 2022.
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9. M. Koch and D. Kirst. Undecidability, incompleteness, and completeness of second-
order logic in Coq. In International Conference on Certified Programs and Proofs.
ACM, 2022.

10. J. Hostert, A. Dudenhefner, and D. Kirst. Undecidability of dyadic first-order logic
in Coq. In International Conference on Interactive Theorem Proving. LIPIcs, 2022.

11. M. Hermes and D. Kirst. An analysis of Tennenbaum’s theorem in constructive
type theory. In International Conference on Formal Structures for Computation
and Deduction. LIPIcs, 2022.

12. D. Kirst and B. Peters. Gödel’s theorem without tears: Essential incompleteness
in synthetic computability. In Annual conference of the European Association for
Computer Science Logic. LIPIcs, 2023. To appear.

Additional results are included from extended journal versions of some of these papers:

1. D. Kirst and G. Smolka. Categoricity results and large model constructions for
second-order ZF in dependent type theory. Journal of Automated Reasoning, 63(2):415–
438, 2019.

2. Y. Forster, D. Kirst, and D. Wehr. Completeness theorems for first-order logic
analysed in constructive type theory: Extended version. Journal of Logic and Com-
putation, 31(1):112–151, 2021.

3. D. Kirst and D. Larchey-Wendling. Trakhtenbrot’s theorem in Coq: Finite model
theory through the constructive lens. Logical Methods in Computer Science, 18,
2022.

4. D. Kirst and M. Hermes. Synthetic undecidability and incompleteness of first-order
axiom systems in Coq: Extended version. Journal of Automated Reasoning. To
appear.

5. C. Hagemeier and D. Kirst. Constructive and mechanised meta-theory of IEL and
similar modal logics. Journal of Logic and Computation. To appear.

Lastly, some of the material was presented at workshops in form of extended abstracts:

1. Y. Forster, D. Larchey-Wendling, A. Dudenhefner, E. Heiter, D. Kirst, F. Kunze,
G. Smolka, S. Spies, D. Wehr, and M. Wuttke. A Coq library of undecidable
problems. In CoqPL Workshop, 2020.

2. J. Hostert, M. Koch, and D. Kirst. A toolbox for mechanised first-order logic. In
Coq Workshop, 2021.

3. D. Kirst and F. Rech. The generalised continuum hypothesis implies the axiom of
choice in HoTT. In Workshop on Homotopy Type Theory / Univalent Foundations,
2022.

4. B. Peters and D. Kirst. Strong, synthetic, and computational proofs of Gödel’s first
incompleteness theorem. In Types for Proofs and Programs, 2022.

5. D. Kirst, J. Hostert, A. Dudenhefner, Y. Forster, M. Hermes, M. Koch, D. Larchey-
Wendling, N. Mück, B. Peters, G. Smolka, and D. Wehr. A Coq library for mech-
anised first-order logic. In Coq Workshop, 2022.
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1.3. Outline and Coq Mechanisation

Modern scientific research is often practised as a collaborative effort, so although we
try and disentangle the concrete contributions to some extent, many ideas and results in
this thesis were born in constant exchange with colleagues and students, and cannot be
reasonably attributed to particular persons. As a rough estimate, the author listed first
in each publication often took the lead during the project and/or writing phase. Even
more so, the Coq code accompanying this thesis was developed collaboratively and the
actual authors of the evolved code only loosely correspond to the persons responsible for
the respective results.
Notably, the author of this thesis was working closely with Yannick Forster, who wrote

his PhD thesis [57] under the same supervisor and submitted about a year ago. Both
authors corresponded in near daily conversations, wrote several joint papers, and com-
mented on independently written ones. Therefore it is natural that there is a certain
overlap of both resulting theses, in particular with the synthetic undecidability proofs of
first-order logic as a meeting point. Nevertheless, Forster’s thesis has a clear focus on
computability in CIC (including the adaptation of synthetic computability to CIC, its
application to undecidability, as well as the mechanisation of concrete models of compu-
tation), while the present thesis has a focus on metamathematics in CIC (concerned with
the representation of first-order logic and set theory).
Regarding students, the author of this thesis (co-)advised the Bachelor’s respectively

Master’s projects of Dominik Wehr [262], Felix Rech [202], Marc Hermes [94], Christian
Hagemeier [79], Mark Koch [136], Johannes Hostert [99], and Benjamin Peters [193] that
lead to related publications included in the above list. While these students conducted
much of the technical work and some even wrote the corresponding papers themselves,
the concrete topics and approaches were conceived by the advisor(s).

1.3. Outline and Coq Mechanisation

We complement this introduction in the next chapter with an overview of the constructive
type theory CIC serving as the formal framework we model our concepts and results in.
The main body of this thesis then consists of two parts, the former concerned with the
meta-theory of first-order logic and the latter with various formulations of set theory.
Part I begins with a description of the concrete representation of the first-order syntax,

deduction systems, and semantics as encoded in CIC, including a detailed account of
alternative approaches we used before or found in the literature (Chapter 3). The subse-
quent three chapters are concerned with three cornerstones of metamathematics, namely
completeness (Chapter 4), undecidability (Chapter 5), and incompleteness (Chapter 6).
In Chapter 4, we study completeness theorems for model-theoretic Tarski and Kripke se-
mantics as well as algebraic semantics based on complete Heyting and Boolean algebras,
all with a focus on the non-constructive assumptions necessary for some formulations
of completeness. In Chapter 5, we establish the undecidability of validity, satisfiability,
provability, and finite satisfiability, as well as of axiom systems such as Peano arith-
metic, employing a synthetic approach disposing of the need for an intermediate formal
model of computation. In Chapter 6, we use the connection with undecidability to ob-
tain various formulations of Gödel’s first incompleteness theorem, still benefiting from the
synthetic treatment of computation to easily obtain this notoriously hard-to-mechanise
result. Part I then closes with a complementary chapter applying the methods used for
first-order logic to obtain similar results for related formalisms (Chapter 7): the synthetic
incompleteness of second-order logic, the synthetic undecidability of separation logic, and
the constructive completeness of intuitionistic epistemic logic.
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1. Introduction

Part II offers three perspectives on the formalisation and mechanisation of set the-
ory, namely first-order set theory (Chapter 8), second-order set theory (Chapter 9), and
synthetic set theory (Chapter 10). In Chapter 8, we consider various axiomatisations of
first-order set theory in the framework of Part I, construct models, and deduce undecid-
ability and incompleteness results following the methodology of Chapters 5 and 6. In
Chapter 9, we switch to the second-order version of set-theory which is more natural to
describe in constructive type theory, which is subject to a strong categoricity result we
use to exhaustively classify the available models, and which allows us to compactly recast
Sierpiński’s result that the generalised continuum hypothesis implies the axiom of choice
as a case study. In Chapter 10, we abstract even further by representing set-theoretic no-
tions directly by their type-theoretic counterparts without intermediate axiomatisation.
This synthetic perspective allows for the most compact rendering of the case study on
Sierpiński’s result, which we study both in CIC and homotopy type theory (HoTT).
The chapters are organised such that they can be read mostly independently and

without much presupposed previous knowledge, only some familiarity with logic in general
and constructive type theory in particular (as provided by Chapter 2) is assumed. Each
chapter introduction contains some historical background and intuitive explanations that
set the stage for the more technical chapter bodies. Note that there is no separate
conclusion chapter since every chapter contains its own conclusion.
Readers more interested in Part II than Part I can safely skip the latter but might want

to consult Chapter 3 if in need of a recap of first-order logic to approach Chapter 8. As a
further canonical entry point, the different proofs of Sierpiński’s theorem can be examined
by starting in Section 9.6 and, if need be, jumping back to Sections 9.1 and 9.5 for more
information on the representation of set theory and ordinals, respectively. To facilitate
non-linear reading in general, most of the notations and terms used are hyperlinked with
their definitions and listed in Appendix B.
The Coq mechanisation underlying most chapters is included in the Coq library for first-

order logic [122]. Sole exceptions are Sections 4.2, 6.3, 7.1, and 7.3 as well as Chapters 9
and 10 that refer to the Coq developments of the corresponding publications. Most
chapters will be focussed on the mathematical level, with only few remarks regarding
mechanisation specifics. However, Chapter 3 will describe the representation of first-
order logic in Coq in full detail. An overview of the Coq developments is available at the
following URL:

https://www.ps.uni-saarland.de/~kirst/thesis/
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2. Type-Theoretic Preliminaries

As a mathematical foundation for this thesis, we employ the constructive type theory
called “calculus of inductive constructions” (CIC), developed by Coquand [40] and Paulin-
Mohring [187] and drawing inspiration from previous systems like Martin-Löf’s intuition-
istic type theory [171] and Girard’s System F [73, 204]. In this chapter, we introduce
the basic concepts of CIC sufficient for our purposes, focusing our attention on inductive
types (Section 2.1), the internally represented logic (Section 2.2), and some implicit com-
putational notions (Section 2.3). For more detail on CIC, including its refinement pCuIC
approximating the features currently implemented in the Coq proof assistant [247] more
closely, we refer for instance to Lennon-Betrand’s PhD thesis [157].
Like in every constructive type theory, the central judgement of the formalism is the

type assignment x : X, prescribing a type X to an inhabitant x. As particular examples,
we have the unit type 1 with a single inhabitant ∗ : 1, the void type 0 with no inhabitant,
function spaces X → Y with abstractions λx. y, products X × Y with pairs (x, y), sums
X + Y with injections i1 x and i2 y, dependent products ∀(x : X). F x with dependent
functions λx. y where y : F x, and dependent sums Σ(x : X). F x with dependent pairs
(x, y) where y : F x as inhabitants.
Term formation adheres to a strict typing discipline, e.g. a function application f x for

f : X → Y is only considered a valid term provided that x : X. Computation is present
in the form that an applied abstraction (λx. y) a reduces to yxa , i.e. the body y of the
abstraction with the variable x replaced by the term a. The type system ensures that the
obtained notion of reduction x � x′ is well-behaved in the sense that it preserves typing
judgements and yields unique normal forms.
Given the strict typing discipline, in order to express properties and operations on

types, they themselves are required to have a type, a so-called universe. In turn, to
accommodate universes with a type, many constructive type theories stipulate an infinite
hierarchy Ti of universes such that T0 : T1 : T2 : . . . and the distinguishing feature of CIC
is a separate universe P of types considered propositions. In P, the above type formers
(1, 0, →, ×, +, ∀, Σ) are denoted by usual logical notation (>, ⊥, →, ∧, ∨, ∀, and ∃).
Every proposition X : P may act as type X : T0, similarly as every type X : Ti may also
act as X : Ti+1. Crucially, while the hierarchy Ti is predicative, i.e. a dependent product
∀(x : X). F x must be placed at least in the universe of X, the universe P is impredicative
in that ∀(x : X). F x can be placed in P for all X, provided that F : X → P. Working in
the predicative hierarchy Ti may involve subtle manipulations of universe levels, which
is usually concealed by just writing X : T whenever X : Ti for some level i.

2.1. Inductive Types

CIC provides a generic scheme to add so-called inductive types, specified by constructors
and elimination principles. Depending on whether they are placed in T or P, inductive
types express computational data or logical predicates. In fact, all of the previously
introduced type formers and their inhabitants can be defined inductively, with the sole
exception of (dependent) functions that are considered primitive in CIC.
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2. Type-Theoretic Preliminaries

For instance, product types are characterised by the type constructor X×Y : T forming
the product of two given types, the value constructor (x, y) : X × Y forming the pair of
inhabitants x : X and y : Y , and an eliminator inverting the value constructor:

E× : ∀XY Z : T. (X → Y → Z)→ X × Y → Z

The principle E× (and even more dependent eliminators we will encounter for other types)
can actually be derived from the general paradigm of recursive pattern matching available
in CIC, but here we prefer to view eliminators as primitive. Every elimination principle
comes with specific computation rules, for instance E× satisfies E× f (x, y) � f x y. Using
E×, we can define the projection functions π1 and π2:

π1 : ∀XY.X × Y → X π2 : ∀XY.X × Y → Y

π1 := λXY.E×X Y X (λxy. x) π2 := λXY.E×X Y Y (λxy. y)

Note that it is customary to leave out type arguments that can be derived from other
arguments, so for instance we write π1 (x, y) instead of π1 X Y (x, y) since x and y de-
termine their types X and Y , respectively. By the computation rule of E× in particular
π1 (x, y) � x and π2 (x, y) � y hold as expected, suggesting the format of function defini-
tion by defining equations. For instance, we write π1 (x, y) := x and π2 (x, y) := y instead
of the above definitions explicitly referring to E×.
We do not reproduce the inductive characterisations of the other type formers here,

a more comprehensive expositions can for instance be found in Chapter 1 of the HoTT
book [249]. Instead, we introduce a few further inductive types and predicates:

• The type N of natural numbers is characterised by the constructors

n : N ::= O | S n

where the grammatical notation indicates one constructor O : N for zero and a
second constructor S : N → N for successors. We write 0 for O, 1 for S O, 2 for
S (S O), and so on. The most general elimination principle for N is given by

EN : ∀F : N→ T. F O → (∀n. F n→ F (S n))→ ∀n. F n

with computation rules EN F a f O � a and EN F a f (S n) � f n (EN F a f n). The
eliminator EN enables recursive function definitions, and inductive proofs when re-
stricted to predicates P : N → P. For instance, addition n + m is defined by the
equations

n+O := n n+ (S m) := S (n+m)
which translate into a more primitive expression involving EN. The computation
rules for EN ensure that reductions n + O � n and n + (S m) � S (n + m) hold as
expected. Note that we prefer to write n+ 1 instead of its evaluation S n and that
multiplication n×m is defined in a similar way like addition.

• The type B of Booleans is characterised by the constructors

B ::= tt | ff

together with the following elimination principle expressing conditionals

EB : ∀F : B→ T. F tt→ F ff → ∀b. F b

satisfying the computation rules EB F a b tt � a and EB F a bff � b. Employing EB to
express conditionals, given x, y : X, we write “if b then x else y” for EB (λb.X)x y b.
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2.1. Inductive Types

• The type of option values O(X) over a type X is characterised by the constructors

O(X) ::= pxq | ∅

where pxq signifies a value x : X while ∅ denotes the absence of a value. We refrain
from formally stating an eliminator as it amounts to a standard case distinction.

• The type of lists L(X) over a type X is characterised by the constructors

L : L(X) ::= [ ] | x :: L

where [ ] denotes the empty list and x :: L the list obtained by adding x to L.
Referring to standard recursive functions definable from an eliminator for list, we
denote by |L | : N the length of a list L : L(X), by L++L′ : L(X) the concatenation
with another list L′ : L(X), by f [L] : L(Y ) or often simply f L the result of applying
a function f : X → Y to each element of L, and by x ∈ L : P membership.

• The type of vectors Vn(X) of length n over a type X shares the same notation with
lists. In particular, we write [ ] : V0(X) for the empty vector and (x :: ~v) : Vn+1(X)
for the vector obtained by adding x to ~v : Vn(X). As a more mathematical notation,
we also write Xn for Vn(X) to emphasise the view on vectors as finite sequences.

• The inductive equality predicate x = y : P on a type X is characterised by a single
constructor witnessing x = x for x : X. This predicate comes with an elimination
principle that allows rewriting with equalities in arbitrary type families:

E= : ∀(X : T)(F : X → T)(x : X). F x→ ∀y. x = y → F y

• The inductive accessibility or well-foundedness predicate AR x : P for a relation
R : X → X → P on a type X is characterised by a single constructor allowing
to derive AR x provided that ∀y.R y x → AR y. Introducing a common scheme
describing inductive predicates with inference rules, AR is characterised by

∀y.R y x→ AR y
AR x

with the premise above and the conclusion below the bar. The proof constructor of
A is inverted by an elimination principle expressing well-founded recursion

EA : ∀(F : X → T). (∀x. (∀y.R y x→ F y)→ F x)→ ∀x.AR x→ F x

where we left the outer quantification over the parameters X and R implicit. As in
the case of the eliminator for natural numbers, we speak of well-founded induction
when referring to EA restricted to predicates P : X → P.

Crucially, inductive predicates do not in general admit so-called large elimination,
i.e. the construction of computational values by inspection of proofs. Computational
eliminators like E= and EA referring to type families F : X → T instead of just predicates
P : X → P can only be derived for propositions whose proofs bear no computationally
relevant information. Counterexamples are proofs of disjunctions X ∨ Y or existential
quantifications ∃x. P x that bear a decision or witness, respectively. For the sake of
minimal requirements, we only employ the large eliminations available via E= and EA
as they are sufficient for our purposes, especially given that the third typical example
E⊥ : ∀X : T.⊥ → X expressing large elimination for falsity can be derived with EA.
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2. Type-Theoretic Preliminaries

2.2. Internal Logic
In the previous section, we freely spoke of propositions to refer to types P : P and of
proofs to refer to their inhabitants. This language already hinted that logic is represented
in CIC using the so-called “Curry-Howard isomorphism” [42, 102, 261], identifying logical
formulas with operations on types, which we shall now discuss in more detail.
For instance, the tautology that from any proposition P one can derive P itself,

is represented as the propositional type ∀P : P. P → P . Moreover, the inhabitant
λ(P : P)(x : P ). x of this type represents the canonical proof assuming a proposition
P with proof x : P and just returning x. So implications are interpreted as function
types and their proofs as the inhabiting functions, a pattern that extends to all other
logical connectives. Thus in summary, formulating a logical statement in CIC amounts to
expressing it as a (propositional) type, proving it amounts to constructing an inhabitant,
and proof-checking amounts to type-checking.
Of course we will not always work on this extreme level of formality but often use natu-

ral language to describe propositions and proofs as appropriate for a useful mathematical
text. A fine point of this verbalisation is that we phrase existential quantifiers ∃x. P x
as “there exists/is x with P x” while the computational counterpart Σx. F x is clearly
signalled by wordings like “one can (explicitly) construct/compute x with F x”.
A crucial property of the representation of proofs as computational objects, embodying

the so-called “Brouwer-Heyting-Kolmogorov interpretation” [251], is that the obtained
logic is intuitionistic rather than classical: for the classically central law of the excluded
middle (LEM), formulated in CIC as ∀P : P. P ∨ ¬P where ¬P is short for P → ⊥,
one cannot construct an inhabitant. With the absence of LEM, many equivalent classical
reasoning principles become unavailable:

• Double-negation elimination: ∀P : P.¬¬P → P .

• De Morgan’s law on quantifiers: ∀(X : T)(P : X → P).¬(∀x.¬(P x))→ ∃x. P x

• Peirce’s law: ∀PQ : P. ((P → Q)→ P )→ P

By these properties, intuitionistic logic offers a finer view especially on double negations,
disjunctions, and existentials than classical logic. To reflect these subtle differences in the
used terminology, we say that P potentially holds if ¬¬P , that P is stable if ¬¬P → P ,
and definite if P ∨¬P . Here are some examples that will show up in many contexts and
that are only meaningful in intuitionistic logic:

• Negative propositions ¬P are stable.

• Definite propositions P are stable.

• Disjunctions P ∨ ¬P hold potentially.

In contrast, LEM trivialises these notions, since then every proposition is logically
definite, therefore stable, and therefore holds iff it potentially holds.
Particularly instructive is the third item, stating that when deriving a contradiction,

then some amount of classical reasoning is admitted. Concretely, in such a situation we
can obtain the sought contradiction by applying the provable ¬¬(P ∨ ¬P ), then leaving
the claim ¬(P ∨ ¬P ) which is shown by deriving a contradiction from the assumption
P ∨ ¬P . In proofs, this trick will be verbalised as “given the negative goal, we may
perform classical case distinctions”.
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2.3. Internal Computability

Though LEM is not provable in CIC, it can be consistently assumed as an axiom
extending the represented logic to a classical version [263]. We will occasionally assume
even stronger classical principles like the axiom of choice, or weaker ones like double-
negation shift, then introduced locally in the relevant sections by need. An axiom that will
play a similarly central role like LEM in various chapters is Markov’s principle (MP) [41]:

∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

Allowing double-negation elimination for a much restricted class of propositions, MP is
a consequence of LEM but constructively more acceptable (see the introduction of [41]).
MP is connected to some notions of computability theory as discussed in Section 2.3.
Furthermore, CIC leaves the interpretation of inductive equality underspecified in that

several extensionality principles are independent:

• Function extensionality (FE): ∀XY : T.∀fg : X → Y. (∀x. f x = g x)→ f = g

• Propositional extensionality (PE): ∀PQ : P. (P ↔ Q)→ P = Q

• Proof irrelevance (PI): ∀P : P.∀xy : P. x = y

That these principles are independent means that CIC cannot distinguish extensionally
equal functions and propositions and is morally proof-irrelevant since no two distinct
proofs of some proposition can be exhibited. Note that PI in particular follows both
from PE and LEM and matches the idea that P accommodates propositions whose proofs
cannot be inspected computationally by the ban of large eliminations. We will assume
combinations and variants of these principles in some sections, which like the other axioms
will always be made explicit. Finally, with the univalence axiom [54, 249] employed in
Section 10.5, we will encounter a very general extensionality axiom settling much of the
underspecification of inductive equality.

2.3. Internal Computability
In this last preliminary section, we introduce some notions from computability theory
using type-theoretic functions to model computation. Such a so-called “synthetic” ap-
proach [206, 11] spares the indirect and tedious reference to a concrete model of compu-
tation such as Turing machines or the λ-calculus and can be exploited in all constructive
foundations. Especially in CIC, which can be seen as a typed programming language
extending the λ-calculus, the fact that all definable functions are computable is at hand
and even the stepwise process of computation is displayed via the reduction relation
x � x′. More explanation and justification of this synthetic approach will be delivered
in Section 5.1, here we focus on the core notions of decidability, semi-decidability, and
enumerability of decision problems represented as predicates:

Definition 2.1. Let P : X → P be a predicate over a type X. P is:

• decidable if there is a decider d : X → B with P x iff d x = tt,

• enumerable if there is an enumerator e : N→ O(X) with P x iff ∃n. e n = pxq,

• semi-decidable if there is a semi-decider s : X → N→ B with P x iff ∃n. s x n = tt.

We also call P bi-enumerable if P and its complement P := λx.¬(P x) are enumerable.

These notions extend to predicates of higher arity in the canonical (cartesian) way.
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2. Type-Theoretic Preliminaries

Definition 2.2. Let X be a type.

• X is discrete if the equality predicate λxy : X. x = y is decidable.

• X is enumerable if the trivial predicate λx : X.> is enumerable.

• X is listable if there exists a list L with x ∈ L for all x : X.

Listability is a constructively suitable formulation of finitude that is easy to work with.
Notably, it does not enforce discreteness but implies enumerability:

Fact 2.3. Listable types are enumerable.

Proof. If L : L(X) lists X : T, then the function e : N → O(X) such that e n computes
the n-th element of L, provided n ≤ |L|, can be shown to enumerate X.

Most inductive types encoding data are discrete and enumerable, if not even listable.
On such types like the prime example N, semi-decidability and enumerability coincide:

Fact 2.4. Every predicate P : N→ P is semi-decidable iff it is enumerable.

Proof. If e : N→ O(N) enumerates P , then a semi-decider s : N→ N→ B can be defined
by s n k := tt if e k = pn′q with n = n′, and s n k := ff otherwise. The converse direction
relies on a Cantor pairing function encoding N× N into N.

Due to this fact, we will interchange both notions fluidly where appropriate to trigger
different intuitions. Similarly, decidability on tractable domains implies bi-enumerability.

Fact 2.5. Decidable predicates over enumerable types are bi-enumerable.

Proof. If eX : N → O(X) enumerates X : T and d : X → B decides P : X → T, then
an enumerator eP : N → O(X) can be defined by eP n = pxq for P if eX n = pxq and
d x = tt, and eP n := ∅ otherwise. An enumerator for P is obtained analogously.

The converse direction is a variant of Post’s theorem [11], relying on an algorithm for
the transition from an existential ∃n. P n to a refinement type Σn. P n for decidable P :

Fact 2.6 (Guarded Linear Search). If P : N → P is decidable, then from ∃n. P n one
can compute a concrete n with P n, i.e. one can construct a witness of Σn. P n.1

Proof. By well-founded recursion on the relation Rxy := x = y+1∧¬P y we show that
AR x implies Σn. P n for all x. To conclude, we show that ∃n. P n implies AR 0.

Now, we fix some discrete type X and first approximate Post’s theorem as follows:

Fact 2.7 (Weak Post). If P : X → P is bi-enumerable and definite, then it is decidable.

Proof. Let e1 enumerate P and e2 enumerate P . Given x : X, by definiteness we can
show that ∃n. e1 n = pxq ∨ e2 n = pxq. By discreteness of X, the disjunction below the
existential is decidable, thus guarded linear search provides a concrete n and we just need
to test which of e1 n = pxq or e2 n = pxq was the case to decide whether or not P x.

The assumption of MP suffices to show that bi-enumerable predicates are definite, thus:

Fact 2.8 (Post). Assuming MP, if P : X → P is bi-enumerable, then it is decidable.
1Cf. Coq standard library: http://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
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2.3. Internal Computability

Proof. Let e1 enumerate P and e2 enumerate P . Given x : X, we can constructively show
that ¬¬(∃n. e1 n = pxq ∨ e2 n = pxq). Applying MP yields ∃n. e1 n = pxq ∨ e2 n = pxq
from which the definiteness of P can be deduced. A decider for P is then constructed
with Fact 2.7.

It can be shown that MP is indeed necessary for Post’s theorem [60], i.e. assuming
that every bi-enumerable is decidable one can derive MP. However, we will not make use
of this equivalence, so we refrain from stating it formally. Similarly, the following fact
formulates the much used half of another equivalence to MP (cf. Lemma 7.23 in [57]):
Fact 2.9 (Stability). Assuming MP, enumerable predicates on discrete types are stable.
Proof. Suppose ¬¬P x for some enumerable P : X → P and x : X. If e : N → O(X)
enumerates e, we obtain ¬¬(∃n. e n = pxq). Since by discreteness of X in particular
e n = pxq is decidable, we can apply MP to obtain ∃n. e n = pxq and therefore conclude
P x as claimed.

Constituting the last computational notion introduced for now, partial computable
functions are a crucial generalisation of total computable functions. However, for the
internal representation of logic via the Curry-Howard isomorphism outlined in Section 2.2
to be consistent, one needs to require that all functions are total. This is usually enforced
by only admitting the form of structural recursion expressed by the eliminators discussed
in Section 2.1. Nevertheless, with guarded linear search (Fact 2.6) we have already
seen an example of the more general paradigm of well-founded recursion available in
CIC. Extending the rendering of computability even further, we close this section by
introducing a step-indexed representation of partial functions already hinted at in the
definition of semi-decidability.
Definition 2.10. f : X → N→ O(Y ) is a partial function if it is deterministic, i.e.:

∀xnn′yy′. f x n = pyq→ f x n′ = py′q→ y = y′

We write f : X ⇀ Y to denote that f is a partial function from X to Y . We write f x ↓ y
if there is n with f x n = pyq, f x ↓ if there is y with f x ↓ y, and f x ↑ if f x n = ∅ for
all n. The notation f x ↓ is meant to suggest termination while f x ↑ denotes divergence.
From every partial function f : X ⇀ Y that is total, i.e. satisfies f x ↓ for all x, one can

extract a functionX → Y using guarded linear search. Conversely, every functionX → Y
induces a total partial function X ⇀ Y . We will therefore freely change between both
perspectives. Partial functions allow stating a more general version of Post’s theorem:
Fact 2.11 (Generalised Post). Given disjoint predicates P,Q : X → P with explicit
semi-deciders, then one can construct a partial function f : X ⇀ B such that:

∀x. (P x↔ f x ↓ tt) ∧ (Qx↔ f x ↓ ff)

Moreover, if P and Q exhaust X, i.e. P x ∨Qx for all x : X, then f is a decider for P .
Proof. Suppose we have semi-deciders s1 for P and s2 for Q. We construct f : X ⇀ B to
be the function that on input x simultaneously runs s1 x and s2 x, returns tt if the former
terminates and ff if the latter terminates, and diverges otherwise:

f x n := if s1 xn then pttq else if s2 xn then pffq else ∅

Disjointness is used as the crucial property to show that this function is deterministic.
In the specific case where P and Q exhaust X, we deduce that f is total and since then
Q agrees with P it follows that f decides P .
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2. Type-Theoretic Preliminaries

Note that in the literature on synthetic computability [206, 57] a stricter implementa-
tion of partial functions is dominant, requiring f : X → N→ O(Y ) to be stationary:

∀xnn′y. f x n = pyq→ n ≤ n′ → f x n′ = pyq

For our purposes, however, we prefer the simpler characterisation via deterministic f . We
just remark that every stationary function is deterministic and that every deterministic
function can be made stationary, so the two implementations are equivalent.
The perspective on computability described in this section is only meaningful in the

absence of classical assumptions. Already LEM suffices to show that the characteristic
relation RP : X → B→ P of any predicate P : X → P is total. Then the characteristic
function fP : X → B, that would act as a decider for P , can be defined as soon as
unique choice is assumed, eliminating the distinction of total functional relations and
actual functions:

UC := ∀X : T. ∀p : X → P. (∃!x. p x)→ Σx. p x

Indeed, assuming UC on top of LEM yields an informative variant of excluded middle:

Fact 2.12. Assumign LEM and UC, the principle IEM := ∀P : P. P + ¬P holds.

Proof. Given P : P and employing LEM we can show that the predicate p : B→ P defined
by p tt := P and pff := ¬P is inhabited, i.e. there exists b with p b. This propositional
∃-witnesses cannot be analysed to decide P +¬P yet but with UC we can turn it into an
informative Σ-witness admitting the needed elimination.

Already from IEM alone one can define fP : X → B for every P : X → P, so in a
classical setting validating IEM the synthetic notion of decidability becomes meaningless.
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Part I.

First-Order Logic
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3. Representing First-Order Logic

The main results presented in the first part of this thesis all concern meta-theoretical
properties of first-order logic, therefore making a formal treatment of its syntax, deduc-
tion systems, and semantics a prerequisite. In this chapter, we explain our particular
representation of first-order logic in constructive type theory, developed over a span of
publications [60, 62, 123, 121, 101] with several co-authors and culminating in a collabo-
ratively developed and publicly available Coq library for first-order logic [122].
Outline We begin by introducing the syntax of first-order terms and formulas in Sec-
tion 3.1, followed by natural deduction as a notion of syntactic entailment (Section 3.2)
and model-theoretic validity as a notion of semantic entailment (Section 3.3). This gen-
eral framework is instantiated to the specific setting of first-order Peano arithmetic in
Section 3.4, both to exemplify the setup and to introduce a few more fundamental no-
tions of first-order systems. After this purely mathematical treatment, we discuss aspects
of the concrete implementation in Coq and describe tools developed to ease the interac-
tion with the library in Section 3.5. The chapter ends with an outline of the evolution of
the framework and a comparison to other mechanisations of first-order logic (Section 3.6).
Sources and Contributions This chapter summarises the framework of first-order logic
developed in the above publications. Main contributions are the overall design of the Coq
library of first-order logic and the implemented tool support, as explained in Section 3.5.

3.1. Syntax
We represent the terms and formulas of first-order logic as inductive types over a fixed
signature Σ = (FΣ;PΣ) specifying function symbols f : FΣ and predicate symbols P : PΣ
together with their arities |f | : N and |P | : N. The concrete signatures we consider are
always discrete and enumerable, so also for fixed signatures we usually presuppose these
properties tacitly if not clearly mentioned otherwise.

Definition 3.1. We define the types T of terms and F of formulas over Σ inductively by:

t : T ::= xn | f ~t (n : N, f : FΣ,~t : T|f |)
ϕ, ψ : F ::= ⊥̇ | P ~t | ϕ→̇ψ | ϕ∧̇ψ | ϕ∨̇ψ | ∀̇ϕ | ∃̇ϕ (P : PΣ,~t : T|P |)

We set ¬̇ϕ := ϕ→̇⊥̇ and ϕ↔̇ψ := (ϕ→̇ψ)∧̇(ψ→̇ϕ). Also, we isolate the types F− and F∗
of formulas in the negative (→,∀,⊥)-fragment and minimal (→, ∀)-fragment, respectively.

In most sections we will explicitly state in which fragments we work but we also take
the freedom to leave the fragment implicit if it is clear from the connectives used.
As visible in the constructors for quantifiers, variable binding is implemented using

de Bruijn indices [46] well-suited for mechanisation [237]. In this representation, a
bound variable is encoded as the number of quantifiers shadowing its relevant binder,
e.g. P x y → ∀x.∃y. P x y may be represented by P x7 x4→̇∀̇ ∃̇P x1 x0. The indices 7 and
4 in this example are called free and indices that do not occur free are called fresh. A
formula with no free variables is called closed.
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3. Representing First-Order Logic

In this thesis we will often use named variables instead of de Bruijn indices for concrete
formulas to ease readability, especially we then write ϕ(x, y) to signal that only the
variables x, y are free in ϕ. Similarly, we will sometimes leave out the dots above the first-
order connectives in contexts with no risk of confusion with the type-theoretic symbols.
The use of vectors ~t of lengths matching the symbol arities allows us to directly encode

well-formed formulas (see Section 3.5 for the mechanisation perspective). By the repre-
sentation as flat inductive data, the assumed computational properties of the signature
transport to the first-order syntax:

Fact 3.2. T and F (as well as F− and F∗) are discrete and enumerable.

Proof. Using the standard technique of exhaustive list enumerators discussed in [60].

We next introduce parallel substitutions acting on terms and formulas.

Definition 3.3 (Substitution). Instantiation with a substitution σ : N→ T is defined by

xn[σ] := σ n ⊥̇[σ] := ⊥̇ (ϕ �̇ ψ)[σ] := ϕ[σ] �̇ ψ[σ]
(f ~t )[σ] := f (~t [σ]) (P ~t )[σ] := P (~t [σ]) (∇̇ϕ)[σ] := ∇̇ϕ[x0;λn. ↑(σ n)]

where t;σ denotes the composite substitution mapping 0 to t and n + 1 to σ n, where
↑ t denotes the shifting t[λn. xn+1], and where �̇ and ∇̇ are used as placeholders for the
binary logical connectives and quantifiers, respectively.

Note that instantiation below a quantifier has to fix the 0 index and hence shifts the
substitution σ by one both on input (by using x0; _) and again on output (by using ↑_).
As two further shorthands, we write ↑ϕ for ϕ[λn. xn+1] and ϕ[t] for ϕ[t; id] where id is

the identity substitution λn. xn. All terminology and notation concerning formulas and
substitution carries over pointwise to finite contexts Γ : L(F) and possibly infinite theories
T : F → P. For ease of notation we freely identify finite contexts Γ represented as lists
with their induced theory λϕ. ϕ ∈ Γ and also write ϕ ∈ T for T ϕ.
We summarise a few simple properties of substitution used mostly tacitly from now:

Fact 3.4. Given a formula ϕ as well as substitutions σ and σ′ we have:

1. ϕ[σ] = ϕ if σ n = xn for all n free in ϕ, so especially if σ n = xn for all n.

2. ϕ[σ] = ϕ[σ′] if σ n = σ′ n for all n free in ϕ, so especially if σ n = σ′ n for all n.

3. ϕ[σ][σ′] = ϕ[λn. (σ n)[σ′]].

4. (↑ϕ)[t;σ] = ϕ[σ] and so in particular (↑ϕ)[t] = ϕ.

Proof. The first three are by induction on ϕ, using similar properties of term substitution
t[ϕ] in the case of atomic formulas P ~t. The two claims of (4) follow by combining (3)
with (2) and (1), respectively.

A further syntactic notion needed is the prepend operation of a context to a formula.

Definition 3.5. Given a context Γ and a formula ϕ we define the operation Γ→̇ϕ by:

[ ]→̇ϕ := ϕ (ψ :: Γ)→̇ϕ := ψ→̇Γ→̇ϕ
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3.2. Natural Deduction Systems

3.2. Natural Deduction Systems
We represent deduction systems as inductive predicates of type L(F) → F → P or
similar. We will mostly work with natural deduction (ND) as introduced by Gentzen [70],
since this is the simplest system to do concrete derivations in and since it resembles the
rules governing proofs in constructive type theory, especially the tactics used in Coq. In
Chapter 4 we will also introduce some variants of sequent calculi.
ND comes with an intuitionistic Γ `i ϕ as well as a classical version Γ `c ϕ:

Definition 3.6. Natural deduction for the full syntax F is characterised by the rules
ϕ ∈ Γ
Γ ` ϕ C Γ ` ⊥̇

Γ ` ϕ E
Γ, ϕ ` ψ

Γ ` ϕ→̇ψ II
Γ ` ϕ→̇ψ Γ ` ϕ

Γ ` ϕ IE

Γ ` ϕ Γ ` ψ
Γ ` ϕ∧̇ψ CI

Γ ` ϕ∧̇ψ
Γ ` ϕ CE1

Γ ` ϕ∧̇ψ
Γ ` ψ CE2

Γ ` ϕ
Γ ` ϕ∨̇ψ DI1

Γ ` ψ
Γ ` ϕ∨̇ψ DI2

Γ ` ϕ∨̇ψ Γ, ϕ ` θ Γ, ψ ` θ
Γ ` θ DE

↑Γ ` ϕ
Γ ` ∀̇ϕ

AI
Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ ` ϕ[t]
Γ ` ∃̇ϕ

EI
Γ ` ∃̇ϕ ↑Γ, ϕ `↑ψ

Γ ` ψ
EE

where Γ, ϕ is notation for ϕ :: Γ. The intuitionistic system Γ `i ϕ consists of exactly
these rules, while the classical system Γ `c ϕ adds Peirce’s law Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ. We
write Γ ` ϕ for joint deductions in both systems and ` ϕ for [ ] ` ϕ. For the fragments
F− and F∗, the respective systems are obtained by leaving out the respective rules.
Most rules are standard, we only discuss the quantifier rules in more detail as they rely

on the de Bruijn representation of formulas. In a shifted context ↑Γ there is no reference
to the index 0 which hence plays the role of an arbitrary but fixed individual. So if we
are able to derive ↑Γ ` ϕ, then we may conclude Γ ` ∀̇ϕ as expressed by the rule (AI)
for ∀-introduction. Similarly, the shifts in the rule (EE) for ∃-elimination simulate that
Γ together with ϕ instantiated to the witness provided by Γ ` ∃̇ϕ proves ψ and hence
admits the conclusion that already Γ ` ψ.
For many proofs it will be helpful to employ more traditional quantifier rules based on

fresh variables as justified by Fact 3.9, which we state after first observing the structural
properties of weakening and substitutivity:
Fact 3.7 (Weakening). If Γ ` ϕ, then ∆ ` ϕ for all ∆ ⊇ Γ.
Proof. By induction on (the derivation of) Γ ` ϕ with ∆ quantified.

Fact 3.8 (Substitutivity). If Γ ` ϕ, then Γ[σ] ` ϕ[σ] for all σ.
Proof. By induction on Γ ` ϕ with σ quantified.

Fact 3.9 (Named Rules). Given Γ, ϕ, and ψ one can compute a fresh index n such that
1. ↑Γ ` ϕ iff Γ ` ϕ[xn] and 2. ↑Γ, ϕ `↑ψ iff Γ, ϕ[xn] ` ψ.

Proof. Computing fresh indices with respect to finitely many formulas is always possible
since each formula only contains finitely many indices. For (1), the first direction is imme-
diate by substitutivity since (↑Γ)[xn] = Γ. The backwards direction is by substitutivity
for the substitution σ mapping n to x0 and any other k 6= n to xk+1, since then indeed
Γ[σ] =↑Γ and ϕ[xn][σ] = ϕ. For (2) we use an analogous argument.
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3. Representing First-Order Logic

By Fact 3.9 we now obtain the traditional rules for (AI) and (EE), respectively:

Γ ` ϕ[xn] n fresh for Γ, ϕ
Γ ` ∀̇ϕ

AI’
Γ ` ∃̇ϕ Γ, ϕ[xn] ` ψ n fresh for Γ, ϕ, ψ

Γ ` ψ
EE’

In the definition of the classical ND system we deliberately chose Peirce’s law as addi-
tional rule, as it expresses classical behaviour solely relying on implication and therefore
works in most syntax fragments. For syntax fragments with more connectives, the com-
mon characteristics of classical reasoning can be derived:

Fact 3.10. The classical ND system satisfies the following properties:
1. Γ `c ϕ∨̇¬̇ϕ

2. Γ `c ¬̇¬̇ϕ→̇ϕ

3. Γ `c ϕ∨̇ψ ↔̇ ¬̇(¬̇ϕ∧̇¬̇ψ)

4. Γ `c ∃̇ϕ ↔̇ ¬̇∀̇¬̇ϕ

Proof. All statements have simple derivations from Peirce’s law.

We will later use a semantical argument via soundness for Kripke semantics to show
that intuitionistic ND does not satisfy these classical laws (Fact 4.19).
Finitary deduction systems such as ND naturally extend to theories T by writing T ` ϕ

if there exists a context Γ ⊆ T with Γ ` ϕ. Then T ` ϕ satisfies proof rules analogous
to Γ ` ϕ, again both in an intuitionistic variant T `i ϕ and a classical variant T `c ϕ.
In contrast to the generalised system T ` ϕ, the context of the finitary system Γ ` ϕ

can always be simulated within the derived formula:

Fact 3.11 (Deductive Context Shift). Γ ` ϕ iff ` Γ→̇ϕ.

Proof. Assuming Γ ` ϕ, we derive ` Γ→̇ϕ iterating the (II) rule and in the final step
weakening to reverse the context. In the converse direction, we iterate the (IE) rule
combined with weakening.

Finally, to pick up on the computational properties of the first-order syntax again, we
establish the enumerability of the deduction system:

Fact 3.12. If a theory T is enumerable, then so is λϕ. T ` ϕ. So in particular λϕ.Γ ` ϕ
for a context Γ and λϕ. ` ϕ are enumerable.

Proof. Again using the standard techniques discussed in [60].

While the deduction system is enumerable, it is not decidable in general. Chapter 5 is
concerned with this and related undecidability results of first-order logic.

3.3. Tarski Semantics

We represent the canonical Tarski semantics with types providing the necessary structure
to interpret all symbols of the signature Σ. For the interpretation of function symbols
it is most natural to use type-theoretic functions, with interesting consequences for in-
stance relevant in Section 6.3. Similarly, as the logical connectives are interpreted in the
constructive meta-logic, special care needs to be taken to interpret classical behaviour.
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3.3. Tarski Semantics

Definition 3.13. A (Tarski) modelM over a domain D is a pair of dependent functions

_M : ∀f : FΣ. D
|f | → D _M : ∀P : PΣ. D

|P | → P.

Given such a modelM, an assignment ρ : N→ D is extended to an evaluation ρ̂ : T→ D
by ρ̂ xn := ρ n and ρ̂ (f ~t ) := fM (ρ̂~t ) and the satisfaction relationM �ρ ϕ by

M �ρ ⊥̇ := ⊥ M �ρ ϕ �̇ ψ := M �ρ ϕ �M �ρ ψ
M �ρ P ~t := PM (ρ̂~t ) M �ρ ∇̇ϕ := ∇a : D.M �a;ρ ϕ

where the assignment a; ρ maps 0 to a and n+1 to ρ n, and where each binary connective
�̇ and quantifier ∇̇ is interpreted by its type-theoretic counterpart � or ∇. We write
M �ρ T ifM �ρ ϕ for all ϕ ∈ T and T � ϕ ifM �ρ ϕ wheneverM �ρ T . M is called
classical if it validates all instances of Peirce’s law, i.e. M � ((ϕ→̇ψ)→̇ϕ)→̇ϕ for all ϕ
and ψ. We write T �c ϕ if T � ϕ restricted to classical models. The semantics of the
fragments F− and F∗ is obtained by omitting the respective rules.

Note that we will often simply writeM to refer to the domain D of a given modelM.
We summarise a few basic properties concerning the satisfaction relation:

Lemma 3.14. Given a modelM with assignments ρ and ρ′ we have for every ϕ:

1. M �ρ ϕ iffM �ρ′ ϕ if ρ n = ρ n′ for all indices n free in ϕ.

2. M �ρ ϕ[σ] iffM �ρ̂ ◦σ ϕ for all substitutions σ.

Proof. Both are by induction on ϕ, using similar properties for term evaluation ρ̂ t in the
case of atomic formulas P ~t.

By the former property the assignment is irrelevant for closed formulas, therefore we
often leave the concrete assignment implicit in that case. The latter property establishes
the interplay of substitutions with assignments.
Moreover, in analogy to Fact 3.11, semantic entailment respects the prepend operation:

Fact 3.15 (Semantic Context Shift). Γ � ϕ iff � Γ→̇ϕ.

Proof. Again by a straightforward induction on Γ.

A fundamental fact relating deduction to semantics is soundness, meaning that only
valid statements can be derived. Soundness entails consistency, stating that falsity cannot
be derived, as shown formally in the next section for Peano arithmetic. In our constructive
meta-logic, the classical ND system can only be shown sound for classical models.

Fact 3.16 (Soundness). T `i ϕ implies T � ϕ and T `c ϕ implies T �c ϕ.

Proof. The first claim follows from the underlying finitary soundness property that Γ ` ϕ
implies Γ � ϕ, which we establish by induction on Γ ` ϕ. The second claim follows since
soundness of the classical rule is exactly given by classicality of the models.

Of course, once we make the meta-logic classical, all models behave classically.

Corollary 3.17 (Classical Soundness). Assuming LEM, T `c ϕ implies T � ϕ.

The counterpart of soundness is completeness, a much more involved and constructively
subtle property to which Chapter 4 is dedicated.
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3.4. Peano Arithmetic

To illustrate how the general framework is customised to a particular first-order theory
and to introduce a few more concepts relevant for this thesis, we discuss the case of Peano
arithmetic (PA) and related axiomatisations of arithmetic. To this end, we use a signature
containing symbols for the constant zero, the successor function, addition, multiplication
and equality:

(O, S_ , _⊕ _ , _⊗ _ ; _ ≡ _)

Note that we indeed prefer to see equality as a relation symbol of the signature instead
of a logical primitive, in particular since, constructively, quotient models interpreting
≡ with = are not always freely available (cf. Section 3.5 for further discussion on the
treatment of equality). The equality symbol is characterised with the standard axioms
of an equivalence relation together with congruence rules for each function symbol:

S-congruence: ∀̇xx′. x ≡ x′ →̇Sx ≡ Sx′

⊕-congruence: ∀̇xx′yy′. x ≡ x′ →̇ y ≡ y′ →̇x⊕ y ≡ x′ ⊕ y′

⊗-congruence: ∀̇xx′yy′. x ≡ x′ →̇ y ≡ y′ →̇x⊗ y ≡ x′ ⊗ y′

The core of PA consists of four axioms characterising addition and multiplication:

⊕-base: ∀̇x.O ⊕ x ≡ x ⊕-recursion: ∀̇xy. (Sx)⊕ y ≡ S(x⊕ y)
⊗-base: ∀̇x.O ⊗ x ≡ O ⊗-recursion: ∀̇xy. (Sx)⊗ y ≡ y ⊕ (x⊗ y)

Furthermore, PA consists of the following two axioms regarding the successor function

Disjointness: ∀̇x. Sx ≡ O →̇⊥ Injectivity: ∀̇xy. Sx ≡ Sy →̇x ≡ y

as well as the axiom scheme of induction, which we define as a function on formulas:

λϕ. ϕ[O] →̇ (∀̇x. ϕ[x] →̇ϕ[Sx]) →̇ ∀̇x. ϕ[x]

The weaker system of Robinson arithmetic Q, playing an important role in the compu-
tational analysis of arithmetical systems, is obtained by replacing the induction scheme
with the single axiom ∀x. x ≡ O ∨ ∃y. x ≡ Sy allowing for case distinctions. We re-
fer to the much weaker system just containing the four core axioms about addition and
multiplication by Q′.
Now that we have established the syntax of PA, we can consider its deductive theory.

First note that PA itself is not forced to be a classical system, instead the logical flavour
is delegated to the deduction system. So if we use classical ND, we speak of Peano
arithmetic, while if we use intuitionistic ND, we speak of Heyting arithemtic, signalled
by writing HA instead of PA. Alternatively, we could include all instances of Peirce’s
law into the axioms of PA but with this approach we could no longer treat the classical
versions of Q and Q′ as finite axiomatisations. For now, we describe the computational
behaviour of the arithmetical systems as follows:

Fact 3.18. All of λϕ.PA ` ϕ, λϕ.Q ` ϕ, and λϕ.Q′ ` ϕ are enumerable.

Proof. By Fact 3.12, the latter two are trivial since Q and Q′ are finite, for the former
we first show PA enumerable.
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That all these deductive theories are undecidable will be established in Section 5.7.
Finally, regarding the semantics of PA, we consider the standard model N induced by

the type N with its natural arithmetical operations and equality. Due to the fundamental
completeness / compactness property of first-order logic, aside from this canonical model
PA also admits non-standard models of quite different behaviour. The distinction of
standard and non-standard models will play an important role in this thesis, especially in
Section 6.3 and Section 7.1 on Tennenbaum’s theorem and second-order logic, respectively.
One primal use of a model is to establish consistency, i.e. the underivability of falsity:

Fact 3.19 (Consistency). N � HA and therefore HA 6`i ⊥̇. Using LEM, also PA 6`c ⊥̇.

Proof. Showing N � HA is straightforward as the claim reduces to a collection of simple
arithmetical facts, the four axioms of Q′ are even correct by computation. Then suppose
HA `i ⊥̇, so by soundness (Fact 3.16) we obtain HA � ⊥̇ and therefore the contra-
diction N � ⊥̇. Finally, if we assume LEM and PA `c ⊥̇, then by classical soundness
(Corollary 3.17) we obtain PA � ⊥̇, again yielding the contradiction N � ⊥̇.

It is not possible to show N classical without using classical assumptions as this would
in particular show the semantic theory of N decidable, in conflict with the negative
computational properties of truth in the standard model established in Section 5.7. How-
ever, in Section 5.7 we will discuss an alternative technique based on Friedman’s A-
translation [69], by which the consistency of PA can be established constructively.
Another use of constructing models is to separate related axiom systems, which we

here sketch informally. For instance, if one extends N by a single point of infinity, one
obtains a model still satisfying all of Q but failing to satisfy the induction scheme of
PA. Similarly, since they just state positive equations, the axioms of Q′ are satisfied
in the trivial single-point model, which of course fails to satisfy the negative axiom of
disjointness included in Q.
This trivial model of Q′ hints at a principal difference between Q′ and Q: one can

consistently add to Q′ the axiom ∀̇xy. x ≡ y, yielding a complete theory Q∗ such that
either Q∗ ` ϕ or Q∗ ` ¬ϕ for closed ϕ, even computably detectable. In contrast, Q is
essentially incomplete in that it cannot ever be completed by adding consistent axioms,
thus the same holds for PA. The phenomenon of incompleteness will be treated in various
forms in Chapter 6.

3.5. Coq Mechanisation and Tooling
Mechanising the previously described general framework for first-order logic in Coq poses
several challenges and design decisions that we now elaborate on. Overall, we favour
generality over minimality, so we do not obtain a particularly compact framework but
one that we deem applicable to further mechanisations involving first-order logic or related
formalisms. Currently, the full library consists of roughly 40k lines of code, distributed
over 166 files.
Signatures First, starting with the representation of signatures Σ = (FΣ;PΣ), we use
two synonymous type classes to bundle a symbol type S : T with an arity function
|_| : S → N for the components FΣ and PΣ, respectively. The reason that we do not
bundle both signature components into a single type class is to have the term syntax
only depend on FΣ. This makes it possible to model different instances (FΣ;PΣ) and
(FΣ;PΣ

′) of the formula type over the same term type without need to convert terms
from one signature into the other. By the use of type classes instead of records, the
signatures are automatically inferred from the context.
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Atomic Formulas We use vectors to ensure that applications of function and relation
symbols provide the expected amount of arguments, sparing the need to single out well-
formed atomic formulas with an inductive predicate. Although indexed inductive types
like vectors can be tricky to work with, we rarely encounter problems given that over
a fixed first-order signature normally no operations changing the length of vectors are
performed. Moreover, the failure of Coq to derive a nested induction principle for terms
with a meaningful inductive hypothesis for the supplied term vector ~t in the case of a
function application f ~t is easily made up for with a manually derived principle.
Modularity A second challenge is the treatment of several syntax fragments (F, F−, F∗)
in a modular way, for which we combine two techniques. First, we use another type class
argument to let the syntax depend on types of binary connectives and quantifiers. Then
all notions agnostic about the syntax fragment, prominently substitution (Definition 3.3),
can be defined parametrically in this argument. Only when it comes to fragment-aware
notions like natural deduction or Tarski semantics, we instantiate to the two operator
variants for F and F− (full syntax or negative fragment) and branch the development
from there. In the case of falsity ⊥ we go a step further by not abstracting via a type of
logical constants but by using a type class flag. This allows us to maintain the modularity
beyond the definition of deduction and semantics since the respective inductive rules
and recursive equations are included depending on the flag, switching between the two
previous fragments and the minimal fragment F∗.
Deduction Systems A second type class flag is used in the deduction systems to treat
both the intuitionistic and classical version simultaneously. This avoids code duplication
for structural properties like weakening, enumberability, and soundness. Results spe-
cific to a variant of the deduction system are supported by custom induction principles
completely hiding the flag.
Equality Regarding the role of equality, we neither include it as an omnipresent prim-
itive nor do we add another flag to the syntax. Instead, we simply treat equality as a
normal binary relation symbol as part of the signature, always axiomatised as an equiv-
alence relation congruent for all other symbols of the signature. By this we obtain the
usual Leibniz characterisation (x ≡ y iff ϕ(x) ↔̇ϕ(y)) without restricting to extensional
models that interpret x ≡ y with the actual equality of their domain type. Being able
to study intensional models with a possibly coarser setoid interpretation of equality is
worthwhile in a constructive setting, since intensional models cannot always be quotiented
to extensional models. In some semantic proofs we deliberately restrict to extensional
models for simplicity, so that rewriting instead of setoid rewriting can be used.
De Bruijn Indices Our use of a de Bruijn representation [46] of the first-order syntax
follows one of the standard approaches to the formalisation of binding, as comprehensively
explained and formalised in Stark’s thesis [236]. No new techniques are necessary for the
application to first-order logic, which is in fact simpler than the general case given the
stratification in the two syntactic categories of terms and formulas, with binding only
occurring in formulas and referring only to terms. Therefore, the usual intermediate
definition of instantiation with parallel renamings to make the definition of instantiation
with parallel substitutions structurally recursive can be avoided.
Autosubst Regarding tool support, we refrain from using Autosubst 2 [237] to generate
and automate de Bruijn syntax since it relies on functional extensionality, turns out to
be rather slow on more involved ND derivations, and does not handle the interaction
of substitutions with semantic variable assignments anyway. Then, to also obtain more
transparent code than the generated syntax, we manually implement the de Bruijn en-
coding of first-order logic based on the design of Autosubst 2 (parallel substitutions, same
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primitives and lemmas) and provide faster simplification tactics working exactly for the
substitution and assignment goals occurring during typical ND derivations and semantic
arguments. Moreover, to avoid writing down concrete formulas with unnatural index
chasing, we define a HOAS [195] input language where a user can employ Coq’s variable
binding to define readable first-order formulas, which is then compiled down to the actual
de Bruijn syntax [101].
Custom Tactics While semantic arguments are usually easy to mechanise as they re-
duce to type-level manipulations in Coq’s logic, derivations in an object-level deduction
system do not benefit from any direct support from Coq’s tactic language other than the
application of the inductive rules characterising the deduction system. Using these rules
directly is enough for simple propositional goals but does not really scale to quantifiers,
which is why we implement custom tactics expressing the critical (AI) and (EE) rules us-
ing the equivalences from Fact 3.9 based on fresh indices. With this level of abstraction,
deductive proofs become similarly feasible to semantic proofs to a user familiar with the
details of the framework.
Proof Mode For more external users, we implement a proof mode1 [101] inspired by
a similar mode for the Iris framework for higher-order separation logic [139]. When
interactively composing a syntactic derivation, the user can switch on the proof mode and
then sees the proof state of hypotheses and claim represented similar to usual Coq goals
and hiding de Bruijn indices. This proof state can be manipulated using custom tactics
similar to Coq’s normal tactics, abstracting from the automated translation into sequences
of derivation rules. There is also a prototype extension to rewriting with axiomatised first-
order equality, which is however a bit too slow to work on more involved goals as of yet.
The example in Figure 3.1 shows the proof mode used to establish commutativity of
addition in the deduction system of PA, featuring named syntax, custom tacticts, and
first-order rewriting on the top, as well as the goal view below.
Automated Reification Lastly, we provide a reification plugin2 [101] implemented us-
ing MetaCoq [231]. With this tool, type-level predicates that happen to be first-order
expressible can be turned into their object-level counterpart, which for instance eases the
use of schemes like the induction axiom in PA. Concretely, when working in a model
M � PA, we know that M satisfies induction for every first-order expressible predicate
P : M → P and so need to provide a representability proof on every use of induc-
tion. Using the reification plugin, these representability proofs are automated by calling
a single tactic, see the example in Figure 3.2 again establishing commutativity of addi-
tion, this time semantically inside of a model M. On top, the induction instance and
matching assignment are provided manually, while below the same goal is closed by the
representation tactic.

3.6. Discussion and Related Work
In this chapter, we have introduced the representation of first-order logic in constructive
type theory we use in this thesis. Of course, the standard concepts introduced so far
(natural deduction, Tarski semantics, soundness, consistency, Peano arithmetic) can be
found in any textbook on mathematical logic and also the used techniques to represent
them in Coq are by no means new. However, there is still a lot of design space to consider

1See the project page https://github.com/dominik-kirst/coq-library-undecidability/tree/
coqws/theories/FOL/Proofmode for demos and documentation.

2See the project page https://github.com/dominik-kirst/coq-library-undecidability/tree/
coqws/theories/FOL/Reification for demos and documentation.
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Lemma add_comm : PA ` << ∀' x y, x + y == y + x.
Proof.

fstart. fapply ((ax_induction (<< Free x, ∀' y, x+y == y+x))).
- fintros "x". frewrite (ax_add_zero x).

frewrite (add_zero_r x). fapply ax_refl.
- fintros "x" "IH" "y". (* ? *) frewrite (add_succ_r y x).

frewrite <- ("IH" y). frewrite (ax_add_rec y x).
fapply ax_refl.

Qed.

x, y : term

PA
"IH" : ∀ x0, x[↑] + x0 == x0 + x[↑]

(S x + y == y + S x)

Figure 3.1.: A derivation of commutativity in the ND system for PA using the proof
mode. On top is the proof script using custom tactics like fapply resembling
Coq tactics but applying the ND rules. Below is the visualised goal state at
position ? in the script, with assumptions of PA and the inductive hypothesis
IH above the remaining claim.

Lemma add_comm a b : a +M b = b +M a.
Proof.

elim a using PA_induction.
- exists ($0 + $1 == $1 + $0). (* instance *)

exists (fun _ => b). (* assignment n 7→ b *)
intros d. cbn. rewrite D_eq_ext. now split.

- now rewrite add_zero_l, add_zero_r.
- intros a' IH. now rewrite add_succ_l, add_succ_r.

Qed.

Lemma add_comm a b : a +M b = b +M a.
Proof.

elim a using PA_induction.
- represent. (* Goal was: reifiable ( fun a => a +M b = b +M a ) *)
- now rewrite add_zero_l, add_zero_r.
- intros a' IH. now rewrite add_succ_l, add_succ_r.

Qed.

Figure 3.2.: A proof of commutativity of addition in a model of PA showcasing the repre-
sentation tactic. On top is the manual version, where the concrete instance
of the induction axiom is given by hand, including the suitable assignment.
Below is the version where both components are derived automatically by a
call to represent.
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and we are confident that, from the experience we have gained over several connected
mechanisation projects, we reached a general, accessible, and scalable framework suit-
able for conceivable future Coq developments concerning first-order logic. We close this
chapter by outlining the evolution of our intermediate developments and by comparing
our final framework to other general mechanisations of first-order logic in Coq or closely
related systems.

Framework Evolution
In [60] with Yannick Forster and Gert Smolka, we use named syntax distinguishing vari-
ables as bound by quantifiers and parameters acting as free names. The substitution-
critical (AI)-rule then allows us to conclude Γ ` ∀x. ϕ from Γ ` ϕxa, where ϕxa denotes the
single-point substitution of x with a parameter a fresh for Γ and ϕ. This side condition
unfortunately makes already proving weakening quite complicated [93], as an extended
context ∆ ⊇ Γ might contain a and therefore makes a parallel renaming of all param-
eters necessary. Also, in this development the syntax is defined over a fixed signature
for the theory of Boolean strings and only comes in the fragments F− and F∗ (already
distinguished by type class flags, likewise the flavours of the deduction systems).
In [62] with Yannick Forster and Dominik Wehr, we switch to a de Bruijn encoding

supported by Autosubst 2, which elegantly solves the problem of side conditions for
structural properties. In the case of weakening for the (AI)-rule, where Γ ` ∀ϕ is now
concluded from ↑Γ ` ϕ, for an extension ∆ ⊇ Γ the index 0 is as canonical for ↑∆ as for
↑Γ, eliminating the need for renaming. In this development we also add the full syntax
F, but without modularity other than reusing the term syntax, and make the syntax
parametric in a combined signature for function and relation symbols.
The last two problems are improved upon in [123] with Dominique Larchey-Wendling,

based on a completely new implementation of the framework introducing the more modu-
lar abstract types of connectives and decoupling the two signature components. Moreover,
this reimplementation does without the Autosubst 2 support due to its (actually unneces-
sary) dependency on functional extensionality, as we prefer to maintain an axiom-free and
therefore maximally compatible framework. We deem this decision a reasonable trade also
for the reasons already mentioned in the previous section, especially in the project [123]
concerned exclusively with semantics and thus marginalising the role of substitution.
In [121] with Marc Hermes, all design decisions of [123] are merged with the previous

implementation of [62] employing type classes, yielding the final framework described in
this chapter. All prior Coq developments were ported to this framework, constituting
the library of first-order logic [122] contributed as part of this thesis. We conducted a
few further experiments regarding the treatment of first-order equality and modularity
following the Coq-à-la-Carte approach [67] but ultimately we decided to stick to the
satisfactory setup of [121].

Related Work
Turning to the comparison to other mechanisations of first-order logic in Coq or similar
systems, O’Connor [185, 184] mechanises Gödel’s incompleteness theorem in Coq based
on a named first-order syntax with single-point substitution over arbitrary signatures.
He considers a classical Hilbert system represented as inductive predicate. Reflecting on
these design choices, O’Connor suggests to use alternative implementations of binding
and deductions systems more suitable for mechanisation [184, p. 49], especially to avoid
substitution lemmas with lengthy proofs [184, p. 29]. Another issue he reports on is
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his mutually inductive definition of terms and term vectors to obtain an automatically
generated strong induction principle (so that in the case of p (f ~t ) one may assume p t for
all t ∈ ~t ). By the mutual definition, all proofs involving terms are complicated and many
standard results about term vectors need to be established first. He later observes that
for a simpler, non-mutual definition using predefined vectors one can still manually derive
the strong induction principle [184, p. 21], which is one of his many helpful suggestion
we follow in our own framework.
Ilik [107] represents monadic first-order syntax with function and relation symbols fixed

to unary arity for his mechanisation of various constructive completeness proofs. His
definition of formulas and terms is mutually inductive as terms can be constructed with
the Henkin constants for a particular formula. Variables are represented in the locally-
nameless approach [174, 37] where de Bruijn indices for bound variables are separated
from named free variables. The (AI)-rule is represented co-finitely, concluding Γ ` ∀ϕ
from Γ ` ϕ0

x for all variables x not contained in a list L of used names. The extension of
his framework to multi-variable symbols is left for future work [107, p. 29].
Herbelin, Kim, and Lee [92, 93, 91] mechanise a cut-free sequent calculus for intuition-

istic first-order logic and prove weakening, soundness, and completeness, all based on a
traced representation of formulas. In this locally-named representation, the formula type
depends on a list tracking the bound names and if this list is empty only parameters
may occur. Their signature is restricted to binary function symbols and unary relation
symbols.
Han and van Doorn [83, 84] prove the independence of the continuum hypothesis in

ZF set theory using the Lean proof assistant, using a de Bruijn representation of first-
order logic over arbitrary signatures close to ours. However, they differ slightly in their
definition of function and relation application since the employed version Lean 3 only has
limited support for vectors: so instead of using vectors to supply the expected number of
terms, they define partially applied terms and formulas tracking the amount of missing
terms in an index and obtain well-formed terms and formulas if this index is 0. Also,
they do not represent signatures as types S with arity function S → N but with stratified
functions F : N→ T where F n is the type of n-ary symbols.
Laurent [154] suggests the so-called anti-locally-nameless approach where, opposite to

the locally-nameless approach, quantifiers introduce named binders, while free variables
are seen as shiftable de Bruijn indices. In this setting, the premise of the (AI)-rule is
↑Γ `↑ϕx0 and derives Γ ` ∀x. ϕ, meaning that a named universal quantification ∀x. ϕ is
derived by shifting all indices up by one and then replacing the name x by the canonical
free index 0. By this compromise, structural properties like weakening are easily provable
while human-readable names for bound variables are kept. This could be an alternative
to our two-level approach with de Bruijn syntax at the low level and provided tools for
interaction on a higher level.
We summarise the different approaches and their characteristics in the following table:

Development Signature Binding (AI)-Rule Weakening
O’Connor arbitrary named side-condition by definition

Ilik monadic locally-nameless co-finite easy
Herbelin et al. dyadic locally-named side-condition needs renaming

Han and van Doorn arbitrary de Bruijn shifting easy
Laurent full anti-loc.-namel. shifting easy

Our framework arbitrary de Bruijn shifting easy
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The completeness theorem of first-order logic is widely considered the first milestone of
metamathematics, apart from the previous and long-winded identification of the formal-
ism itself. Completeness states that all semantically valid formulas can be syntactically
deduced, thereby guaranteeing that symbolic reasoning is an adequate method to explore
mathematical truth. Once completeness of a sound deduction system with respect to
a semantic interpretation of the syntax is established, the infinitary notion of semantic
validity is reduced to the algorithmically tractable notion of syntactic deduction.
While interpreted in this sense completeness is a desirable property, it also hints at

an expressive weakness of first-order logic: for every formula that is not derivable from
a given context, there will be a separating model satisfying the context but refuting the
formula. Especially in conjunction with incompleteness results guaranteeing independent
sentences for a large class of contexts (see Chapter 6), completeness gives rise to a variety
of unintended models and only stronger logics (such as second-order logic discussed in
Section 7.1) are able to, for instance, uniquely characterise the standard model of PA.
The original completeness theorem for first-order logic first proven by Gödel [78] and

later refined by Henkin [88, 87] guarantees the existence of a syntactic deduction of
every formula valid in the canonical Tarski semantics. However, this result may not be
understood as an effective procedure in the sense that a formal deduction for a formula
satisfied by all models can be computed by an algorithm, since even for finite signatures
the proof relies on non-constructive assumptions. As noted by Kreisel [140], it was already
known to Gödel that for a completeness proof the classically vacuous but constructively
contested assumption of Markov’s principle MP is necessary.
The aim of this chapter is to coherently analyse the assumptions necessary to prove

completeness theorems concerning various semantics and deduction systems. Naturally,
such matters of constructive reverse mathematics [109] need to be addressed in an intu-
itionistic meta-logic such as constructive type theory. The two main questions in focus
are which assumptions are necessary for particular formulations of completeness and how
the statements can be modified such that they hold constructively.
Applying this agenda to Tarski semantics, a first observation is that the model existence

theorem, central to Henkin’s completeness proof, holds constructively [90] for the classi-
cally sufficient negative fragment F− if both the predicate interpretation and satisfaction
relation are embedded as propositions. As a second observation, model existence directly
implies that valid formulas cannot be unprovable. Thus, for enumerable theories a single
application of MP, rendering enumerable predicates such as deduction stable under dou-
ble negation, yields completeness. Because MP is admissible in CIC [192], i.e. provable
for every concrete instance, so are the related completeness statements. For arbitrary
theories, we show that completeness is equivalent to the law of excluded middle.
Regarding the second main question of our agenda, we show that completeness for the

minimal (→,∀)-fragment does not depend on additional assumptions by elaborating on a
classical proof given by Schumm [212]. Connectedly, we illustrate how the interpretation
of ⊥ can be relaxed to exploding models as proposed by Veldman [257, 145], admitting a
constructive completeness proof for the minimal fragment.
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Turning to intuitionistic logic, we discuss analogous relationships for Kripke semantics
and a cut-free intuitionistic sequent calculus [92]. Again, completeness for the negative
fragment is equivalent to Markov’s Principle but constructive if restricted to the minimal
fragment or employing a relaxed treatment of ⊥. The intuitionistically undefinable con-
nectives ∨ and ∃ add further complexity [107] and remain untreated in this chapter. As
a side note, we explain how the constructivised completeness theorem for intuitionistic
logic can be used to obtain a semantic cut-elimination procedure, following [92].
After considering such model-theoretic semantics, mainly based on embedding the

object-logic into the meta-logic, we exemplify a rather different approach to assigning
meaning to formulas, namely algebraic semantics, where the embedding of formulas
into the meta-logic is generalised to an evaluation in algebras providing the structure
of the logical connectives. In this setting, completeness follows from the observation that
provability induces such an algebra on formulas. We discuss intuitionistic and classical
logic evaluated in complete Heyting and complete Boolean algebras (cf. [215]). Differ-
ing fundamentally from model-theoretic semantics, both share a constructive rendering
of completeness for the full syntax of first-order logic, agnostic to the intuitionistic or
classical flavour of the deduction system.
Outline The core analysis of completeness for classical Tarski semantics is given in
Section 4.1 and continued with two syntactic generalisations in Section 4.2. In Section 4.3,
Kripke semantics is introduced and respective completeness theorems for intuitionistic
first-order logic are analysed. Then the more constructively-behaved algebraic semantics
is defined and discussed in Section 4.4. We close this chapter with a summary of further
results and related work in Section 4.5.
Sources This chapter consists largely of parts of the LFCS’20 paper with Yannick
Forster and Dominik Wehr [61] and its journal version [62] that were mostly written
by the author of this thesis. The Coq development regarding the model-theoretic seman-
tics was originally developed in the context of Wehr’s Bachelor’s thesis [262] and later
ported to the Coq library for first-order logic [122].
Contributions The main contribution of this chapter is the constructive and mechanised
analysis of completeness theorems for model-theoretic and algebraic semantics. On top of
the collaborative work on the project, the author of this thesis contributed the extension to
the full syntax (Section 4.2) as well as the treatment of algebraic semantics (Section 4.4).

4.1. Completeness for Tarski Semantics
We begin with a Henkin-style completeness proof for the classical ND system Γ `c ϕ
in the negative fragment F−, based on the presentation by Herbelin and Ilik [90]. The
main idea is to factor through the model existence theorem, stating that every consistent
context is satisfied by a model. The model existence theorem in turn is based on a theory
extension lemma attributed to Lindenbaum, where we generalise the role of ⊥̇ to an
arbitrary formula ϕ⊥ acting as substitute:

Lemma 4.1 (Lindenbaum). For every closed ϕ⊥ and T there is T ′ ⊇ T with:

1. T ′ maintains ϕ⊥-consistency, i.e. T `c ϕ⊥ whenever T ′ `c ϕ⊥.

2. T ′ is deductively closed, i.e. ϕ ∈ T ′ whenever T ′ `c ϕ.

3. T ′ respects implication, i.e. (ϕ→̇ψ) ∈ T ′ iff ϕ ∈ T ′ → ψ ∈ T ′.

4. T ′ respects universal quantification, i.e. (∀̇ϕ) ∈ T ′ iff ∀t. ϕ[t] ∈ T ′.
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4.1. Completeness for Tarski Semantics

Proof. Note that the natural enumeration ϕn of F− satisfies that x is fresh for ϕn if x ≥ n.
Then the extension can be separated into three steps, all maintaining ϕ⊥-consistency:

a. E ⊇ T which is exploding, i.e. (ϕ⊥→̇ϕ) ∈ E for all closed ϕ.

b. H ⊇ E which is Henkin, i.e. (ϕn[n]→̇∀̇ϕn) ∈ H for all n.

c. Ω ⊇ H which is maximal, i.e. ϕ ∈ Ω whenever Ω, ϕ `c ϕ⊥ implies Ω `c ϕ⊥.

Note that being exploding allows us to use ϕ⊥ analogously to ⊥̇ and that being Henkin
ensures that there is no mismatch between the provability of a universal formula and all
its instances. We first argue why Ω satisfies the claims (1)-(4) of the extension lemma.

1. Ω is a ϕ⊥-consistent extension of T since all steps maintain ϕ⊥-consistency.

2. Let Ω `c ϕ and assume Ω, ϕ `c ϕ⊥, so Ω `c ϕ⊥. Thus ϕ ∈ Ω per maximality.

3. The first direction is immediate as Ω is deductively closed. We prove the converse
using maximality, so assume Ω, ϕ→̇ψ `c ϕ⊥. It suffices to show that Ω `c ϕ since
then ϕ ∈ Ω, ψ ∈ Ω, and ultimately Ω `c ϕ⊥ follow. Ω `c ϕ can be derived by proof
rules for ϕ⊥ analogous to the ones for ⊥̇.

4. The first direction is again immediate by Ω being deductively closed and the con-
verse exploits that Ω is Henkin as follows. Suppose ∀t. ϕ[t] ∈ Ω and let ϕ be ϕn in
the given enumeration. Then in particular ϕn[n] ∈ Ω and since Ω is Henkin also
(ϕn[n]→̇∀̇ϕn) ∈ Ω which is enough to derive (∀̇ϕ) ∈ Ω.

We now discuss the three extension steps separately:

a. Since the requirement is unconditional, we just add all needed formulas:

E := T ∪ {ϕ⊥→̇ϕ | ϕ closed}

We only have to argue that E maintains ϕ⊥-consistency over T . So suppose E `c ϕ⊥,
meaning that Γ `c ϕ⊥ for some Γ ⊆ E . We show that all added instances of
explosion for ϕ⊥ in Γ can be eliminated. Indeed, for Γ = ∆, ϕ⊥→̇ϕ we have
∆ `c (ϕ⊥→̇ϕ)→̇ϕ⊥ and hence ∆ `c ϕ⊥ by the Peirce rule. Thus by iteration there
is Γ′ ⊆ T with Γ′ `c ϕ⊥, justifying T `c ϕ⊥.

b. As above, to make E Henkin we just add all necessary Henkin-axioms

H := E ∪ {ϕn[n]→̇∀̇ϕn | n : N}

and justify that the extension maintains ϕ⊥-consistency. So let Γ `c ϕ⊥ for some
Γ ⊆ H, we again show that all added instances can be eliminated. Hence suppose
Γ = ∆, ϕn[n]→̇∀̇ϕn. One can show that in a context ∆′ extending ∆ by suitable
instances of ϕ⊥-explosion one can derive ∆′ `c ϕ⊥. In this derivation one exploits
that n is fresh for ϕn and that the input theory E is closed. Thus ultimately E `c ϕ⊥.

c. The last step maximises H by adding all formulas maintaining ϕ⊥-consistency:

Ω0 := H Ωn+1 := Ωn ∪ {ϕn | Ωn, ϕn `c ϕ⊥ implies Ωn `c ϕ⊥} Ω :=
⋃
n:N

Ωn
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4. Constructive Completeness

Note that Ω maintains ϕ⊥-consistency by construction over all Ωn starting from
Ω0 = H, so it remains to justify that Ω is maximal. So suppose Ω, ϕn `c ϕ⊥
implies Ω `c ϕ⊥, we have to show that ϕn ∈ Ω. This is the case if the condition
in the definition of Ωn+1 is satisfied, so let Ωn, ϕn `c ϕ⊥. Then by the assumed
implication Ω `c ϕ⊥ and since Ω maintains ϕ⊥-consistency over Ωn also Ωn `c ϕ⊥
as required.

The generalisation via the falsity substitute ϕ⊥ will become important later, for now
the instance ϕ⊥ := ⊥̇ suffices. Also note that in usual jargon the extension T ′ of a
consistent theory T is called maximal consistent, as no further formulas can be added to
T ′ without breaking consistency.
Maximal consistent theories T give rise to equivalent syntactic models MT over the

domain T of terms by setting fT ~t := f ~t and P T ~t := (P ~t ∈ T ). We then observe that
MT �σ ϕ iff ϕ[σ] ∈ T for all substitutions σ by a straighforward induction on ϕ using
the properties stated in Lemma 4.1. Hence in particular MT �id ϕ iff ϕ ∈ T for the
identity substitution idn := xn. From this observation we conclude the model existence
theorem:

Theorem 4.2 (Model Existence). Every closed, consistent theory has a classical model.

Proof. Let T be closed, consistent and let T ′ be its extension per Lemma 4.1 for ϕ⊥ := ⊥̇.
To show MT ′ �id T , let ϕ ∈ T , hence ϕ ∈ T ′. Then since MT ′ is equivalent to T ′ we
concludeMT ′ �id ϕ as desired. Finally,MT ′ is classical due to (2) of Lemma 4.1.

The model existence theorem directly yields completeness up to double negation:

Fact 4.3 (Quasi-Completeness). T �c ϕ implies ¬¬(T `c ϕ) for closed T and ϕ.

Proof. Suppose that T �c ϕ for closed T and ϕ and assume T 6`c ϕ which is equivalent
to T , ¬̇ϕ being consistent. But then by Theorem 4.2 there must be a classical model of
T , ¬̇ϕ in conflict to the assumption T �c ϕ.

In fact, the remaining double negation elimination turns out to be necessary as observed
in the upcoming Theorem 4.4. In this theorem and future statements, by “completeness
of T `c ϕ” or similar we abbreviate the statement that T �c ϕ implies T `c ϕ for all
(closed) T and ϕ, analogously for “stability of T `c ϕ”.

Theorem 4.4. Completeness of T `c ϕ is equivalent to stability of T `c ϕ.

Proof. Assuming stability, Fact 4.3 directly yields the completeness of T `c ϕ. Con-
versely, assume completeness and let ¬¬(T `c ϕ). Employing completeness, to get
T `c ϕ it suffices to show T , ¬̇ϕ �c ⊥̇, so supposeM �ρ T , ¬̇ϕ for someM and ρ. As we
now aim at a contradiction, we can turn ¬¬(T `c ϕ) into T `c ϕ and therefore obtain
T �c ϕ by soundness, a conflict toM �ρ Γ, ¬̇ϕ.

Along these lines, we can characterise completeness of classical ND:

Theorem 4.5 (Completeness Analysis). The following two equivalences hold:

1. Completeness of T `c ϕ for enumerable T is equivalent to MP.

2. Completeness of T `c ϕ for arbitrary T is equivalent to LEM.

Proof. We establish both equivalences independently.
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4.1. Completeness for Tarski Semantics

1. T `c ϕ for enumerable T is enumerable, hence stable under MP and thus complete
per Fact 4.3. For the converse, assume a function f : N → B and consider T :=
(λϕ. ϕ = ⊥̇∧∃n. f n = tt). Since T is enumerable, completeness yields that T �c ⊥̇
is equivalent to T `c ⊥̇ which in turn is equivalent to ∃n. f n = tt. Then since
T �c ⊥̇ is stable so must be ∃n. f n = tt.

2. LEM trivially implies that T `c ϕ is stable and hence complete. Conversely given
a proposition P : P, completeness for T := (λϕ. ϕ = ⊥̇ ∧ P ) yields the stability of
P with an argument as in (1).

Having analysed the usual Henkin-style completeness proof, we now turn to its con-
structivisation. The central observation is that completeness already holds constructively
for the minimal (→, ∀)-fragment, by an elaboration of the classical proof for the mini-
mal fragment given in [212]. To this end, we further restrict the deduction system and
semantics to the minimal fragment and prove completeness via a suitable form of model
existence.

Lemma 4.6 (Minimal Model Existence). In the minimal fragment, for closed T and ϕ
there is a classical modelM such that (1)M �id T , and (2)M �id ϕ implies T `c ϕ.

Proof. Let T ′ be the extension of T for ϕ⊥ := ϕ. As before, we have MT ′ �id T ′. So
now letMT ′ �id ϕ, then ϕ ∈ T ′ and T `c ϕ by (1) of Lemma 4.1.

Corollary 4.7 (Minimal Completeness). T �c ϕ implies T `c ϕ for closed T , ϕ in F∗.

As opposed to completeness for formulas incorporating ⊥̇, completeness in the minimal
fragment does not rely on consistency requirements. Consequently, if these requirements
are eliminated by allowing models to treat inconsistency more liberally, completeness for
formulas with ⊥̇ can be established constructively (cf. [257, 145]).
So we now turn back to the negative (→, ∀,⊥)-fragment and define a satisfaction

relation M �Aρ ϕ for arbitrary A : P with the relaxed rule (M �Aρ ⊥̇) := A. Then a
model M is A-exploding if M �A ⊥̇→̇ϕ for all ϕ and exploding if it is A-exploding for
some choice of A. Note that A := > and PM ~t := > in particular yields an exploding
model satisfying all formulas, hence accommodating inconsistent theories. This leads to
the following formulation of model existence.

Lemma 4.8 (Exploding Model Existence). For every closed theory T there is an explod-
ing classical modelM such that (1)M �Aid T and (2)M �Aid ⊥̇ implies T `c ⊥̇.

Proof. Let T be closed and let T ′ be its extension for ϕ⊥ := ⊥̇. We set A := (⊥̇ ∈ T ′) and
observe that the syntactic modelMT ′ still coincides with T ′, i.e.MT ′ �Aσ ϕ iff ϕ[σ] ∈ T ′.
Hence we have (1)MT ′ �Aid T . Moreover,MT ′ is A-exploding sinceMT ′ �Aσ ⊥̇→̇ϕ in this
case means that ⊥̇→̇ϕ[σ] ∈ T ′, a straightforward consequence of T ′ being deductively
closed. Finally, (2) follows from (1) of Lemma 4.1 as seen before.

We write T �e ϕ if M �Aρ ϕ for all A : P and A-exploding classical M and ρ with
M �Aρ T and finally establish completeness with respect to exploding models:

Corollary 4.9 (Exploding Completeness). T �e ϕ implies T `c ϕ for closed T , ϕ.

Proof. Let T �e ϕ, then T , ¬̇ϕ `c ⊥̇ follows by Lemma 4.8 for the theory T , ¬̇ϕ.
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4. Constructive Completeness

4.2. Extension to Full Syntax and Free Variables
The completeness statements discussed in the previous section impose syntactic limita-
tions in two ways: we only considered closed formulas, simplifying the addition of Henkin
axioms, that belong to the classically sufficient negative (→,∀,⊥)-fragment, avoiding
the more involved treatment of ∨ and ∃. We discuss in this section the extension of
completeness to the full syntax in detail and sketch the extension to free variables.
For the former, we formally distinguish the deduction systems Γ `−c ϕ and Γ `c ϕ

and satisfaction relations M �−ρ ϕ and M �ρ ϕ involving formulas from F− and F,
respectively. As mentioned earlier, the classical deduction system Γ `−c ϕ is already
suitable to encode the missing connectives via the usual classical equivalents. However,
if we extend the Tarski semantics M �−ρ ϕ to formulas ϕ : F in the natural way, in
particular by setting

M �ρ ϕ∨̇ψ := M �ρ ϕ ∨M �ρ ψ M �ρ ∃̇ϕ := ∃a : D.M �a;ρ ϕ

then classical logic on the meta-level becomes necessary to tame the constructively
stronger notions of disjunction and existence.
For ease of readability, we identify formulas in F− with their identity embedding into F.

The converse encoding of F into F− is defined as follows:

Definition 4.10. We define the de Morgan translation ϕM from F to F− by

(ϕ∧̇ψ)M := ¬̇(ϕM→̇¬̇ψM ) (ϕ∨̇ψ)M := ¬̇ϕM→̇ψM (∃̇ϕ)M := ¬̇∀̇¬̇ϕM

in the crucial cases and with the remaining syntax just recursively traversed.

We verify that the deduction system indeed cannot distinguish formulas from their de
Morgan translations:

Lemma 4.11. Γ `c ϕ iff Γ `c ϕM and in particular Γ `c ϕ iff ΓM `−c ϕM .

Proof. The first equivalence is by induction on ϕ with Γ generalised with the backwards
directions relying on the classical (P) rule as expected. The implication from Γ `c ϕ to
ΓM `−c ϕM is by induction on Γ `c ϕ employing that substitution commutes with the de
Morgan translation. The converse implication follows with the first equivalence since all
fragment deductions can be replayed in the full system.

Turning to the semantics, the deductive equivalence can be mimicked when assuming
classical logic.

Lemma 4.12. With LEM, we haveM �ρ ϕ iffM �−ρ ϕM for allM and ρ.

Proof. By induction on ϕ with ρ generalised, using LEM to get from ϕM to ϕ.

Corollary 4.13. With LEM, T �c ϕ implies T M �−c ϕM for all T and ϕ.

Therefore, we can conclude a completeness statement as follows.

Theorem 4.14 (Full Completeness). With LEM, T �c ϕ implies T `c ϕ for closed T , ϕ.

Proof. By composing Corollary 4.13, Theorem 4.5, and Lemma 4.11.

Note that this concluding theorem requires full classical logic as analysed before in
Theorem 4.5. Moreover, so does the general statement of Lemma 4.12:
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4.3. Completeness for Kripke Semantics

Fact 4.15. IfM �ρ ϕ iffM �−ρ ϕM for allM and ρ, then LEM holds.

Proof. Given a proposition P , we instantiate the assumed equivalence with the signature
containing only a single propositional variable p, the modelM on domain 1 interpreting
p as P , and the constant assignment ρ n := ?. Then the claim P ∨ ¬P can be expressed
as M �ρ p∨̇¬̇p. By the assumed equivalence, we just need to prove M �−ρ (p∨̇¬̇p)M
which reduces to the tautology ¬P → ¬P .

However, we suspect that Theorem 4.14 actually requires only a weaker assumption
due to the restriction to classical models of the full syntax in the relation T �c ϕ.
Now regarding free variables, we return to the negative fragment F− as default and

only explain the general idea and state the main results. Intuitively, one can reduce
completeness involving free variables to our previous results restricted to closed formulas
by replacing free indices by constants in an extended signature. So if T �c ϕ where
T and ϕ may contain free variables, we obtain T̃ �c ϕ̃ where the operation ϕ̃ yields
closed formulas over a signature with countably many constant symbols added. Then
completeness in the appropriate form can be used to derive T̃ `c ϕ̃ or similar, which can
then be transformed back into a derivation T `c ϕ in the original signature.
We formulate corresponding refinements of Fact 4.3 and Corollaries 4.7 and 4.9:

Theorem 4.16 (Open Completeness). The following hold for arbitrary T and ϕ:

1. T �c ϕ implies ¬¬(T `c ϕ) in F−.

2. T �c ϕ implies T `c ϕ in F∗.

3. T �e ϕ implies T `c ϕ in F−.

4.3. Completeness for Kripke Semantics
Switching to intuitionistic logic, we present Kripke semantics as the appropriate model-
theoretic interpretation extending Tarski semantics by a notion of possible worlds. To
accommodate exploding models as employed in Section 4.1, we introduce Kripke seman-
tics immediately generalised to arbitrary interpretations of falsity.

Definition 4.17. A Kripke model K over a domain D is a preorder (W ,�) with

_K : ∀f : FΣ. D
|f | → D _K : ∀P : PΣ.W → D|P | → P ⊥K : W → P.

The interpretation of predicates and falsity is required to be monotonic, i.e. PKv ~a→ PKw ~a
and ⊥Kv → ⊥Kw whenever v � w. Assignments ρ and their induced term evaluations ρ̂ as
in Definition 3.13 are extended to formulas via the forcing relation w 
ρ ϕ defined by:

w 
ρ ⊥̇ := ⊥Kw w 
ρ ϕ→̇ψ := ∀v � w. v 
ρ ϕ→ v 
ρ ψ

w 
ρ P ~t := PKw (ρ̂~t ) w 
ρ ∀̇ϕ := ∀a : D.w 
a;ρ ϕ

We write K 
 ϕ if w 
ρ ϕ for all ρ and w. K is standard if ⊥Kw implies ⊥ for all w and
exploding if K 
 ⊥̇→̇ϕ for all ϕ. We write T 
 ϕ if in any standard model w 
ρ ϕ for
all w and ρ with w 
ρ T , and T 
e ϕ when relaxing to exploding models.

Note that standard models are exploding, hence T 
e ϕ implies T 
 ϕ. Moreover, the
monotonicity required for the predicate and falsity interpretations lifts to all formulas,
i.e. w 
ρ ϕ implies v 
ρ ϕ whenever w � v. This property together with the usual facts
about the interaction of assignments and substitutions yields soundness:
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4. Constructive Completeness

Fact 4.18 (Kripke Soundness). T `i ϕ implies T 
e ϕ.

Proof. Similar to Fact 3.16, first proving inductively that Γ `i ϕ implies Γ 
e ϕ.

Fact 4.19. Given a signature with at least one predicate symbol P , then 6`i ¬̇¬̇P ~t→̇P ~t.

Proof. Using soundness for a Kripke model with w 6
 P ~t, w′ 
 P ~t, and w � w′.

Turning to completeness, instead of showing that Γ 
e ϕ implies Γ `i ϕ directly,
we follow Herbelin and Lee [92] and reconstruct a formal derivation in the normal se-
quent calculus LJT, hence implementing a cut-elimination procedure. LJT is defined by
judgements Γ⇒ϕ and Γ ;ψ⇒ϕ for a focused formula ψ:

Γ ;ϕ⇒ϕ
A

Γ ;ϕ⇒ψ ϕ ∈ Γ
Γ⇒ψ

C
Γ⇒ϕ Γ ;ψ⇒θ

Γ ;ϕ→̇ψ⇒θ
IL

Γ, ϕ⇒ψ

Γ⇒ϕ→̇ψ IR
Γ ;ϕ[t]⇒ψ

Γ ; ∀̇ϕ⇒ψ
AL

↑Γ⇒ϕ

Γ⇒∀̇ϕ
AR Γ⇒⊥̇

Γ⇒ϕ
E

Fact 4.20. Every derivation Γ⇒ϕ can be translated into a normal derivation Γ `i ϕ.

Proof. By simultaneous induction on both forms of judgements, where every sequent
Γ ;ψ⇒ϕ is translated to an implication from Γ `i ψ to Γ `i ϕ.

By the previous fact, completeness for LJT implies completeness for intuitionistic ND.
The technique to establish completeness for Kripke semantics is based on universal mod-
els coinciding with intuitionistic provability. We in fact construct two syntactic Kripke
models over the domain T, yielding completeness regarding finite contexts Γ.

• An exploding model U on contexts such that Γ 
Uσ ϕ iff Γ⇒ϕ[σ].

• A standard model C on consistent contexts such that Γ 
Cσ ϕ iff ¬¬(Γ⇒ϕ[σ]).

These constructions are based on the proofs and comments by Herbelin and Lee [92].
We begin with the exploding model U .

Definition 4.21 (Exploding Universal Model). The model U over the domain T of terms
is defined on the contexts Γ preordered by inclusion ⊆. Further, we set:

f U ~d := f ~d P UΓ
~d := Γ⇒P ~d ⊥UΓ := Γ⇒⊥̇

The desired properties of U can be derived from the next lemma, which takes the shape
of a normalisation-by-evaluation procedure [20, 53].

Lemma 4.22. In the universal Kripke model U the following hold.

1. Γ 
σ ϕ→ Γ⇒ϕ[σ]

2. (∀Γ′ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ψ → Γ′⇒ψ)→ Γ 
σ ϕ

Proof. We prove (1) and (2) simultaneously by induction on ϕ generalising Γ and σ. We
only discuss the case of implications ϕ→̇ψ in full detail.

1. Assuming ∀Γ′. Γ ⊆ Γ′ → Γ′ 
σ ϕ→ Γ′ 
σ ψ, one has to derive that Γ⇒(ϕ→̇ψ)[σ].
Per (IR) and inductive hypothesis (2) for ψ it suffices to show Γ, ϕ[σ] 
σ ψ. Apply-
ing the inductive hypothesis (2) for ϕ and the assumption, it suffices to show that
Γ′ ;ϕ[σ]⇒θ[σ] implies Γ′⇒θ[σ] for any Γ, ϕ[σ] ⊆ Γ′ and θ, which holds per (C).

38

https://www.ps.uni-saarland.de/extras/kirst-thesis/website/Undecidability.FOL.Semantics.Kripke.FragmentSoundness.html#ksoundnessT
https://www.ps.uni-saarland.de/extras/kirst-thesis/website/Undecidability.FOL.Semantics.Kripke.FragmentSoundness.html#iprv_dne
https://www.ps.uni-saarland.de/extras/kirst-thesis/website/Undecidability.FOL.Deduction.FragmentSequentFacts.html#cutfree_seq_ND
https://www.ps.uni-saarland.de/extras/kirst-thesis/website/Undecidability.FOL.Completeness.KripkeCompleteness.html#K_ctx
https://www.ps.uni-saarland.de/extras/kirst-thesis/website/Undecidability.FOL.Completeness.KripkeCompleteness.html#K_ctx_correct
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2. Assuming ∀Γ′ θ. Γ ⊆ Γ′ → Γ′ ; (ϕ→̇ψ)[σ]⇒θ → Γ′⇒θ one has to deduce Γ′ 
σ ϕ
entailing Γ′ 
σ ψ for any Γ ⊆ Γ′. Because of the inductive hypothesis (2) for ψ
it suffices to show ∆ ;ψ[σ]⇒ θ implying ∆⇒ θ for any Γ′ ⊆ ∆. By using the
assumption, ∆ ⇒ θ reduces to ∆ ; (ϕ→̇ψ)[σ] ⇒ θ. This follows by (IL), as the
assumption Γ′ 
σ ϕ implies ∆⇒ϕ[σ] per inductive hypothesis (2).

Corollary 4.23. U is exploding and satisfies Γ 
σ ϕ iff Γ⇒ϕ[σ].

Proof. Suppose that Γ⇒⊥̇, then (2) of Lemma 4.22 yields that Γ 
σ ϕ for arbitrary ϕ.
Thus U is exploding. The claimed equivalence then follows by (1) of Lemma 4.22 and
soundness of LJT.

Being universal, U witnesses completeness for exploding Kripke models:

Fact 4.24 (Exploding Kripke Completeness). The following hold:

1. Γ 
e ϕ implies Γ⇒ϕ.

2. In the (→, ∀)-fragment F∗, Γ 
 ϕ implies Γ⇒ϕ.

Proof. We derive both formulations of completeness employing the model U .

1. Since Γ 
Uid Γ we have that Γ 
e ϕ implies Γ 
Uid ϕ and hence Γ⇒ϕ.

2. In the minimal fragment, ⊥̇ remains uninterpreted and hence imposes no condition
on the models. Hence U yields the completeness in this case.

Before we move on to completeness for standard models, we illustrate how the previous
fact already establishes the cut rule for LJT.

Lemma 4.25 (Cut). If Γ⇒ϕ and Γ;ϕ⇒ψ, then Γ⇒ψ.

Proof. By the translation given in Fact 4.20, we obtain a derivation Γ `i ψ from the two
assumptions. This can be turned into Γ⇒ψ first using soundness (Fact 4.18) and then
completeness (Fact 4.24).

We next construct the universal standard model C as a refinement of U . As standard
models require that ⊥Kv implies ⊥ for any v, the model U has to be restricted to the
consistent contexts, those which do not prove ⊥̇.

Definition 4.26 (Standard Universal Model). The model C over the domain T of terms
is defined on the consistent contexts Γ 6⇒⊥̇ preordered by inclusion ⊆. Further, we set:

f C ~d := f ~d P CΓ
~d := ¬¬(Γ⇒P ~d) ⊥ CΓ := ⊥

Note that C is obviously standard and that we weakened the interpretation of atoms
to double-negated provability. This admits the following normalisation-by-evaluation
procedure for double-negated sequents:

Lemma 4.27. In the universal Kripke model C the following hold.

1. Γ 
σ ϕ→ ¬¬(Γ⇒ϕ[σ])

2. (∀Γ′ψ. Γ ⊆ Γ′ → Γ′ ;ϕ[σ]⇒ψ → ¬¬(Γ′⇒ψ))→ Γ 
σ ϕ

Proof. We prove (1) and (2) simultaneously by induction on ϕ generalising Γ and σ. Most
cases are completely analogous to those in Lemma 4.22. Therefore we only discuss the
crucial case (1) for implications ϕ→̇ψ.
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1. Assuming Γ 
σ ϕ→̇ψ we need to derive ¬¬(Γ⇒ϕ[σ]→̇ψ[σ]). So we may assume
¬(Γ⇒ ϕ[σ]→̇ψ[σ]) and need to derive a contradiction. Because of the negative
goal, we may assume that either Γ, ϕ[σ] is consistent or not. In the positive case,
we proceed as in Lemma 4.22 since the extended context is a node in C. On the
other hand, if Γ, ϕ[σ]⇒⊥̇, then Γ, ϕ[σ]⇒ψ[σ] by (E) and hence Γ⇒ϕ[σ]→̇ψ[σ] by
(IR), contradicting the assumption ¬(Γ⇒ϕ[σ]→̇ψ[σ]).

Corollary 4.28. C satisfies Γ 
σ ϕ iff ¬¬(Γ⇒ϕ[σ]).

Proof. The first direction is (1) of Lemma 4.27 and the converse follows with (2) since
¬¬(Γ⇒ϕ[σ]) and Γ′ ;ϕ[σ]⇒ψ for Γ′ ⊇ Γ together imply ¬¬(Γ′⇒ψ) via the cut rule
established in Lemma 4.25.

The advantage of the additional double negations is that, in contrast to the proof
in [92], we only need a single application of stability to derive completeness. Thus the
completeness of Γ `i ϕ is admissible in CIC.

Fact 4.29 (Kripke Quasi-Completeness). The following hold:

1. Γ 
 ϕ implies Γ⇒ϕ, provided that Γ⇒ϕ is stable.

2. Γ 
 ϕ implies Γ `i ϕ, provided that Γ `i ϕ is stable.

Proof. We establish both claims in order:

1. Since Γ 
 ϕ implies ¬¬(Γ⇒ϕ), we can conclude Γ⇒ϕ per stability.

2. Since Γ⇒ϕ iff Γ `i ϕ per soundness and completeness (Facts 4.18 and 4.24).

Conversely, unrestricted completeness requires the stability of classical ND.

Fact 4.30. Completeness of Γ⇒ϕ implies stability of Γ `c ϕ.

Proof. Assume completeness of Γ⇒ϕ and suppose ¬¬(Γ `c ϕ). We prove Γ `c ϕ, so it
suffices to show Γ, ¬̇ϕ `c ⊥̇. Employing a standard double-negation translation ϕN on
formulas ϕ, it is equivalent to establish (Γ, ¬̇ϕ)N⇒⊥̇. Applying completeness, however,
we may assume a standard model K with K 
ρ (Γ, ¬̇ϕ)N and derive a contradiction.
Hence we conclude Γ `c ϕ and so ΓN 
 ϕN from ¬¬(Γ `c ϕ) and soundness, in conflict
with K 
ρ (Γ, ¬̇ϕ)N .

Thus, the completeness of intuitionistic ND behaves similarly to the classical case.

Theorem 4.31 (Kripke Completeness Analysis). The following two implications hold:

1. Completeness of T `i ϕ for enumerable T implies MP.

2. Completeness of T `i ϕ for arbitrary T implies LEM.

4.4. Completeness for Algebraic Semantics
In contrast to the model-theoretic semantics discussed in the previous sections, variants
of algebraic semantics are not based on models interpreting the non-logical symbols over
some domain but on algebras suitable for interpreting the logical connectives of the syn-
tax. A formula is valid if it is satisfied by all algebras and completeness follows from the
observation that deduction systems have the corresponding algebraic structure. Follow-
ing [215], we discuss complete Heyting and Boolean algebras coinciding with intuitionistic
and classical ND, respectively. We consider all formulas ϕ : F of the full syntax.
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4.4. Completeness for Algebraic Semantics

Definition 4.32. A Heyting algebra consists of a preorder (H,≤) and operations

0 : H, u : H → H → H, t : H → H → H, ⇒: H → H → H

for bottom, meet, join, and implication satisfying the following properties:
1. 0 ≤ x

2. z u x ≤ y ↔ z ≤ x⇒ y

3. z ≤ x ∧ z ≤ y ↔ z ≤ x u y

4. x ≤ z ∧ y ≤ z ↔ x t y ≤ z

Moreover, H is complete if there is an operation
d

: (H → P) → H for arbitrary
meets, satisfying (∀y ∈ P. x ≤ y) ↔ x ≤

d
P . Then H also has arbitrary joins ⊔P :=d

(λx. ∀y ∈ P. y ≤ x) satisfying (∀y ∈ P. y ≤ x)↔ ⊔
P ≤ x.

Arbitrary meets and joins indexed by a function F : I → H on an indexing type I are
defined by

d
i F i :=

d
(λx.∃i. x = F i) and ⊔i F i := ⊔(λx. ∃i. x = F i), respectively. As

we do not require ≤ to be antisymmetric in order to avoid classical quotient constructions,
we establish equational facts about Heyting algebras only up to structural equivalence
x ≡ y := x ≤ y ∧ y ≤ x rather than actual equality.

Lemma 4.33 (Distributivity). Let H be a Heyting algebra.

1. H is u-t-distributive, i.e. xu(ytz) ≡ (xuy)t(xuz). As a consequence, x ≤ ytz
implies x ≤ (x u y) t (x u z).

2. If H is complete then it is u-⊔-distributive, i.e. x u (⊔i F ) ≡ ⊔i(λi. x u F i). As a
consequence, x ≤ ⊔i F implies x ≤ ⊔i(λi. x u F i).

Proof. By simple algebraic calculations.

Note that every Heyting algebra embeds into its down set algebra consisting of the sets
x⇓ := λy. y ≤ x ordered by inclusion. The MacNeille completion [166] adding arbitrary
meets and joins, while preserving existing ones, is a refinement of this embedding.

Fact 4.34 (MacNeille Completion). Every Heyting algebra H embeds into a complete
Heyting algebra Hc, i.e. there is a function f : H → Hc with x ≤ y ↔ f x ≤c f y and:

1. f 0 ≡ 0c

2. f (x⇒ y) ≡ f x⇒c f y

3. f (x u y) ≡ f x uc f y

4. f (x t y) ≡ f x tc f y

Proof. Given a set X : H → P, we define the sets LX := λx.∀y ∈ X. x ≤ y of lower
bounds and UX := λx. ∀y ∈ X. y ≤ x of upper bounds of X. We say that a set X is
down-complete if L (UX) ⊆ X. Note that in particular down sets x⇓ are down-complete
and that down-complete sets are downwards closed, i.e. satisfy x ∈ X whenever x ≤ y
for some y ∈ X.
Now consider the type Hc := ΣX.L (UX) ⊆ X of down-complete sets preordered by

set inclusion X ⊆ Y . It is immediate by construction that the operation
d
c P := ⋂

P
defines arbitrary meets in Hc. Moreover, it is easily verified that further setting

0c := 0⇓ X uc Y := X ∩ Y X tc Y := L (U (X ∪ Y )) X ⇒c Y := λx.∀y ∈ X.x u y ∈ Y

turns Hc into a (hence complete) Heyting algebra. The only non-trivial case is implica-
tion, where X ⇒c Y ≡

d
c(λZ. ∃x ∈ X.Z ≡ (λy. yux ∈ Y )) is a helpful characterisation

to show that X ⇒c Y is down-complete whenever Y is such.
Finally, x⇓ clearly is a structure preserving embedding as specified.
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We now define how formulas can be evaluated in a complete Heyting algebra H, where
we presuppose a purely syntactic interpretation [[_]] : ∀P : PΣ.T|P | → H of atoms.

Definition 4.35 (Heyting Evaluation). Given a complete Heyting algebra H we extend
interpretations [[_]] : ∀P : PΣ.T|P | → H of atoms to formulas using size recursion by

[[⊥̇]] := 0 [[ϕ∧̇ψ]] := [[ϕ]] u [[ψ]] [[∀̇ϕ]] :=
d
t[[ϕ[t]]]

[[ϕ→̇ψ]] := [[ϕ]]⇒ [[ψ]] [[ϕ∨̇ψ]] := [[ϕ]] t [[ψ]] [[∃̇ϕ]] := ⊔
t[[ϕ[t]]]

and to contexts by [[Γ]] :=
d
ϕ∈Γ[[ϕ]]. A formula ϕ is valid in H if x ≤ [[ϕ]] for all x : H.

Note that [[ϕ]] is defined by size recursion to account for the substitution ϕ[t] needed
in the quantifier cases.
We first show that intuitionistic ND is sound for this semantics.

Fact 4.36. Γ `i ϕ implies ∀σ. [[Γ[σ]]] ≤ [[ϕ[σ]]] in all complete Heyting algebras.

Proof. By induction on Γ `i ϕ, all rules but (DE) and (EE) are trivial.

• (DE) In this case σ is not instantiated, so we leave out the annotations [σ] for better
readability. Suppose that [[Γ]] ≤ [[ϕ]] t [[ψ]], [[Γ, ϕ]] ≤ [[θ]], and [[Γ, ψ]] ≤ [[θ]], we show
that [[Γ]] ≤ [[θ]]. Applying the first consequence mentioned in Lemma 4.33, it suffices
to show ([[Γ]] u [[ϕ]]) t ([[Γ]] u [[ψ]]) ≤ [[θ]]. This means to show both [[Γ]] u [[ϕ]] ≤ [[θ]]
and [[Γ]] u [[ψ]] ≤ [[θ]] which both follow from the assumptions.

• (EE) Suppose that ∀σ. [[Γ[σ]]] ≤ ⊔t[[ϕ[t;σ]]] and ∀σ. [[↑Γ[σ], ϕ[σ]]] ≤ [[↑ψ[σ]]], we show
that [[Γ[σ]]] ≤ [[ψ[σ]]] for a fixed σ. Now applying the second consequence mentioned
in Lemma 4.33, it suffices to show⊔t([[Γ[σ]]]u[[ϕ[t;σ]]]) ≤ [[ψ[σ]]]. This means to show
[[Γ[σ], ϕ[t;σ]]] ≤ [[ψ[σ]]] for all terms t, which follows from the second assumption
instantiated with t;σ and the equations (↑Γ)[t;σ] = Γ[σ] and (↑ψ)[t;σ] = ψ[σ].

Corollary 4.37 (Soundness). Γ `i ϕ implies [[Γ]] ≤ [[ϕ]] in all complete Heyting algebras.

Secondly turning to completeness, a strategy reminiscent to the case of Kripke se-
mantics can be employed by exhibiting a universal structure, the so-called Lindenbaum
algebra, that exactly coincides with provability.

Fact 4.38 (Lindenbaum). The type F of formulas together with the preorder ϕ `i ψ and
the logical connectives as corresponding algebraic operations forms a Heyting algebra.

Proof. Straightforward using weakening.

We write L for the Lindenbaum algebra (Fact 4.38) and L for its MacNeille completion
(Fact 4.34). Formulas are evaluated in L according to Definition 4.35 using the syntac-
tic atom interpretation [[P ~t]] := (P ~t )⇓ . Since L preserves the meets and joins of L,
evaluation in L yields the set of sufficient preconditions.

Lemma 4.39. Evaluating ϕ in L yields the set of all ψ with ψ `i ϕ, i.e. [[ϕ]] ≡ ϕ⇓ .

Proof. By size induction on ϕ. The case for atoms is by construction and the cases for
all connectives but the quantifiers are immediate since ⇓ preserves the structure of L as
specified in Fact 4.34. The quantifiers are handled as follows:
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• (∀) Let ψ ∈
d
t[[ϕ[t]]], we show ↑ψ `i ϕ in order to establish ψ `i ∀̇ϕ. By Fact 3.9

we know that there is a fresh variable x such that ↑ψ `i ϕ if ψ `i ϕ[x]. The latter
follows by induction for ϕ[x] since ψ ∈ [[ϕ[x]]] by assumption.
Conversely, let ψ `i ∀̇ϕ, we show ψ ∈ [[ϕ[t]]] for every term t in order to establish
ψ ∈

d
t[[ϕ[t]]]. By (AE) we have ψ `i ϕ[t] and conclude ψ ∈ [[ϕ[t]]] using the

inductive hypothesis for ϕ[t].

• (∃) Let ψ ∈ ⊔t[[ϕ[t]]], we want ψ ∈ (∃ϕ)⇓ . Hence it suffices to show ⊔
t[[ϕ[t]]] ⊆

(∃ϕ)⇓ which reduces to [[ϕ[t]]] ⊆ (∃ϕ)⇓ for every t. By induction we know that
[[ϕ[t]]] ≡ ϕ[t]⇓ and conclude ϕ[t]⇓⊆ (∃ϕ)⇓ since ϕ[t] `i ∃ϕ.
Conversely, let ψ `i ∃ϕ, we show that ψ ∈ ⊔t[[ϕ[t]]]. By construction of ⊔ we have
to show that ψ ∈ X for all downwards closed X with ∀t. [[ϕ[t]]] ⊆ X. By closedness
it suffices to show ψ ∈ L (UX) and hence ψ `i θ for θ ∈ UX. Applying (EE),
this reduces to ↑ψ, ϕ `i↑θ and, employing Fact 3.9, to ψ, ϕ[x] `i θ for a fresh x.
This follows since already ϕ[x] `i θ given that ϕ[x] ∈ ϕ[x]⇓≡ [[ϕ[x]]] ⊆ X and
θ ∈ UX.

Theorem 4.40 (Completeness). If ϕ is valid in all complete Heyting algebras, then `i ϕ.

Proof. If ϕ is valid, then Lemma 4.39 implies that ψ `i ϕ forall ψ. By e.g. choosing the
tautology ψ := ⊥̇→̇⊥̇ we can derive `i ϕ since obviously `i ⊥̇→̇⊥̇.

Switching to classical logic, we call a Heyting algebra Boolean if (x⇒y)⇒x ≤ x for all
x and y, hence directly accommodating Peirce’s law (P). Then first, classical deduction
is sound for interpretation in Boolean algebras.

Fact 4.41 (Soundness). Γ `c ϕ implies [[Γ]] ≤ [[ϕ]] in every complete Boolean algebra.

Proof. As in Corollary 4.37, the classical rule (P) is sound by definition.

Secondly, we establish the completeness of classical deduction by generalising the previ-
ous proof to all deduction systems subsuming intuitionistic ND. So we fix a now abstract
predicate `a: L(F) → F → P satisfying at least the rules of intuitionistic ND (Defini-
tion A.1), weakening (Fact 3.7), as well as the equivalences concerning fresh variables
stated in Fact 3.9, and replay the construction from before.

Fact 4.42. The type F of formulas together with the preorder ϕ `a ψ and the logical
connectives as corresponding algebraic operations form a Heyting algebra.

We denote the Lindenbaum algebra of `a by La and its completion by La.

Lemma 4.43. Evaluating ϕ in La yields the set of all ψ with ϕ `a ψ.

If we instantiate `a with `c we can conclude completeness as follows:

Lemma 4.44. The MacNeille completion of a Boolean algebra is Boolean.

Theorem 4.45 (Completeness). If ϕ is valid in all complete Boolean algebras, then `c ϕ.

Proof. By Lemma 4.44, Lc is Boolean since Lc is so due to the classical rule (P). Then
from ϕ valid in Lc we can deduce `c ϕ with Lemma 4.43 as before.

Note that this general construction could of course be instantiated to intuitionistic ND
in order to derive Theorem 4.40 in the first place, same as to other intermediate logics
that are not considered in this chapter.
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4. Constructive Completeness

4.5. Discussion and Related Work

Further Results
The two source papers [61, 62] feature three further topics that were not formally devel-
oped in this chapter but which we will now briefly sketch for the interested reader. First,
regarding the role of Markov’s principle, one can distinguish the synthetic version MP
used in this chapter from a formulation for a concrete model of computation, for instance
MPL regarding the weak call-by-value lambda calculus L [66]. MPL can be stated as

∀f : N→ B. L-computable f → ¬¬(∃n. f n = tt)→ ∃n. f n = tt

and is therefore an obvious consequence of MP. However, while MP is equivalent to stabil-
ity of deduction from enumerable theories T , the presumed weaker MPL is only equivalent
to stability of deduction from L-enumerable T (and finite T as a special case). The anal-
ysis of completeness of classical and intuitionistic first-order logic stated in Theorems 4.5
and 4.31 can therefore be extended as follows:

Theorem. MPL is equivalent to the following two versions of completeness:

1. Completeness of T `c ϕ for L-enumerable (finite) T regarding Tarski semantics.

2. Completeness of T `i ϕ for L-enumerable (finite) T regarding Kripke semantics.

Secondly, it is a well-known result from reverse mathematics [219] that completeness
of classical first-order logic is equivalent to weak Kőnig’s lemma (WKL), stating that
every unbounded binary tree has an infinite path. While a version WKLP necessary
in our setting with Tarski semantics embedded into the propositional level of CIC is
actually provable in CIC1 and therefore invisible to the analysis, it can be made visible
by restricting to Boolean models, i.e. models with decidable satisfaction relation. Then
for trees represented as non-empty, prefix-closed predicates T : L(B) → P one states
WKLB as

∀T. (∀n.∃s. T s ∧ |s| ≥ n)→ ∃f : N→ B. ∀n. T [f0, . . . , fn]

where the premise expresses unboundedness by guaranteeing prefixes s in T of arbitrary
length, while the conclusion provides a path f whose prefixes are all included in T .
Working classically by assuming LEM, it is straightforward to obtain completeness for
Boolean models from WKLB since with the added amount of choice present in WKLB any
predicate on discrete and enumerable types is decidable, so in particular the satisfaction
relation of any model. Conversely, any tree T induces a theory TT that is finitely satisfiable
iff T is unbounded and has a model iff T has an infinite path. So since completeness is
equivalent to the compactness theorem stating that finitely satisfiable theories have a
model, completeness implies WKLB and one obtains in the vein of Theorem 4.5:

Theorem. Completeness of T `c ϕ for Boolean models is equivalent to LEM ∧WKLB.

Note that this result constitutes only a preliminary analysis since it only covers the
case of arbitrary T , which is inherently classical as already observed in Theorem 4.5. To
the best of our knowledge it is not fully clear which formulation of WKL or rather its
intuitionistic counterpart, the weak fan theorem [18], is required for Boolean completeness
for enumerable or finite T , let alone the addition of ∃ or ∨ for propositional completeness.

1https://coq.inria.fr/library/Coq.Logic.WKL.html
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4.5. Discussion and Related Work

Thirdly, next to algebraic semantics the source papers also explore dialogue game se-
mantics as a second example of a fully constructive interpretation of first-order logic.
Introduced by Lorenzen [162, 163], dialogue semantics completely disposes of interpret-
ing logical connectives as operations on truth values and instead understands logic as a
dialectic game of assertion and argument. An assertion is considered valid if every sceptic
can be convinced through substantive reasoning, i.e. if there is a strategy such that every
argument about the assertion can be won. Thus, game semantics is inherently closer
to deduction systems than the other semantic accounts and in fact a general isomor-
phism of uniform winning strategies and formal deductions has been established [230]. In
[61, 62], this isomorphism is adapted such that it applies to the standard sequent calcu-
lus LJ for full intuitionistic first-order logic (see Appendix A). Following the terminology
of Felscher [55], both intuitionistic D-dialogues and the more restricted E-dialogues are
inductively characterised as state transition systems and proven equivalent to LJ:

Theorem. LJ is sound and complete both for intuitionistic D-dialogues and E-dialogues.

Related Work
Constructive Completeness Proofs In their analysis of Henkin’s completeness proof,
Herbelin and Ilik [90] give a constructive model existence theorem and the constructivi-
sation of completeness via exploding models in the sense of Veldman [257]. Herbelin and
Lee [92] demonstrate the constructive Kripke completeness proof for minimal models and
mention how to extend the approach to standard and exploding models.

Constructive Analysis of Completeness Proofs The first proof that the completeness
of intuitionistic first-order logic entails Markov’s Principle was given by Kreisel [140],
although he attributes the proof idea to Gödel. The proof has since inspired a range of
works deriving related non-constructivity results for different kinds of completeness [17,
144, 156, 176, 178, 177]. By almost exclusively focusing our analysis on the negative
(∀,→,⊥)-fragment, we did not concern ourselves with the contributions of ∃ and ∨ to
the non-constructivity of completeness. Krivtsov’s [146, 147] work has the exact opposite
focus: His analysis reveals that completeness with regards to exploding Tarski and Beth
models, for full classical and intuitionistic first-order logic, respectively, are equivalent to
a formulation of the weak fan theorem. Another noteworthy work is that of Berardi [17],
who analyses which abstract notions of models admit constructive completeness.

Mechanised Completeness Proofs The completeness of first-order logic has been mech-
anised in various interactive theorem provers, including Isabelle/HOL [21, 207, 211],
NuPRL [39, 254], Mizar [26], Lean [83], and Coq [92, 107, 71]. Among them, [39] and
[107] share our focus on the constructivity of completeness. Constable and Bickford [39]
give a constructive proof of completeness for the BHK-realisers of full intuitionistic first-
order logic in NuPRL. Their proof is fully constructive when realisers are restricted to be
normal terms, requiring Brouwer’s fan theorem when lifting that restriction. In his PhD
thesis [107], Ilik mechanises multiple constructive proofs of first-order completeness in
Coq. Especially noteworthy are the non-standard, constructivised Kripke models for full
classical and intuitionistic first-order logic he presents in Chapters 2 and 3. Gilbert and
Hermant [71] describe a normalisation-by-evaluation completeness proof using Heyting
algebras and implement it for propositional logic in Coq.
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5. Synthetic Undecidability

While the previous chapter was concerned with the positive property of completeness, in
this chapter we study the negative property of undecidability, i.e. the absence of decision
procedures for many natural problems concerning first-order logic. Asking for a decision
procedure for the validity of first-order formulas, the so-called Entscheidungsproblem was
programmatically posed by Hilbert and Ackermann in 1928 [44] and famously answered
to the negative by Turing [253] and Church [38]. Since they are closely connected to
validity, also the problems of satisfiability and provability followed to be undecidable.
In the wake of these seminal discoveries, a broad line of work has been pursued to char-

acterise the border between decidable and undecidable fragments of the general Entschei-
dungsproblem. These fragments can be grouped either by syntactic restrictions con-
trolling the allowed function and relation symbols or the quantifier prefix, by semantic
restrictions on the admitted models, or by relativising to a specific collection of axioms.
Already predating the undecidability results, Löwenheim had shown in 1915 that

monadic first-order logic, admitting only signatures with at most unary symbols, is de-
cidable [164]. Therefore, the successive negative results usually presuppose non-trivial
signatures containing an at least binary symbol. Regarding the second syntactic restric-
tion, the classification depending on the quantifier prefix will not be considered much
in this chapter, so we refer the reader to the comprehensive overview in the standard
textbook by Börger, Grädel, and Gurevich [23].
Turning from syntactic to semantic restrictions, Trakhtenbrot proved in 1950 that,

if only admitting finite models, the satisfiability problem over non-trivial signatures is
still undecidable [250]. Moreover, the situation is somewhat dual to the unrestricted
case, since finite validity is co-enumerable while unrestricted validity is enumerable. As
a consequence, finite validity cannot be characterised by a complete effective deduction
system and, resting on finite model theory, various natural problems in database theory
and separation logic are undecidable (see Section 7.2 for the latter).
Finally, the negative outcome of the Entscheidungsproblem can change if one considers

formulas relative to a given collection A of axioms. For instance, already in 1929 Pres-
burger presented a decision procedure for an axiomatisation of linear arithmetic [201]
and Tarski contributed further instances with his work on Boolean algebras, real-closed
ordered fields, and Euclidean geometry in the 1940s [50]. However, as soon as an ax-
iomatisation A is strong enough to express computation, the undecidability proof for the
Entscheidungsproblem can be replayed within A, turning its entailed theory undecidable.
Used as standard foundations for large branches of mathematics exactly due to their ex-
pressiveness, Peano arithmetic and Zermelo-Fraenkel set theory are prime examples of
such strong axiomatisations, with the former discussed in this chapter and the latter set
aside for Chapter 8.
To investigate these fundamental results of metamathematics in the framework of con-

structive type theory, we follow the synthetic approach to computability where the full
function space of the meta-theory is used to describe computable functions, as put for-
ward by Richman and Bauer [206, 11]. This perspective is possible since no example of
an uncomputable function can be defined in a constructive system. In sharp contrast, in
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5. Synthetic Undecidability

classical systems a more indirect description of computability based on a concrete model
of computation such as Turing machines, general recursive functions, or the untyped
λ-calculus would be necessary. Consequently, the synthetic approach makes a mechani-
sation of undecidability pleasantly feasible since we can follow the informal (and surely
instructive) practice to just define and verify reduction functions while leaving their com-
putability implicit, with the key difference that in our constructive setting this relaxation
is formally justified. In fact, none of the undecidability results discussed in this chapter
have been mechanised in a proof assistant before, perhaps part of the reason being that
without the shortcut via synthetic computability the necessary manipulation of low-level
computations would be practically infeasible.
Outline We begin in Section 5.1 by describing our synthetic approach to undecidability,
centred around a synthetic notion of many-one reductions. Then as a first application,
we show the Entscheidungsproblem (Section 5.2) and some of its variants (Section 5.3)
undecidable. Subsequently, Section 5.4 is devoted to Trakhtenbrot’s theorem regarding
the undecidability of finite satisfiability. The main results of the previous three sections
are then refined in Section 5.5 concerning minimisation to the binary signature. After-
wards, we continue with our general approach to the undecidability of axiom systems
(Section 5.6) and the specific instance of PA (Section 5.7). In Section 5.8, we close with
a few general remarks and a discussion of related work.
Sources The first three sections are based on a paper with Yannick Forster and Gert
Smolka [60] introducing synthetic undecidability and its application to the Entschei-
dungsproblem. Section 5.4 describes the main reduction used for Trakhtenbrot’s theorem
in [123] with Dominique Larchey-Wendling, Section 5.5 follows the direct reductions to
the binary signature presented in [100] with Johannes Hostert and Andrej Dudenhefner,
and Sections 5.6 and 5.7 are based on [121] with Marc Hermes. The latter two papers were
published in the context of Hostert’s Bachelor’s project and Hermes’ Master’s project.
Specifically Sections 5.2, 5.4, and 5.6 consist of parts of the respective papers that were
mostly written by the author of this thesis, and Section 5.7 is based on text written
jointly with Marc Hermes.
Contributions The main contribution of this chapter is the synthetic definition and
constructive verification of undecidability reductions to all standard decision problems of
first-order logic in a unified framework. On top of the collaborative work on the respective
projects, contributions made by the author of this thesis are the constructive undecid-
ability of satisfiability, the simple reduction based on the Post correspondence problem
used for Trakhtenbrot’s theorem, as well as the general approach to the undecidability of
axiom systems in the absence of classical soundness and completeness.

5.1. Synthetic Approach to Undecidability
The core of the synthetic approach to computability theory [206, 11] is the fact that
all functions definable in a constructive foundation are computable. This fact applies
to many variants of constructive type theory and although a formal proof has not been
composed in all details, it is folklore and carefully maintained by the Coq development
team that the evolving type theory underlying Coq, including the fragment CIC we work
in, admits this property [159, 232].
In Section 2.3 we have already introduced the positive notions of decidability and enu-

merability of predicates P : X → P, based on (synthetic) deciders d : X → B and enu-
merators e : N→ O(X), without much interpretation. Note that it is commonly accepted
practice to mechanise positive results in this synthetic sense (e.g. [25, 169, 210]). In this
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5.1. Synthetic Approach to Undecidability

chapter, however, we mostly consider negative results in the form of undecidability of de-
cision problems regarding first-order logic. Such negative results cannot be established in
form of the plain negation of positive results, since constructive type theory is consistent
with strong classical axioms turning every problem (synthetically) decidable [263].
The approximation chosen in the Coq Library of Undecidability Proofs [65] and ex-

plained in more detail in Forster’s PhD thesis [57] is to call P (synthetically) undecidable
if the decidability of P would imply a computational taboo acting as a replacement for
a plain contradiction, for instance the decidability of the halting problem of Turing ma-
chines (KTM). In fact, for our purposes it is preferable to use the constructively more
permissive definition based on the co-enumerability of KTM, as then also the complement
KTM can be shown undecidable otherwise requiring Markov’s principle.
Definition 5.1 (Undecidability). A predicate P : X → P is (synthetically) undecidable
if its decidability would imply the co-enumerability of KTM.
Fact 5.2. Both KTM and its complement KTM are undecidable.
Proof. Both are immediate with Fact 2.5.

Using this rendering, the negative notion of undecidability can be turned into a positive
notion reflecting the usual structure of undecidability proofs, namely the existence of a
computable reduction function, which again can be perfectly expressed synthetically:
Definition 5.3 (Reductions). Given predicates P : X → P and Q : Y → P, a function
f : X → Y is a (many-one) reduction if P x ↔ Q (f x) for all x : X. We say that P
reduces to Q, written P � Q, if such a reduction exists. Note that then also P � Q.
Fact 5.4. Let P � Q. If Q is decidable, then so is P . Thus if P is undecidable, so is Q.
Proof. If f witnesses P � Q and d is a decider for Q, then the composition d ◦ f is a
decider for P . The second claim follows immediately from the first claim.
Corollary 5.5. Any predicate KTM or its complement KTM reduces to is undecidable.
Of course, instead of KTM we could pick any other seed problem P known to be not

co-enumerable, since then, in the intended effective interpretation for synthetic com-
putability, there is no decider for P nor for the problems reached by verified reductions.
A common seed for most undecidability reductions discussed in this chapter is the Post
correspondence problem PCP, which can be characterised as an inductive predicate on
lists S : L(L(B)× L(B)), also called stacks, of pairs of Boolean strings, also called cards:

(s, t) ∈ S
S . (s, t)

S . (u, v) (s, t) ∈ S
S . (su, tv)

S . (s, s)
PCPS

Informally, the stack S is used to derive pairs (s, t), written S . (s, t), by repeatedly
appending the pairs from S componentwise in any order or multitude. S admits a solution,
written PCPS, if a matching pair (s, s) can be derived.
Fact 5.6. KTM � PCP, therefore both PCP and PCP are undecidable.
Proof. A reduction KTM � PCP was verified in [59], yielding undecidability of PCP. Since
any reduction P � Q also witnesses P � Q, this also yields undecidability of PCP.
Corollary 5.7. Any predicate PCP or its complement PCP reduces to is undecidable.
This last result induces the strategy used in the next three sections, namely verifying

reductions from PCP or its complement PCP to decision problems in first-order logic,
while in the later sections we will introduce alternative seed problems by need.
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5. Synthetic Undecidability

5.2. The Entscheidungsproblem
We now show that validity already of the minimal fragment F∗ of first-order logic is
undecidable by constructing a reduction from PCP. Formally, we denote by VALϕ the
property that ϕ is valid, i.e. thatM � ϕ for allM.
In order to prove VAL undecidable, we follow the proof from the textbook of Manna [170],

who attributes the approach to Floyd. The key idea is to encode strings and card deriva-
tions into first-order syntax over a suitable signature with a term constant e, two unary
functions ftt and fff , a propositional constant Q, and a binary relation P :

(e, ftt _ , fff _ ;Q,P__)

Using the function symbols, we define the term encoding s : T of a string s : L(B)
based on a recursive operation s+++ t appending a string s to a term t.

[] +++ t := t (b :: s) +++ t := fb (s+++ t) s := s+++ e

So for instance we have ff tt ff tt = fff (ftt (fff (ftt e))), using the common serial notation
for strings. We now fix a stack S for the remainder of this section. The cards derivable
from S give rise to a standard interpretation over the domain of Boolean strings.

Definition 5.8. We define the standard interpretation B with domain L(B) by:

eB := [] QB := PCPS
fBb s := b :: s PB s t := S . (s, t)

The following lemma states that B evaluates encoded strings as expected.

Lemma 5.9. Any variable assignment ρ in B satisfies ρ̂ s = s for all s.

Proof. We first show ρ̂ (s+++ t) = s++ (ρ̂ t) by induction on s, then ρ̂ s = s follows.

Next, we construct a formula ϕS with the goal that PCPS iff ϕS is valid as follows:

ϕ1 := [P s t | (s, t) ∈ S]
ϕ2 := [∀̇xy. P x y→̇P (s+++ x) (t+++ y) | (s, t) ∈ S]
ϕ3 := ∀̇x. P x x→̇Q
ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

Note that ϕ1 contains formulas representing the first constructor of the derivability
relation S . (s, t). Moreover, ϕ2 represents the second constructor and ϕ3 represents the
single constructor of PCP. Therefore an interpretation satisfies ϕS if it deems S to admit
a solution. Since B correctly interprets the predicate symbols P and Q as derivability
and solvability, respectively, it satisfies the constructor representations.

Fact 5.10. B � ϕ1, B � ϕ2, and B � ϕ3.

Proof. Let P s t ∈ ϕ1 for a card (s, t) ∈ S, then B � P s t is immediate by construction.
Similarly, let ∀̇xy. P x y→̇P (s +++ x) (t +++ y) ∈ ϕ2 for a card (s, t) ∈ S. So we have to
show that S . (su, tv) for all strings u and v with S . (u, v), which is exactly the second
rule for derivability. Finally, for ϕ3 we have to show that ∀s. PB s s→ QB which is again
immediate given the chosen interpretations PB and QB.
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5.3. Variants of the Entscheidungsproblem

It follows that S admits a solution if B satisfies ϕS .

Lemma 5.11. B �ρ ϕS implies PCPS.

Proof. Assuming B �ρ ϕS and since B satisfies ϕ1, ϕ2, and ϕ3 by Fact 5.10, we know
that B �ρ Q. Hence PCPS holds by definition of QB.

Conversely, ϕ1 and ϕ2 correctly axiomatise derivations in arbitrary interpretations.

Lemma 5.12. S . (s, t) impliesM � ϕ1→̇ϕ2→̇P s t in any interpretationM.

Proof. We assume thatM �ρ ϕ1 as well asM �ρ ϕ2 and showM �ρ P s t by induction
on S . (s, t). The base case is by the matching instance of ϕ1 and in the step case we
combine the matching instance of ϕ2 with the inductive hypothesis.

It follows that validity of ϕS exactly coincides with S having a solution, so ϕS consti-
tutes a reduction establishing the undecidability of validity as desired.

Theorem 5.13 (Entscheidungsproblem). PCPS iff VALϕS, therefore PCP � VAL.

Proof. Suppose there is s with S.(s, s). Then by Lemma 5.12M �ρ ϕ1→̇ϕ2→̇P s s holds
for all assignments ρ in all interpretationsM. It follows thatM �ρ ϕ1→̇ϕ2→̇ϕ3→̇Q and
hence that ϕS is valid.
Now suppose that ϕS is valid. Then in particular B together with the trivial assignment

ρ n := [] satisfies ϕS . Thus PCPS by Lemma 5.11.

Corollary 5.14. Already over the minimal fragment F∗, VAL is undecidable.

5.3. Variants of the Entscheidungsproblem
In this section we first derive the related undecidability result for satisfiability, where we
denote by SATϕ thatM � ϕ for someM. Subsequently, we consider provability in the
intuitionistic and classical natural deduction systems as well as validity and satisfiability
for Kripke semantics. Formally, we introduce the following decision problems:

• PRVi ϕ states `i ϕ.
• PRVc ϕ states `c ϕ.

• KVALϕ states K 
 ϕ for all Kripke models K.
• KSATϕ states K 
 ϕ for some Kripke model K.

First regarding satisfiability, note that we have to leave the minimal F∗ fragment since
in the absence of negation every formula is satisfied in the trivial single-point model,
therefore rendering the satisfiability problem vacuously decidable. So considering the
negative fragment F−, the classical approach would be a direct reduction from invalidity
since a formula ϕ is invalid iff ¬̇ϕ is satisfiable. However, this approach contains the
constructively non-trivial step to obtain a model of ¬̇ϕ just from the guarantee that not
all models satisfy ϕ. Depending on the syntax fragment, this step could actually be
established via the model existence theorem (Theorem 4.2), but to avoid this elaborate
reasoning, we instead fortunately observe that with the previously established properties
of ϕS a direct reduction from PCP can be verified.

Theorem 5.15. PCPS iff SAT (¬̇ϕS), therefore PCP � SAT.

Proof. Suppose ¬PCPS, we show that B �ρ ¬̇ϕS . So we may assume B �ρ ϕS and need
to derive a contradiction, which we easily obtain from Lemma 5.11 yielding PCPS.
Conversely, suppose that ¬̇ϕS is satisfiable and that PCPS. Then ϕS is valid by

Theorem 5.13, contradicting the assumed satisfiability of ¬̇ϕS .
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5. Synthetic Undecidability

Corollary 5.16. Already over the negative fragment F−, SAT is undecidable.

Next regarding provability, we have to pay tribute to the lack of general soundness and
completeness in our constructive setting. If we were to assume enough classical axioms,
we would obtain PRVϕ iff VALϕ and therefore the undecidability of the former from the
latter. However, to avoid this sort of classical reasoning or the alternative via exploding
models as described in Chapter 4, we verify a reduction from PCP to PRV manually,
which is sligthly less handy than working semantically but, given the simplicity of the
reduction, feasible enough. In the case of PRVi we fortunately can use soundness for one
direction, so we just have to verify that PRVi ϕS follows from PCP.
As helpful abbreviation, we define the context ΓS := ϕ3 :: ϕ2 ++ ϕ1 to be the list

containing all premises of ϕS . Then every encoded card derivation is provable from ΓS ,
which is the deductive counterpart of Lemma 5.12.

Lemma 5.17. S . (s, t) implies ΓS ` P s t.

Proof. By induction on the derivation S . (s, t). In the base case we have (s, t) ∈ S and
so P s t is among the assumptions in ϕ1 and hence provable from ΓS by the context rule
(A). In the inductive step we have ΓS ` P u v as inductive hypothesis and want to prove
ΓS ` P (su) (tv) for a given card (s, t) ∈ S. From the corresponding assumption for (s, t)
in ϕ2 we get that ΓS ` ∀̇xy. P x y→̇P (s+++x) (t+++y) by (A). Now we can use (AE) twice
for x := u and y := v and (IE) for the inductive hypothesis to establish the goal.

Theorem 5.18. PCPS iff PRVi ϕS, therefore PCP � PRVi.

Proof. Let PCPS, so there is s with S . (s, s). After applying (II) multiple times we have
to show ΓS ` Q. By (A) we have ΓS ` ∀̇x. P x x→̇Q. Now Lemma 5.17 yields ΓS ` P s s,
so we just have to use (AE) and (IE) to conclude the proof.
Now suppose that `i ϕS . By soundness (Fact 3.16) we know that ϕS is valid and

simply conclude PCPS by Theorem 5.13.

Corollary 5.19. Already over the minimal fragment F∗, PRVi is undecidable.

Now for the case of PRVc the step using soundness to obtain B � ϕS and thus PCPS
from PRVc ϕS is blocked since B cannot be shown to be classical, as would be necessary
for the assumption-free soundness property of Fact 3.16. Loosing the ability to reason
semantically, we have to extract a solution of S from a derivation, which in general would
amount to a syntactic analysis of a cut-free proof.
Fortunately, it turns out that ϕS is in the syntactic fragment subject to Friedman’s

A-translation [69], which yields a much simpler strategy. In general, the A-translation
is a proof transformation of classical to minimal intuitionistic proofs, applicable to all
Π2-formulas. The idea is to replace falsity with some propositional constant (called A
in Friedman’s paper, therefore the name A-translation) in an otherwise standard double-
negation translation. For our purposes here it suffices to reuse the constant Q available
in the signature, a more general translation will be verified in Section 5.7.

Definition 5.20. We define the translation ϕQ : F∗ of formulas ϕ : F− as follows:

⊥̇Q := Q QQ := Q

(P t1 t2)Q := (P t1 t2→̇Q)→̇Q (ϕ1→̇ϕ2)Q := ϕ1
Q→̇ϕ2

Q

(∀̇x.ϕ)Q := ∀̇x.ϕQ

The key property of the translation is that it eliminates the use of classical proof rules:
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5.4. Trakhtenbrot’s Theorem

Fact 5.21 (A-Translation). If Γ `c ϕ then ΓQ `i ϕQ.

Proof. By induction on Γ `c ϕ. The only interesting case is the classical rule (P), which
follows from the fact `i (¬̇¬̇ϕ)Q→̇ϕQ stating that double-negation elimination is available
intuitionistically on translated formulas.

This result allows us to reuse soundness to obtain the desired undecidability reduction.

Theorem 5.22. PCPS iff PRVc ϕS, therefore PCP � PRVc.

Proof. The first direction is by Theorem 5.18 and the fact that intuitionistic ND is
subsumed by classical ND. For the converse direction, assume `c ϕS , so `i ϕQS by
Fact 5.21. Then we can use soundness (Fact 3.16) to obtain B � ϕQS . Note that
ϕQS = ϕQ1 →̇ϕ

Q
2 →̇ϕ

Q
3 →̇Q. From the fact that B satisfies ϕ1, ϕ2, and ϕ3 (Lemma 5.9),

we obtain that B also satisfies ϕQ1 , ϕ
Q
2 , and ϕ

Q
3 by simple calculation. Thus, we obtain

B � Q, which is equivalent to PCPS by definition.

Corollary 5.23. Already over the minimal fragment F∗, PRVc is undecidable.

Finally regarding Kripke semantics, we do not have to work much more, given that
every Tarski model can be considered a (standard) Kripke model and therefore:

Lemma 5.24. KVALϕ implies VALϕ and SATϕ implies KSATϕ.

Proof. First note that a Tarski modelM induces an equivalent Kripke model KM if we
choose 1 as the single-point type of worlds and inherit the symbol interpretations from
M. So regarding the first claim, to show VALϕ we need to showM � ϕ for allM. By
the assumption of KVALϕ we obtain KM 
 ϕ and thereforeM � ϕ by construction. The
second claim regarding SAT and KSAT is analogous.

Now verifying the same reductions as in the case of Tarski semantics is straightforward.

Theorem 5.25. PCPS iff KVALϕS and PCPS iff KSAT (¬̇ϕS).

Proof. For the first claim, assume PCPS, so PRVi ϕS by Theorem 5.18 and therefore
KVALϕS by soundness (Fact 4.18). The converse direction is by Lemma 5.24 and Theo-
rem 5.13.
For the second claim, the first direction is by Theorem 5.15 and Lemma 5.24. If for

the converse we assume both KSAT (¬̇ϕS) and PCPS, the latter implies KVALϕS via the
first claim, which is in conflict with the former.

Corollary 5.26. KVAL over F∗ and KSAT over F− are undeciable.

5.4. Trakhtenbrot’s Theorem
Conventionally, Trakhtenbrot’s theorem concerning the undecidability of finite satisfiabil-
ity FSAT is proved by (many-one) reduction from the halting problem for Turing machines
(see e.g. [23, 160]). An encoding of a given Turing machine M can be given as a formula
ϕM such that the models of ϕM correspond to the runs of M . Specifically, the finite
models of ϕM correspond to terminating runs of M and so a decision procedure for FSAT
of ϕM would be enough to decide whether M terminates or not.
Although this proof strategy is in principle explainable on paper, already the formal

definition of Turing machines, not to mention their encoding in first-order logic, is not
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5. Synthetic Undecidability

economic for mechanisation in a proof assistant. So for our formalisation of Trakhtenbrot’s
theorem, we follow a novel strategy by starting from the Post correspondence problem
PCP. Similar to the conventional proof, we proceed by encoding every instance S of PCP
as a formula ψS such that S admits a solution iff ψS has a finite model. The encoding ψS
will be dual to the previous encoding ϕS used for the Entscheidungsproblem in that this
time we encode the inversion principles of PCP instead of the constructors. Note that
the most transparent formulation of these principles requires disjunction and existential
quantification, therefore we for now work with the full syntax F.
Before we define and verify the reduction ϕS , we need to formally capture FSAT.

Definition 5.27. ϕ is finitely satisfiable, written FSATϕ, if it has a modelM � ϕ with:

• The domain D is listable, i.e. there exists a list L : L(D) with x ∈ L for all x : D.

• The predicate interpretation PM : D|P | → P is decidable for every symbol P .

The first item expresses finitude in a constructively reasonable way while the second
item accounts for the fact that a finite model should be computationally accessible like
a discrete table of data. As crucial tool for the reduction argument, we establish an
induction principle for finite strict orders.

Fact 5.28. Every strict order on listable types is well-founded.

Proof. We show the fact that the restriction <L of any strict order < : X → X → P to a
list L : L(X) is well-founded, by induction on L. The claim then follows since any strict
order < on a type X listed by LX agrees with the restriction <LX .

We now show that PCP reduces to FSAT over the custom signature

(?, e, ftt _ , fff _ ;P__ , _ ≺ _ , _ ≡ _)

extending the previous signature by a constant ? and two binary relations ≺ and ≡. The
latter is interpreted as equality, i.e. we only consider extensional modelsM with x ≡M y
iff x = y for all x, y :M. Note that in the case of finite models, every intensional model
can be transformed into an extensional one by computing a quotient along the decidable
interpretation of ≡ as illustrated in the underlying paper [123] but here we refrain from
this construction and directly restrict to extensional models for simplification.
Informally, given an instance S of PCP, we axiomatise a family Bn of models over

the domain of Boolean strings of length bounded by n and let ψS express that S has a
solution in Bn. The axioms express enough equations and inversions of the constructions
included in the definition of PCP such that a solution for S can be recovered.
Formally, the given symbols are used as follows: the functions fb and the constant

e are still used for the encoding s of strings. The constant ? represents an undefined
value for strings too long to be encoded in the finite model Bn. The relation P represents
PCP-derivability from R while ≺ and ≡ represent strict suffixes and equality, respectively.
Expected properties of the intended interpretation can be captured formally as first-

order formulas. First, we ensure that P is proper (only subject to defined values) and
that ≺ is a strict order (irreflexive and transitive):

ψP := ∀̇xy. P x y →̇ x 6≡ ? ∧̇ y 6≡ ? (P proper)
ψ≺ := (∀̇x. x 6≺ x) ∧̇ (∀̇xyz. x ≺ y →̇ y ≺ z →̇ x ≺ z) (≺ strict order)
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Next, the image of fb is forced disjoint from e and injective, as long as ? is not reached.
We also ensure that the images of ftt and fff intersect only at ?:

ψf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?

∀̇x. ftt x 6≡ e

∀̇x. fff x 6≡ e

 ∧̇
 ∀̇xy. ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy. fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy. ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?


Furthermore, we enforce that P satisfies the inversion principle of S . (s, t)

ψ. := ∀̇xy. P x y →̇
∨̇

(s, t)∈S
∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv. P u v ∧̇ x ≡ s+++ u ∧̇ y ≡ t+++ v ∧̇ (u, v) ≺ (x, y)

where (u, v) ≺ (x, y) denotes (u ≺ x ∧̇ v ≡ y)∨̇(v ≺ y ∧̇ u ≡ x)∨̇(u ≺ x ∧̇ v ≺ y), i.e.
that at least one of the components has been shortened.
Finally, ψS is the conjunction of all axioms plus the existence of a solution:

ψS := ψP ∧̇ ψ≺ ∧̇ ψf ∧̇ ψ. ∧̇ ∃̇x. P x x.

Note that this time we use an actual existential quantification to express the solvability
condition of PCP, which we avoided in the previous reduction ϕS staying in the negative
fragment by using the propositional constant Q. We in particular left the negative frag-
ment already for ψ. to transparently state the inversion principle of S . (s, t) and thus do
not deem it necessary to sidestep positive connectives elsewhere. However, we will show
later how the refined result for the negative fragment can be recovered.
The next two lemmas constitute the verification of ψS as suitable reduction function.

Lemma 5.29. PCPS implies FSATψS.

Proof. Assume S . (s, s) holds for a string s with |s| = n. We show that the model
Bn over Boolean strings bounded by n satisfies ψS . To be more precise, we choose
Dn := O({s : L(B) | |s | ≤ n}) as domain, i.e. values in Dn are either an (overflow) value
∅ or a (defined) dependent pair p(s,Hs)q where Hs : |s | ≤ n. We interpret the function
and relation symbols of the chosen signature by

eBn := [ ] fBnb ∅ := ∅ PBn s t := S . (s, t)
?Bn := ∅ fBnb s := if |s | < n then b :: s else ∅ s ≺Bn t := s 6= t ∧ ∃u. u++ s = t

where we left out explicit constructors of the option type and the edge cases of the
relations for better readability. Also as required, Bn interprets ≡ by equality = on Dn.
Considering the desired properties of Bn, first note that Dn can be shown listable by

induction on n, crucially relying on the proof irrelevance of the λx. x ≤ n predicate. The
atoms s ≺Bn t and s ≡Bn t are decidable by straightforward computations on Boolean
strings. Decidability of PBns t is slightly more involved, exploiting the fact that only
the finitely many derivations up to the lengths |s| and |t| need to be considered to test
S . (s, t). Finally, showing Bn � ψS consists of verifying simple properties of the chosen
functions and relations, with mostly straightforward proofs.

Lemma 5.30. FSATψS implies PCPS.

Proof. Suppose that M � ψS holds for some finite model interpreting ≡ as equality
and providing operations fMb , eM, ?M, PM and ≺M. Then M � ψS ensures that the
functions and relations behave as specified, meaning that M behaves like a standard
model Bn, and that PM x x holds for some x : D.
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Instead of trying to show that M is exactly isomorphic to some Bn, we directly re-
construct a solution for S, i.e. we find some s with S . (s, s) from the assumption that
M � ψS holds. To this end, we first observe that the relation (u, v) ≺M (x, y) as defined
above is a strict order and thus well-founded as an instance of Fact 5.28.
Now we can show that for all (x, y) with PM x y there are strings s and t with x = s,

y = t, and S . (s, t), by induction on the pair (x, y) using the well-foundedness of ≺M.
So let us assume PM x y. SinceM satisfies ψ. there are two cases:

• There is (s, t) ∈ S such that x = s and y = t. The claim follows by S . (s, t).

• There are u, v : D with PM u v and (s, t) ∈ S with x = s+++M u, y = t+++M v, and
(u, v) ≺M (x, y). The latter makes the inductive hypothesis applicable for PM u v,
hence yielding S . (s′, t′) for some strings s′ and t′ corresponding to the encodings
u and v. This is enough to conclude x = ss′, y = tt′ and S . (ss′, tt′) as wished.

Applying this fact to the assumed match PM x x yields a solution S . (s, s).

Theorem 5.31. PCP � FSAT

Proof. The reduction λS. ψS was proved correct by Lemmas 5.29 and 5.30.

Corollary 5.32 (Trakhtenbrot). FSAT over the full syntax F is undecidable.

Reusing the de Morgan translation ϕM : F− of formulas ϕ : F already employed in
Section 4.2, we can give a straightforward refinement of our main result Corollary 5.32 to
the negative fragment F−. The crucial fact is that for finite models M the satisfaction
relation M �ρ ϕ is decidable and therefore the classical reasoning necessary to show ϕ
equivalent to ϕM (as done in Lemma 4.12) happens to be available.

Theorem 5.33. Given a finite modelM, we haveM �ρ ϕ iffM �ρ ϕM for all ρ.

Proof. By induction on ϕ, reasoning classically (justified by the decidability of satisfac-
tion) in the cases of conjunction, disjunction, and existential quantification.

Therefore in particular FSATϕ iff FSATϕM , allowing us to conclude:

Corollary 5.34. Already over the negative fragment F−, FSAT is undecidable.

5.5. Signature Minimisation
While the results stated in the previous three sections are optimal regarding the logical
fragment needed to show undecidability, namely the minimal fragment F∗ for validity and
provability problems and the negative fragment F− for satisfiability and finite satisfiabil-
ity problems, we did not pay particular attention to optimising the symbol signature but
rather generously assumed enough symbols to transparently encode PCP. To obtain the
refined results for dyadic first-order logic, i.e. the syntax over the binary signature con-
taining a single binary relation symbol, textbooks typically continue with a more or less
formal signature transformation (cf. [160]), ultimately showing that the general problems
can be reduced to the dyadic ones. These transformations however make heavy use of
classical logic (e.g. to represent functions equivalently as total functional relations) and
set theory (e.g. to encode P ~t in terms of membership ~t ∈ P for set-theoretic represen-
tations of P and ~t ). In the case of finite model theory regarding FSAT, the necessary
constructions can be implemented constructively, though quite laboriously, as we have
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done in [123], but there is no hope to do the same on infinite models without resorting
to classical assumptions.
For an alternative solution, Andrej Dudenhefner conceived an undecidable arithmetical

problem characterised by a single binary relation, babtised uniform Diophantine pair
constraints (UDPC), which together with Johannes Hostert we could use as seed for
direct and constructive reductions to the dyadic versions of all decision problems of first-
order logic considered so far [100]. In this section we present the main constructions and
arguments necessary to derive the concluding classification (Theorem 5.43) and refer to
the published paper for full technical detail.
The central notion of the problem UDPC is a binary relation on pairs of numbers:

(a, b) ∼ (c, d) := c = a+ b+ 1 ∧ d = b× (b+ 1)
2

As this relation captures both addition in the component c and multiplication via the
Gaussian sum in d, it is strong enough to express arbitrary Diophantine equations,
i.e. polynomial statements over N, and therefore gives rise to an undecidable satisfia-
bility problem: given a list C : L(N2 × N2) of uniform Diophantine pair constraints
((x, y), (u, v)), we say that C has a solution, written UDPCL, if there is an assignment
α : N→ N such that (αx, α y) ∼ (αu, α v) for every constraint ((x, y), (u, v)) ∈ C.

Fact 5.35. KTM � UDPC, therefore both UDPC and UDPC are undecidable.

Proof. By composing the reductions established in [152] and [100].

Corollary 5.36. Any predicate UDPC or its complement UDPC reduces to is undecidable.

We now work in the full syntax F of dyadic first-order logic, so over the binary signature
(0;P ) containing a single binary relation symbol P . Fixing an instance C of UDPC, the
plan is to construct a formula ϕC that is valid iff C has a solution. As it was the case for
the reduction ϕS in Section 5.2, the overall structure of ϕC will be a collection of premises,
enforcing that the assumed model behaves similar enough to the intended interpretation,
ending in the encoded solvability condition, expressing that there are variables solving
the constraints of C = [((x1, y1), (u1, v1)), . . . , ((xk, yk), (uk, vk))].
The intended interpretation I of course should contain pairs of numbers and interpret

P I (a, b) (c, d) with the relation (a, b) ∼ (c, d). However, since we also need to express
properties of the components, we choose N + N2 as actual domain, so every element is
either a number or a pair. Then we extend the interpretation of P to the full domain by:

P I a b := a = b P I a (c, d) := a = c P I (a, b) c := b = c

So on two numbers P is an equality test, and on mixing a number and a pair P expresses
the two projections. By this choice, we can express in first-order language when an
element x is a number and when an element p is a pair composed of x and y:

ϕN (x) := P xx ϕP (p, x, y) := ¬̇ϕN (p)∧̇ϕN (x)∧̇ϕN (y)∧̇P x p∧̇P p y

With these shorthands we express when pairs (x, y) and (u, v) are in the desired relation

ϕ∼(x, y, u, v) := ∃̇pq. ϕP (p, x, y)∧̇ϕP (q, u, v)∧̇P p q

and thus encode the solvability condition, for N being the highest variable used in C:

ϕ′C := ∃̇N ϕ∼(x1, y1, u1, v1)∧̇ . . . ∧̇ϕ∼(xk, yk, uk, vk)

This concludes half of the work, since ϕ′C is correct for the standard model I:
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Lemma 5.37. I � ϕ′C iff C has a solution.
Proof. By construction of ϕ′C and I.

The only thing left is to add enough characterising premises to ϕ′C that the solution of
C can be replayed in any characterised model. Recall that in the case of ϕS in Section 5.2
we used the inductive rules characterising PCP as suitable premises. By reformulating
the central binary relation, the same strategy can be used in the case of UDPC.
Lemma 5.38. The relation (a, b) ∼ (c, d) can be characterised inductively as:

(a, 0) ∼ (a+ 1, 0)
(a, b′) ∼ (c′, d′) (d′, b′) ∼ (d, d′) (b′, 0) ∼ (b, 0) (c′, 0) ∼ (c, 0)

(a, b) ∼ (c, d)

Proof. The arithmetic definition satisfies the rules by simple calculation and, conversely,
by induction on a rule-based derivation the arithmetic definition can be verified.

Note that the first rule simply axiomatises the successor function, while the second rule
states that (a, b) ∼ (c, d) can be derived from a previous derivation (a, b′) ∼ (c′, d′) where
b and c are the successors of b′ and c′ and where d = d′ + b, i.e. d is the next value of the
Gaussian sum. To express these now arithmetic-free rules as first-order formulas, we use
a variable 0̇ acting as the number 0 and define respectively

ϕ1
C := ∀̇x. ϕN (x)→̇∃̇x′. ϕ∼(x, 0̇, x′, 0̇)

ϕ2
C := ∀̇xyuvy′u′v′. ϕ∼(x, y′, u′, v′)→̇ϕ∼(v′, y′, v, v′)→̇ϕ∼(y′, 0̇, y, 0)→̇ϕ∼(u′, 0̇, u, 0̇)

→̇ϕ∼(x, y, u, v)

and finally compose the complete reduction formula ϕC by globally quantifying over 0̇:

ϕC := ∀0̇. ϕN (0̇)→̇ϕ1
C→̇ϕ2

C→̇ϕ′C
The correctness of the reduction formula is summarised in the next two lemmas.

Lemma 5.39. If C has a solution, then ϕC is valid.
Proof. Assuming a solution α of C and a model M satisfying the premises of ϕC , we
need to showM � ϕ′C . We instantiate the leading existential quantifiers of ϕ′C with the
corresponding values of α, translated into the model using 0̇ and the internal successor
function captured by ϕ1

C . We then need to show that M recognises this assignment as
an actual solution, which is done by induction on the derivation for each constraint along
the rules stated in Lemma 5.38, made available inM by ϕ1

C and ϕ2
C .

Lemma 5.40. If ϕC is valid, then C has a solution.
Proof. If ϕC is valid, then in particular I � ϕC . Since I satisfies the premises of ϕC by
construction, we obtain I � ϕ′C and therefore a solution of C by Lemma 5.37.

Thus the validity problem of dyadic first-order logic, denoted by VAL2, is undecidable.
Corollary 5.41. UDPC � VAL2 over F, therefore the latter is undecidable.
To obtain the sharper result for the minimal fragment F∗, we need to rework the reduc-

tion formula ϕC to avoid positive connectives and falsity, roughly combining aspects of a
standard double-negation translation as in Definition 4.10 and Friedman’s A-translation
as in Definition 5.20. The resulting reduction formula ϕ∗C is less transparent and its ver-
ification is rather technical, which is why we refer the reader to the paper [100] and just
formulate the refined result.
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Fact 5.42. UDPC � VAL2 over F∗, therefore the latter is undecidable.

To obtain the undecidability of dyadic versions of the other decision problems, we use
the same techniques as described in Section 5.3 and Section 5.4. First, for satisfiability we
just negate the reduction formula ϕ∗C and conclude a reduction from UDPC. Secondly, for
provability we verify a deductive version of Lemma 5.39 manually and resort to soundness
for a deductive version of Lemma 5.40, involving a similar trick for the classical ND system
as in Theorem 5.22. Thirdly, regarding Kripke semantics we again exploit that Tarski
models induce equivalent Kripke models and that intuitionistic ND is sound for Kripke
semantics. Finally, for finite satisfiability we dualise the formula ϕC in the same sense
as ψS in Section 5.4 was dual to ϕS in Section 5.2, namely by axiomatising the inversion
principles of the inductive characterisations of the respective seed problems instead of
their constructors. This in summary entails the following classification:

Theorem 5.43 (Dyadic FOL). The following decision problems are undecidable:

• VAL2, PRV2, KVAL2 over the minimal fragment F∗.

• SAT2, KSAT2, FSAT2 over the negative fragment F−.

These are the sharpest results regarding both the signature and the logical fragment
since any further restrictions would turn these problems decidable. Similar results could
only be shown for signatures with at least one binary function and one unary predicate.

5.6. Undecidability of General Axiom Systems
In this section, we record some general algorithmic facts concerning first-order axiomati-
sations and outline the common scheme underlying the undecidability proofs presented
for Peano arithmetic (Section 5.7) and ZF set theory (Section 8.3). We fix an enumerable
and discrete signature Σ for the remainder of this section and begin by introducing the
central notion of axiom systems formally.

Definition 5.44. We call A : F→ P an axiomatisation if A is enumerable.

Any given axiomatisation induces two related decision problems, namely semantic en-
tailment A� := λϕ.A � ϕ and deductive entailment A` := λϕ.A ` ϕ. Since in our
constructive setting we can show the classical deduction system `c neither sound nor
complete, we mostly consider a combined notion of Tarski semantics and intuitionistic
deduction and introduce compact terminology and notation:

Definition 5.45. We say that a predicate P : X → P reduces to A, written P � A, if
there is a function f : X → F witnessing both P � A� and P � A`i.

This means that establishing the undecidability of A by a reduction P � A for an
undecidable problem P has a semantic as well as a deductive part. Assuming the law of
excluded middle LEM would be sufficient to obtain P � A`c from P � A�, since then
A `c ϕ and A � ϕ generally coincide (Corollary 3.17 and Theorem 4.5). In fact, already
the soundness direction is enough for our case studies, since for them it is still feasible to
verify that P x induces a derivation A ` f x by hand without appealing to completeness.
Already on this general level, we observe that verifying a reduction from a non-trivial

problem is at least as hard as a consistency proof:

Fact 5.46 (Consistency). If P � A` and there is x with ¬P x, then A 0 ⊥.
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Proof. If f : X → F witnesses P � A`, then by ¬P x we obtain A 0 f x. This prohibits
a derivation A ` ⊥ by the explosion rule (E).

This fact formulates a principal limit in that we cannot establish the undecidability
of axiom systems exceeding the consistency strength of CIC. In fact, as in the previous
sections our strategy includes exploiting soundness with respect to a standard model,
which makes the intermediate consistency proof fully explicit.
In summary, the strategy we use comprises the following steps:

1. We choose an undecidable seed problem P : X → P easy to encode in the target
axiomatisation A, i.e. a problem on a domain related to the concepts of A.

2. We define the translation function ϕ_ : X → F mapping instances x to formulas
ϕx in a compact way without presupposing much of the internal theory of A.

3. We isolate a finite fragment A ⊆ A of axioms that suffices to implement the main
argument. This yields a reusable factorisation and is easier to mechanise.

4. We verify the semantic part locally by showing for everyM withM � A that P x
iffM � ϕx. For the backwards direction, we in fact need to restrictM to satisfy a
suitable property of standardness allowing us to reconstruct correct solutions of P .
Usually,M is considered standard if its internal notion of numbers captures N.

5. We construct standard models for A and A, possibly relying on assumptions.

6. We verify the deductive part by establishing that P x implies A ` ϕx, following the
semantic proof from before. The backwards direction follows from soundness.

7. We conclude that A, A, and in fact any sound B ⊇ A are undecidable via:

Theorem 5.47 (Strategy). Let a problem P : X → P, an axiomatisation A, a notion
of standardness on modelsM � A, and a function ϕ_ : X → F be given with:

1. P x impliesM � ϕx for every modelM � A.

2. Every standard modelM � A withM � ϕx yields P x.

3. P x implies A ` ϕx.

Then P � B for all B ⊇ A having a standard model. If we assume LEM, then P � B`c.

Proof. We begin with P � B�. That P x implies B � ϕx is direct by (1) since every model
of B is a model of A. Conversely, if B � ϕx then in particular the assumed standard model
M � B satisfies ϕx. Thus we obtain P x by (2).
Turning to P � B`i , the first direction is again trivial, this time by (3) and weakening.

For the converse, we assume that B `i ϕx and hence B � ϕx by soundness. Thus we
conclude P x with the previous argument relying on (2).
Finally, with LEM we obtain P � B`c since then B `c ϕx implies B � ϕx.

Of course (1) follows from (3) via soundness, so the initial semantic verification could
be eliminated from Theorem 5.47 and the informal strategy outlined before. However,
we deem it more instructive to first present a self-contained semantic verification without
the overhead introduced by working in a syntactic deduction system, especially apparent
in the Coq mechanisation. Also note that the necessity of a standard model will be no
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burden in the treatment of PA but in the case of ZF this will require a careful analysis of
preconditions.
We end this section with the unsurprising but still notable fact that the decision prob-

lem for finite axiomatisations A reduces to the general Entscheidungsproblem of first-order
logic concerning validity and provability in the empty context.

Fact 5.48. For A : L(F) we have A� � VAL and A` � PRV.

Proof. The function λϕ.A→̇ϕ establishes both reductions.

So for instance the reductions to finite fragments of PA in the next section in particular
complement the direct reduction to the Entscheidungsproblem given in Section 5.2. More
general variants of this insight can be formulated as follows:

Fact 5.49. Let A be finite and B be an arbitrary axiomatisation.

1. If A ` B, then A � B.

2. If B ⊆ A, then A � B.

3. B ∪ A � B.

Proof. All witnessed by the reduction λϕ.A→̇ϕ, (2) is a special case of (1).

5.7. Undecidability of Peano Arithmetic
We now instantiate the general strategy explained in the previous section to the case of
Peano arithmetic PA and its finite fragments Q and Q′ as axiomatised in Section 3.4.
To establish undecidability of arithmetical systems, Hilbert’s 10th problem (H10) con-

cerned with the solvability of Diophantine equations comes as a natural seed problem,
since they are a syntactic fragment of arithmetical formulas. To be more precise, H10
consists of deciding whether a Diophantine equation p = q has a solution in the natural
numbers N, where p, q are polynomials constructed by parameters, variables, addition,
and multiplication:

p, q ::= an | var k | add p q | mult p q (n, k : N)

Evaluation [[p]]α of a polynomial p for an assignment α : N→ N is defined by

[[an]]α := n [[var k]]α := αk [[add p q]]α := [[p]]α + [[q]]α [[mult p q]]α := [[p]]α × [[q]]α

and an equation p = q then has a solution, written H10(p, q), if there is α with [[p]]α = [[q]]α.

Fact 5.50. KTM � H10, therefore H10 is undecidable.

Proof. A reduction KTM � H10 was verified in [152], yielding undecidability of H10.

Given their shared domain, it is easy to encode H10 into PA, beginning with numerals:

Definition 5.51 (Numerals). We define n : T by 0 := O and n+ 1 := S n.

We now translate polynomials into PA terms by defining p∗ : T recursively:

an∗ := n (var k)∗ := xk (add p q)∗ := p∗ ⊕ q∗ (mult p q)∗ := p∗ ⊗ q∗
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A Diophantine equation with greatest free variable N can now be encoded as the formula
ϕp,q := ∃̇N p∗ ≡ q∗ where we use N leading existential quantifiers to internalise the
solvability condition. The formula ϕp,q thus asserts the existence of a solution for p = q
which gives us a natural encoding from Diophantine equations into PA.
We prepare the verification of the three requirements (Facts 5.56, 5.57, and 5.60) of

Theorem 5.47 with the following lemma about existentially closed formulas:

Lemma 5.52. If ∃Nϕ is closed, then

1. M � ∃̇Nϕ iff there is ρ : N→M such thatM �ρ ϕ,

2. Γ ` ∃̇Nϕ if there is σ : N→ T such that Γ ` ϕ[σ].

Proof. We only provide some intuition for (1), the proof for (2) is similar. For the first
implication, the assumptionM � ∃̇Nϕ instantiated to the assignment ρ0 := λn.OM gives
us x1, . . . , xN :M such thatM �ρ ϕ where ρ := x1; . . . ;xN ; ρ0, showing the claim.
For the other implication, we assume ρ with M �ρ ϕ. Then ρ 0, . . . , ρN : M are

witnesses for the N existential quantifiers and soM � ∃̇Nϕ can be derived.

By Lemma 5.52, showing ϕp,q reduces to finding a satisfying assignment ρ : N → M
for p∗ ≡ q∗ in a model M or deductively showing that there is a solving substitution
σ : N→ T. This enables us to transport a solution for p = q to both the model and the
deduction system.
We now verify the semantic part of the reduction for the axiomatic fragment Q′. To

this end, we fix a model M � Q′ for the next definitions and lemmas and define the
semantic representation of numerals inside ofM.

Definition 5.53. We define nM :M by 0M :=OM and (n+ 1)M :=SM nM.

The axioms in Q′ are used to prove that nM is a homomorphism for + and ×.

Lemma 5.54. (n+m)M = nM ⊕M mM and (n×m)M = nM ⊗M mM.

Proof. The proof for addition is done by induction on n : N and using the axioms for
addition in Q′. The proof for multiplication is done in the same fashion, using the axioms
for multiplication and the previous result for addition.

By this central observation, we can show that Tarski evaluation of an encoded polyno-
mial p∗ inM agrees with the evaluation [[p]]α as in the definition of H10. To this end, we
denote by ρα the assignment λn. (αn)M sending any index n to its value along α inM.

Lemma 5.55. For any p and α : N→ N we have ρ̂α (p∗) = ([[p]]α)M.

Proof. By induction on p, using Lemma 5.54 for add and mult and the simple fact that
ρ̂ n = nM in the case of parameters an. The case of variables var k is trivial.

As a consequence, every model of Q′ recognises the solutions to a given equation.

Fact 5.56. If p = q has a solution, then Q′ � ϕp,q.

Proof. Let α be a solution of p = q, i.e. assume [[p]]α = [[q]]α, then we showM �ρα p∗ ≡ q∗

for allM � Q′. This amounts to ρ̂α (p∗) = ρ̂α (q∗), which is established by Lemma 5.55
and the assumption [[p]]α = [[q]]α. Since ∃̇Np∗ ≡ q∗ is closed by construction, the goal
M � ϕp,q follows by Lemma 5.52.
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For the converse fact we employ the standard model N as defined in Section 3.4 to
extract a solution of p = q from Q′ � ϕp,q.

Fact 5.57. If N � ϕp,q, then p = q has a solution.

Proof. Assume N � ϕp,q, so Lemma 5.52 yields α : N→ N with α̂ (p∗) = α̂ (q∗). Then:

[[p]]α = ([[p]]α)N 5.55= ρ̂α (p∗) = α̂ (p∗) = α̂ (q∗) = ρ̂α (q∗) 5.55= ([[q]]α)N = [[q]]α

where in four steps we used that nN is the identity. Thus α is a solution of p = q.

The deductive part of the reduction can be shown analogously to Fact 5.56, encoding
the proofs of all intermediate results as ND derivations. Again, the axioms of Q′ are only
used to establish homomorphism equations, this time for the syntactic numerals:

Lemma 5.58. Q′ ` n+m ≡ n⊕m and Q′ ` n×m ≡ n⊗m.

The syntactic counterpart of Lemma 5.55 then states that the equality of substitution
on encoded polynomials p∗ and evaluations [[p]]α can be derived in Q′. For this statement,
we denote by σα the substitution λn. α n sending any index n to its numeral along α.

Lemma 5.59. For any p and α : N→ N we have Q′ ` p∗[σα] ≡ ([[p]]α).

With this in place, we turn Fact 5.56 into a formal ND derivation:

Fact 5.60. If p = q, has a solution then Q′ ` ϕp,q.

Proof. Let α be a solution of p = q, i.e. assume [[p]]α = [[q]]α. By Lemma 5.52 it suffices
to show Q′ ` p∗[σα] ≡ q∗[σα], which follows from Lemma 5.59 and [[p]]α = [[q]]α.

Now we have all facts in place to apply our generic strategy given by Theorem 5.47.

Theorem 5.61. Any axiomatisation A ⊇ Q′ with N � A admits a reduction H10 � A.
Moreover, if we assume LEM, then also H10 � A`c.

Proof. By Theorem 5.47 with the three conditions shown in Facts 5.56, 5.57, and 5.60.

Corollary 5.62. The problems Q�, PA�, Q`i, and PA`i are undecidable.

Given that Q′ is finite, in fact all axiomatisations sound for N are undecidable:

Fact 5.63. H10 � A for any axiomatisation A satisfied by the standard model N .

Proof. Theorems 5.47 and 5.61 imply H10 � A∪Q′ and by Fact 5.49 also A∪Q′ � A.

As we did in the case of the undecidability of classical provability (Theorem 5.22), we
can strengthen the result of Theorem 5.61 and remove its reliance on LEM by utilising a
variant of Friedman’s A-translation [69] to show a classical derivation Q′ ` ϕp,q sound for
the standard-model N . In the previous translation described in Definition 5.20 we could
use the logical constant Q available in the ambient signature as a falsity substitute, which
is however unavailable in our signature for PA. To provide a general solution, we this
time work with an arbitrary signature, so given Σ = (FΣ;PΣ) we add a new propositional
constant F to PΣ, yielding the new signature ΣF := (FΣ;PΣ ∪ {F}).
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Definition 5.64. We define the F -translation of formulas ϕ over Σ to ϕF over ΣF by:

⊥F := F (ϕ→̇ψ)F := ϕF→̇ψF

(P ~t )F := (P ~t →̇F )→̇F (ϕ∧̇ψ)F := ϕF ∧̇ψF

(ϕ∨̇ψ)F := ((ϕF ∨̇ψF )→̇F )→̇F (∀̇ϕ)F := ∀̇ϕF

(∃̇ϕ)F := ((∃̇ϕF )→̇F )→̇F

Again, the result is that classical proofs can be turned into minimal intuitionistic proofs:

Fact 5.65 (General A-Translation). If Γ `c ϕ then ΓF `i ϕF .

Proof. Analogous to the proof of Fact 5.21, exploiting `i (¬̇¬̇ϕ)F→̇ϕF .

We now apply the F -translation to the particular case of the PA signature to derive an
improved version of Theorem 5.61, eliminating the usage of LEM. To this end, we denote
by N � AF that any extension of the standard model N with an interpretation FN : P
of the new constant symbol satisfies the translation AF of a given axiomatisation A.

Theorem 5.66. Any axiomatisation A ⊇ Q′ with N � AF admits a reduction H10 � A`c.

Proof. By Fact 5.60 we only need to show that p = q has a solution whenever A `c ϕp,q.
Employing Fact 5.65, we may in fact assume AF `i ϕFp,q, so by soundness N � ϕFp,q. Now
choosing the concrete extension of N by FN := H10(p, q), from N � ϕFp,q we actually
obtain H10(p, q) by simple calculation based on Fact 5.57.

Corollary 5.67. The problems Q`c and PA`c are undecidable.

5.8. Discussion and Related Work

General Remarks
In this chapter we have established in CIC and mechanised in Coq the undecidability of a
family of decision problems regarding first-order logic, concretely VAL, SAT, PRV, KVAL,
KSAT, FSAT, Q′, Q, PA, as well as any axiomatisation sound for the standard model N
of arithmetic. Similar results regarding first-order axiomatisations of set theory will be
added in Chapter 8. The obtained results are in the strongest form regarding the logical
fragment and the employed signature.
The shared technique is the constructive verification of synthetic reductions, i.e. faith-

ful translation functions on the type-theoretical meta-level, rooted in the halting prob-
lem KTM or rather intermediate seed problems like PCP and H10. These reductions are
guaranteed to be computable as they are definable in our constructive system, with the
algorithms even made explicit by the concrete terms constructed in the language of CIC.
These verified reductions then yield undecidability up to a computational taboo, namely

the co-enumerability of KTM. Since CIC is agnostic to strong classical assumptions,
undecidability up to an actual contradiction cannot be obtained without assuming axioms
restricting to the computational interpretation underlying the synthetic setting. For
instance using tools such as the certifying extraction by Forster and Kunze [63], our
reductions could in principle be shown explicitly computable with respect to the concrete
model of the untyped λ-calculus and therefore our synthetic definition of undecidability
could be replaced by a definition with respect to this model. Working in a foundation
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with an implicit notion of computability available, however, we deem such an indirect
strategy obfuscating on mathematical and unnecessarily laborious on mechanisation level.
Deviating from typical textbook presentations, for the verification of the reductions we

commit to only using constructive logic. This is partly due to the reason that we want
to ensure that we do not accidentally assume an axiom jeopardising the desired compu-
tational interpretation of the reductions, even though the verification usually comes after
the definition of the reduction and we are in general confident that a purely propositional
axiom such as LEM does not allow for the definition of uncomputable functions due to
the separation of P from T. The other reason is that we deem it interesting and actually
preferable to have an axiom-free constructive development, allowing for finer distinctions
and more general results. That this commitment induces the lack of classical soundness
and completeness theorems is tolerable since for the rather simple reduction formulas in-
volved, soundness can luckily be retrieved using Friedman’s A-translation and performing
syntactic derivations instead of applying completeness remains feasible.
Regarding the organisation of the given undecidability proofs, we obviously did not

strive for the smallest set of necessary reductions, as the results of Sections 5.2 to 5.4
are later improved on and therefore made redundant in Section 5.5. However, the former
reductions are simpler to describe, in particular having lower quantifier complexity and
variable consumption, and, especially crucial on mechanisation level, they start from PCP
while the latter start from the way longer and ingenious reduction chain needed to reach
UDPC via H10. Also note that a further undecidability proof of the Entscheidungsproblem
over the arithmetical signature is given with Theorem 5.61 in Section 5.7 and yet another
proof over the binary signature will be obtained in Section 8.4.

Related Work
Undecidability of FOL The reductions used in Sections 5.2 and 5.3 are based on Floyd’s
idea in [170]. All other reductions are novel, with the exception of the simple folklore
reduction H10 � PA described in Section 5.7. As it comes to the employed seed problems,
only Section 5.5 starts from the novel problem UDPC that is introduced and shown
undecidable in [100], the other reductions start from the standard seeds PCP and H10.
A detailed analysis of undecidable fragments of first-order logic is given in the standard

textbook by Börger, Grädel, and Gurevich [23]. More recently, Kontchakov et al. [138]
prove the positive fragment of intuitionistic logic with only two variables, a binary pred-
icate, and infinitely many unary predicates undecidable.

Mechanised undecidability Our synthetic approach to undecidability [60] provides
the framework of the mechanisations contributed to the Coq Library of Undecidabil-
ity Proofs [65]. Next to the undecidability results in first-order logic contributed in this
chapter and the employed seeds PCP [59], H10 [152], and UDPC [100], the library contains
the undecidability of intuitionistic linear logic [64, 151], higher-order unification [235],
System F typability and type checking [51], and semi-unification [52]. The only other
synthetic undecidability proof we are aware of is a reduction verified in Agda by Hu and
Lhoták [104] to the Dependent Object Types (DOT) system underlying Scala [6].
Regarding undecidability with respect to a concrete model of computation, the available

mechanisations are all concerned with problems for the chosen model, i.e. halting problems
and formulations of Rice’s theorem. This applies for instance to Xu, Zhang, and Urban’s
work on Turing machines and µ-recursive functions in Isabelle [266], Norrish’s work on the
λ-calculus in HOL4 [183], and Carneiro’s work on µ-recursive functions in Lean [35]. We
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are not aware of any mechanised undecidability proofs for model-independent problems
like PCP or H10 with respect to a concrete model and believe that such projects are not
feasible, at least without using tools for automated extraction of computability proofs [63].
However, (parts) of the DPRM theorem underlying the undecidability of H10 have been
mechanised in Lean [34], Isabelle [14, 15], and Mizar [186], though excluding formal
undecidability arguments.

Synthetic computability Richman [206] relies on the computability of all functions in
Bishop style constructive mathematics and adds an axiom stating the countability of all
partial functions. He then gives a purely synthetic proof of the undecidability of the
halting problem.
Bauer [11] works in Hyland’s effective topos [105], where countable choice, Markov’s

principle, and Richman’s enumeration axiom are valid. He proves that Markov’s principle
implies Post’s theorem and reconstructs further results like Rice’s theorem. In [12], he
extends this exploration, amongst others, to the Kleene-Rogers recursion theorem.
In his PhD thesis [57], Forster lays out the theoretical justification for synthetic com-

putability and especially synthetic undecidability in the framework of CIC. Although no
formal effective model of CIC has been constructed, related models for Martin-Löf type
theory [267] and homotopy type theory [242] increase our confidence in the applicability
of synthetic computability to CIC and its implementation in Coq.

Constructive from classical proofs In Theorems 5.22 and 5.66 we employed variants of
Friedman’s A-translation [69] to obtain � ϕ from `c ϕ, i.e. to use classical soundness for
suitable formulas ϕ without restricting to classical models. Berger et al. [19] show that
this technique can be used for a general class of formulas subsuming our observation con-
cerning ϕS and ϕp,q. Schwichtenberg and Senjak [213] use explicit proof transformations
to eliminate classical rules from natural deduction derivations for a similar class.

66



6. Synthetic Incompleteness

Shortly after Gödel published his celebrated completeness theorem of first-order logic [74,
78] in 1930, he discovered the surprising phenomenon of incompleteness [75] of sufficiently
strong axiom systems. While completeness states, as discussed in Chapter 4, that all valid
formulas are provable, incompleteness (sometimes called negation-incompleteness for dis-
ambiguation) refers to the existence of independent sentences that are neither provable
nor refutable from a given set of axioms. Considered from the programmatic perspective
of metamathematics, completeness entails that the formal method of syntactic, finitary
deduction is an adequate means to explore mathematical validities. In contrast, incom-
pleteness establishes a principal limitation to axiomatic reasoning and therefore triggered
a long tradition of interpretations (and sometimes misinterpretations, as collected in [68])
in mathematics, philosophy, and even pop culture,1 especially regarding the consequential
observation that no such sufficiently strong axiom system can verify its own consistency
(usually referred to as Gödel’s second incompleteness theorem).
Concretely, Gödel showed that for all formal systems expressing enough properties of

the natural numbers while being sound (i.e. all derivable arithmetical sentences are true
for the standard model over N) or at least ω-consistent (i.e. if ϕ(n) is provable for all
numerals n, then ∃x.¬ϕ(x) is not provable) one can explicitly construct an independent
sentence. For his elaborate construction, a lot of machinery regarding the arithmetisation
of syntax and deduction systems as well as their interplay with substitution had to be de-
veloped, for instance Gödel numbering, the β-function, and the diagonal lemma. All this
complexity obscures the underlying simple liar paradox of the constructed self-referential
sentence, which is the reason why even full textbooks (e.g. Smith’s monographs [221, 223])
are devoted to a formal exposition. Rosser later improved on the result by lifting the
requirement of ω-consistency to plain consistency using a technically compact trick, en-
tailing essential incompleteness meaning that independent sentences can be constructed
in all consistent extensions of an incomplete system, but still followed the same rather
complicated strategy [209].
Only with the development of formal notions of computability and the resulting dis-

covery of undecidability in 1936 by Church [38] and Turing [253], a much simpler proof
strategy relying on a direct encoding of the halting problem was conceived, as directly
remarked in Turing’s paper. The underlying observation (already anticipated by Post,
cf. [199]) is that complete axiom systems are decidable,2 and thus systems able to ex-
press the halting problem and therefore inheriting its undecidability must be incomplete.
To establish that a given system correctly expresses the halting problem, however, one
typically relies on soundness to extract termination information from a formal derivation
and, additionally, the proof does not readily yield a concrete independent sentence. Thus
the nowadays well-known proof of incompleteness via undecidability, though elementary
enough to be taught in basic courses on computability theory, yields a result even weaker
than Gödel’s original statement.

1See Douglas Hofstadter’s classic “Gödel, Escher, Bach” [98] or far-reaching Youtube channels like
Derek Muller’s Veritasium (https://www.youtube.com/watch?v=HeQX2HjkcNo).

2Where we crucially consider the collection of axioms as enumerable (cf. Section 5.6), the sentences
satisfied in the standard model N yield a simple example of a complete but undecidable theory.
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Far less well-known is the line of work pursued by Kleene [131, 132, 133, 134, 135]
ultimately accomplishing a form of incompleteness as strong as Rosser’s while still trans-
parently showcasing the computational core of the argument.3 Kleene’s improved strategy
is based on a switch from the encoded halting problem to encoding a pair of recursively
inseparable sets via a stronger representability property, which is in turn established by
a technique akin to Rosser’s trick in [209]. By this switch, the requirement of soundness
instead of mere consistency can be avoided, since no termination information needs to
be extracted from derivations but only existing derivations and refutations need to be
preserved. Moreover, on more careful inspection already of the previous argument em-
ploying the halting problem, an explicit independent sentence can be extracted, similarly
for the improved version. The only drawback of the computational variant of Gödel’s
first incompleteness theorem is that it no longer directly prepares the second incomplete-
ness theorem, but for the mere construction of independent sentences Kleene’s argument
seems superior and deserves wider popularity.
Working in the constructive type theory CIC, we translate Kleene’s incompleteness

proofs to the framework of synthetic computability [206, 11] already exploited in Chap-
ter 5, replacing the formal model of computation referenced for the notions of enumerabil-
ity and decidability by the implicit notion of computation inherent to any intuitionistic
meta-theory like CIC. Taking this perspective, Kleene’s proofs can be further enhanced
as no (often left informal) manipulation of Turing machines, µ-recursive functions, or
untyped λ-terms is necessary to single out the computable functions N → N. Instead,
the necessary constructions can be (directly formally) done with respect to all functions
N→ N, as they are guaranteed to be computable by definability in our intuitionistic meta-
theory. To still enable the usual diagonalisation referring to universal machines in order to
establish negative results, we assume variants of Church’s thesis [141, 143, 206, 58, 57], in-
ternalising the computability of all definable functions and inducing synthetic definitions
of an undecidable halting problem and recursively inseparable sets.
With such a synthetic reformulation of Kleene’s ideas, we contribute a strikingly con-

cise yet formally fully precise proof of the strong Gödel-Rosser incompleteness theorem,
isolating the computational essence at the core of the phenomenon. To this end, we
first work with a fully abstract notion of formal systems to pin down their necessary
properties and showcase the strategy free of any contingent overhead, an approach also
followed by Beklemishev [16], Smullyan [228], as well as Popescu and Traytel [197, 198].
Subsequently, we instantiate the abstract development to the concrete case of first-order
arithmetic, culminating in a proof of essential incompleteness of Robinson arithmetic Q,
a finitely axiomatised fragment of Peano arithmetic PA. First, this conclusion is drawn,
still maintaining the argument’s simplicity, by assuming Church’s thesis directly for Q.
Afterwards we replace this assumption by Church’s thesis for µ-recursive functions and an
application of the non-elementary DPRM theorem [45, 172] to bring every µ-recognisable
predicate into Diophantine and thus Q-expressible form.
On top of the mathematical contribution to formalise the computational incompleteness

proofs in synthetic computability theory, in particular the abstract proofs are straightfor-
ward to implement in the Coq proof assistant, suggesting that the chosen approach is well-
suited for the notoriously hard mechanisation of incompleteness [216, 185, 86, 190, 198].
Our code for the abstract Gödel-Rosser theorem implemented as part of this chapter
spans only about 200 lines, while the instantiation to Q adds roughly 2500 lines on top of

3For instance, Anatoly Vorobey recently testified on the FOM mailing list (https://cs.nyu.edu/
pipermail/fom/2021-September/022872.html) that he was “struck to discover such a proof laid
out” in equally astonished sounding blog posts and StackExchange threads.
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the employed Coq libraries for first-order logic [122] and undecidability proofs [65]. The
latter contains Larchey-Wendling and Forster’s extensive mechanisation of the DPRM
theorem [153], which could be replaced by a weaker, direct arithmetisation of a machine
model to allow for a realistic comparison to the previous stand-alone mechanisations.
Nevertheless, we deem it a valuable contribution to complement the extensive line of
work regarding mechanisations of Gödel’s original proof strategy with the first equally
general mechanisation of the nicely arranged computational argument. A detailed com-
parison to the previous mechanisations will be given in Section 6.4.
Connected to incompleteness, in this chapter we also study Tennenbaum’s theorem [246],

stating that the standard model of PA is the only countable model where the arithmeti-
cal operations of addition and multiplication are computable. Historically, this result
played an important part in the model theory of arithmetic, as for instance comprehen-
sively investigated by Kaye [115], and was interpreted, especially by constructivists like
McCarty [176] as a remedy for the missing strength of first-order logic to uniquely char-
acterise the natural numbers. In the context of this chapter, we will study Tennenbaum’s
theorem given that it is closely linked to even two meanings of incompleteness, as it
not only yields a more semantic proof of the Gödel-Rosser result but also shows that the
fully constructive semantics obtained by restricting to the computational models validates
unprovable sentences.
Once again the perspective of synthetic computability is beneficial and fruitful: since

our representation of Tarski semantics is based on functions to interpret function symbols,
it is trivial to express what it means for a model to be computable. Similarly, the
usual arguments for Tennenbaum’s theorem (we consider three related proofs) based on
computability are easily translated and, specifically under the assumption of CTQ, all low-
level manipulations can be circumvented. That this perspective not only helps to simplify
proofs but also to observe new results is demonstrated by the constructivisation of the
usually classical arguments (underlying the first two proofs), giving Markov’s principle
MP a prominent role in controlling the involved structure. Moreover, we give a variant of
McCarty’s inherently constructive argument (the third proof), seconding his conclusion
that constructive semantics allows for a satisfying alternative account of first-order logic.
Note that while these arguments for Tennenbaum’s theorem are fully formalised in CIC
and mechanised in Coq, we will leave the discussed connection to incompleteness informal.
Outline In Section 6.1 we explain our approach to incompleteness based on synthetic
computability on a highly abstract level generalising over the particular formal system.
This approach will be instantiated to the formal system of first-order logic and the con-
crete axiomatisation of Peano arithmetic in Section 6.2. Subsequently, the constructive
analysis of several versions and proofs of Tennenbaum’s theorem is given in Section 6.3
and we close with general remarks and a discussion of related work in Section 6.4.
Sources The abstract formalisation of incompleteness in constructive type theory given
in Section 6.1 was sketched in [120] with Marc Hermes and continued in [194, 125] with
Benjamin Peters, based on his Bachelor’s thesis [193]. The same publications describe
the instantiation to Peano arithmetic subject to Section 6.2. The formalisation of Ten-
nenbaum’s theorem reported on in Section 6.3 was developed in [95] with Marc Hermes,
based on his Master’s thesis [94]. The publication [125] is based on text from this chapter.
Contributions The main contribution of this chapter is the synthetic and constructive
reformulation of several computational versions of the first incompleteness theorem as
well as Tennenbaum’s theorem. On top of the collaborative work on these projects, the
author of this thesis contributed the general ideas underlying the approach based on the
identification of CTQ as suitable axiom as well as various refinements and simplifications.
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6. Synthetic Incompleteness

6.1. Synthetic and Abstract Approach to Incompleteness
In this and the next section, we develop incompleteness results of various strengths in a
purely abstract setting. Our exposition follows the computational approach described by
Kleene [134, 135], which we translate to the setting of synthetic computability to achieve
a highly condensed but still fully formal presentation. We begin with the underlying
notion of a formal system, involving only modest assumptions about sentences, negation,
and provability.

Definition 6.1 (Formal System). A triple S = (S, ¬̇,`) is called a formal system if:

• S is a type, considered the sentences of S,

• ¬̇ : S→ S is a function on sentences, considered the negation operation,

• `: S→ P is a semi-decidable predicate, considered the provable sentences.

• Consistency holds in the form that for all ϕ : S not both ` ϕ and ` ¬̇ϕ.

A formal system S ′ = (S, ¬̇,`′) is called an extension of S if ` ϕ implies `′ ϕ for all ϕ.
Moreover, S is called decidable if the provability predicate ` is decidable.

This general definition captures first-order axiomatisations (cf. Section 5.6) as will
be made precise in Section 6.2, but also applies to many other formalisms including
constructive type theories like CIC itself or classical systems like HOL.
(Negation-)completeness can be easily expressed as a property of such formal systems,

contrasting an informative notion of incompleteness relying on independent sentences.

Definition 6.2 (Completeness). We call S complete if for all ϕ either ` ϕ or ` ¬̇ϕ. In
contrast, S admits an independent sentence if there is ϕ with neither ` ϕ nor ` ¬̇ϕ.

To obtain a first weak form of incompleteness, it suffices to observe that complete
formal systems are decidable, therefore deciding every decision problem they can encode.
This observation is an immediate consequence of Fact 2.7, however, we prefer to follow
the proof as in Fact 2.11, constructing a partial decider that will be reused later.

Lemma 6.3 (Partial Decider). One can construct a partial function dS : S⇀ B with:

∀ϕ. (` ϕ↔ dS ϕ ↓ tt) ∧ (` ¬̇ϕ↔ dS ϕ ↓ ff)

Note that given this specification, dS exactly diverges on the independent sentences of S.

Proof. By the definition of formal systems, we have semi-deciders f1 for λϕ. ` ϕ and f2
for λϕ. ` ¬̇ϕ, where the latter is obtained from the former by testing if a given negation
¬̇ϕ is derivable, i.e. by f2 ϕ := f1 (¬̇ϕ). Then as in the proof of Fact 2.11, we construct
dS : S⇀ B to be the function that on input ϕ simultaneously runs f1 ϕ and f2 ϕ, returns
tt if the former terminates and ff if the latter terminates, and diverges otherwise:

dS xn := if f1 xn then pttq else if f2 xn then pffq else ∅

Consistency is used as the crucial property to show that this function is deterministic.

Now the connection of completeness and decidability can be established transparently:

Fact 6.4 (Decidability). If S is complete, then S is decidable.
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Proof. By completeness the partial decider dS is total, inducing a decider S→ B.

To derive the announced weak form of incompleteness, it remains to clarify what it
means for a formal system to encode a decision problem. An intuitive characterisation,
called weak representability, exhibits the structure of many-one reductions.

Definition 6.5 (Weak Representability). S weakly represents P : X → P if P � S, i.e.
if there is a function r : X → S such that P x ↔ ` r x. If only ` r x implies P x, then
we call S sound for P and r (or simply sound for P if we leave r implicit).

We can now derive incompleteness in the sense that systems weakly representing an
undecidable problem cannot be complete. As the property of weak representability is
preserved along sound extensions, we instantiate this result later to derive weak incom-
pleteness of PA and other axiomatisations sound for N .

Theorem 6.6 (Weak Incompleteness). If S weakly represents P : X → P, then for
any extension S ′ of S sound for P it holds that if S ′ is complete, then P is decidable.
Therefore, if P is known to be undecidable, then S ′ must be incomplete.

Proof. Note that any sound extension S ′ of S still weakly represents P . Since complete-
ness induces decidability of ` (Fact 6.4), we obtain decidability of P from Fact 5.4.

Although Theorem 6.6 correctly identifies the computational essence of incompleteness,
namely the connection to undecidability, it still falls short of the stronger Gödel-Rosser
theorem in three ways:

1. The reliance on weak representability excludes consistent but unsound extensions,
which would be the requirement to achieve essential incompleteness.

2. There is no concrete example of an independent sentence constructed since the
global completeness assumption is needed to totalise the partial decider dS .

3. The result is presented only up to a computational taboo, i.e. the decidability of a
problem known to be undecidable, instead of an actual contradiction.

In the remainder of this section we address these shortcomings one-by-one, ultimately
yielding the strongest form of incompleteness possible. Regarding the third improvement,
as already mentioned in Chapter 5, the only way to derive a contradiction from a compu-
tation taboo is to assume an axiom that restricts the ambient constructive type theory
to a computational interpretation. Concretely, we now assume a variant of Church’s the-
sis [141, 143], abbreviated EPF for “enumerability of partial functions” [206, 58, 57]. It
postulates a universal function Θ : N→ (N⇀ N) computing all partial functions, i.e. for
every f : N⇀ N there is a code c such that Θc agrees with f (extensionally).

Axiom 6.7 (EPF). There is a universal function Θ : N→ (N⇀ N) satisfying:

∀f : N⇀ N.∃c : N. ∀xy.Θc x ↓ y ↔ f x ↓ y

This assumption, left tacit in this section, induces a canonical undecidable problem:

Definition 6.8 (Halting Problem). We define the self-halting problem by KΘ x := Θx x ↓.

The self-halting problem for Θ can be easily shown undecidable by the usual diagonal-
isation. Following this argument in a constructively more informative way, we show that
every potential decider for KΘ necessarily diverges on a concretely constructed input.
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Fact 6.9. KΘ is enumerable, but for every candidate decider d : N⇀ B with

∀x.KΘ x↔ d x ↓ tt

one can construct a concrete value x with ¬KΘ x such that d x ↑.

Proof. We first define the partial function f : N⇀ B such that f x ↓ tt whenever d x ↓ ff
and f x ↑ otherwise. Now using EPF we obtain a code c for f and deduce for x := c that

d x ↓ tt ⇔ KΘ x ⇔ Θx x ↓ ⇔ f x ↓ ⇔ f x ↓ tt ⇔ d c ↓ ff

from which we obtain d x ↑. That KΘ is not decidable follows since every decider N→ B
would induce a total candidate N⇀ B. Finally, enumerability of KΘ is standard.

We can now identify an intermediate refinement of the incompleteness theorem, pro-
viding a concrete independent sentence up to an actual contradiction, which corresponds
to the result originally shown by Gödel (in the weaker semantic form requiring soundness
instead of ω-consistency).

Theorem 6.10 (Gödel’s Incompleteness). If S weakly represents KΘ, then any extension
S ′ of S sound for KΘ admits an independent sentence.

Proof. Let r : N→ S weakly represent KΘ in S, therefore also in all sound extensions S ′.
The function d := dS′ ◦ r is a candidate decider for KΘ in the sense of Fact 6.9 since:

KΘ x ⇔ ` r x ⇔ dS′(r x) ↓ tt ⇔ d ↓ tt

Then by Fact 6.9 there is a particular x with d x ↑ and we observe that the sentence r x
can neither be provable nor refutable since in either case d x ↓ by specification of dS′ .

In order to tackle the remaining improvement, namely the applicability to consistent
extensions, we follow Kleene’s idea to switch to a stronger notion of representability
that is not affected by unsound formal systems. Since for weak representability of a
predicate P it was crucial to obtain P x from ` r x, so to extract information from a
derivation, one might hope that this can be replaced by a proof of ` ¬̇(r x) from ¬P x,
as this has a derivation in the conclusion and therefore transports along any extension.
Unfortunately, this strong notion of representability can only be achieved for decidable
predicates (see Fact 6.30), thus ruling out the encoding of the undecidable KΘ for a
contradiction. However, it is possible to specify a very similar notion involving a second
predicate Q, such that still all derivations appear in conclusions but P and Q can be
instantiated with undecidable problems, respectively.

Definition 6.11 (Strong Separability). S strongly separates P : X → P and Q : X → P
if there is a function r : X → S such that P x implies ` r x and Qx implies ` ¬̇r x.

The notion of strong separability can now be instantiated with any pair of recursively
inseparable problems (i.e. problems excluding any total decider discriminating them)
to derive essential incompleteness. The canonical pair of such recursively inseparable
problems in the context of EPF refers to the self-halting problems for specific output.

Definition 6.12. We define the problems K1
Θ x := Θx x ↓ 1 and K0

Θ x := Θx x ↓ 0.

As done with the normal self-halting problem before (Fact 6.9), we do not just refute
any discriminating decider but show that every partial decider actually diverges on an
explicitly constructed input.
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6.2. Essential Incompleteness of Robinson Arithmetic

Fact 6.13. K1
Θ and K0

Θ are enumerable, but for every candidate separator s : N⇀ B with

∀x. (K1
Θ x→ s x ↓ tt) ∧ (K0

Θ x→ s x ↓ ff)

one can construct a concrete value x with ¬K1
Θ x and ¬K0

Θ x such that s x ↑.

Proof. We define the partial function f : N⇀ B with f x ↓ ff if s x ↓ tt, f x ↓ tt if s x ↓ ff,
and f x ↑ otherwise. From EPF we obtain a code c for f and deduce for x := c that

s x ↓ tt ⇔ f x ↓ ff ⇔ Θx x ↓ 0 ⇔ K0
Θ x ⇒ s x ↓ ff

s x ↓ ff ⇔ f x ↓ tt ⇔ Θx x ↓ 1 ⇔ K1
Θ x ⇒ s x ↓ tt

from which we conclude s x ↑. Again, enumerability of K1
Θ and K0

Θ is standard.

The desired strong incompleteness theorem, now corresponding to Rosser’s refinement
of Gödel’s result, follows for all formal systems that capture enough computation to
strongly separate K1

Θ and K0
Θ.

Theorem 6.14 (Gödel-Rosser Incompleteness). If S strongly separates K1
Θ and K0

Θ, then
any extension S ′ of S admits an independent sentence, i.e. S is essentially incomplete.

Proof. Let r : N→ S strongly separate K1
Θ and K0

Θ in S, therefore also in all consistent
extensions S ′. The function s := dS′ ◦ r is a candidate separator for K1

Θ and K0
Θ since:

K1
Θ x ⇒ ` r x ⇔ dS′(r x) ↓ tt ⇔ s ↓ tt

K0
Θ x ⇒ ` ¬̇r x ⇔ dS′(r x) ↓ ff ⇔ s ↓ ff

Then by Fact 6.13 there is a particular x with s x ↑, hence the sentence r x can neither
be provable nor refutable since in either case s x ↓ by specification of dS′ .

To emphasise the connection with computational incompleteness, we observe essential
undecidability of formal systems of the same expressivity as required in Theorem 6.14.

Theorem 6.15 (Essential Undecidability). If S strongly separates K1
Θ and K0

Θ, then any
extension S ′ of S is undecidable, i.e. S is essentially undecidable.

Proof. Given r : N → S strongly separating K1
Θ and K0

Θ and d : S → B deciding S ′,
the (total) function s := d ◦ r would recursively separate K1

Θ from K0
Θ, contradicting

Fact 6.13.

6.2. Essential Incompleteness of Robinson Arithmetic
We next instantiate the abstract approach to incompleteness from the previous section to
the case of first-order arithmetic. To this end, we now make precise that every consistent
axiomatisation A induces a formal system SA = (SA, ¬̇A,`A) where

• SA is the type of closed formulas ϕ : F,

• ¬̇A is the negation function ¬̇ϕ restricted to closed ϕ,

• `A is the provability predicate A ` ϕ restricted to closed ϕ, and

• `A ϕ simultaneous to `A ¬̇ϕ is ruled out by the consistency of A.
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We now say that A is complete if its induced formal system SA is complete, i.e. if
either A ` ϕ or A ` ¬̇ϕ for all closed ϕ. Similarly, we say that A admits an independent
sentence if SA does, i.e. if there is some closed ϕ with neither A ` ϕ nor A ` ¬̇ϕ.
Note that here, as our notational convention suggests, we deliberately include both the
intuitionistic and the classical ND system, so our treatment of incompleteness applies to
both flavours.
Since reductions P � A` establish that SA weakly represents P , we can immediately

derive a weak form of incompleteness from previous results.

Theorem 6.16 (Weak Incompleteness). If PA is complete, then H10 is decidable.

Proof. We have H10 � PA` by Theorems 5.61 and 5.66, so SPA weakly represents H10.
Then if PA were complete, H10 were decidable by Theorem 6.6.

Note that this result also applies to all sound extensions of PA, i.e. extensions A such
that from A ` ϕ one can derive N � ϕ, as well as to all weaker (and hence vacuously
incomplete) fragments, in particular Q. We refer the reader to [120] for more detail on
this weak form of incompleteness obtained from the reduction of H10 in a synthetic sense.
To obtain the stronger result concerning merely consistent extensions, we prepare to

instantiate Theorem 6.14 to the case of Q, as this axiomatisation exactly provides the
needed representability requirements. For this instantiation, note that although EPF is
an axiom strong enough to yield undecidable problems, it does not necessarily restrict
the function space N ⇀ N to a concrete model of computation expressible in Q. We
therefore need to assume a more explicit form of Church’s thesis to derive the desired
representability within Q. An elegant strategy is to directly assume Church’s thesis for Q
itself (CTQ), instantiate Theorem 6.14 with elementary arguments, and afterwards deliver
the rather involved argument that CTQ follows from a more conventional explicit form of
EPF for µ-recursive functions.
To state CTQ, we first identify the semantically well-behaved class of Σ1-formulas.

Definition 6.17 (∆1- and Σ1-formulas). We say that ϕ : F is a ∆1-formula if for all
substitutions σ such that σ n is closed for all n : N we have Q ` ϕ[σ] or Q ` ¬̇ϕ[σ]. We
say that ψ : F is a Σ1-formula if there is a ∆1-formula ψ such that ϕ = ∃̇ . . . ∃̇ψ.

CTQ then states that any function N⇀ N is fully captured by a Σ1-formula.

Axiom 6.18 (CTQ). For all partial f : N⇀ N there exists a Σ1-formula ϕ(x, y) with:

∀xy. f x ↓ y ↔ Q ` ∀̇y′. ϕ(x, y′) ↔̇ y′ ≡ y

To enable the usage of the results from the previous section solely assuming CTQ, we
show that CTQ yields a universal function Θ as formerly postulated with EPF.

Fact 6.19. Assuming CTQ, in particular EPF holds.

Proof. We choose as universal function Θ : N → (N ⇀ N) the partial function that
on input c and x enumerates all derivations from Q and terminates with value y if a
derivation Q ` ∀y′. ϕc(x, y′) ↔̇ y′ ≡ y is found for ϕc being the c-th formula.
Then given a partial function f : N ⇀ N, the assumption of CTQ guarantees that f is

captured by some Σ1-formula ϕ = ϕc for some c. Then we deduce for all x and y

Θc x ↓ y ⇔ Q ` ∀y′. ϕc(x, y′) ↔̇ y′ ≡ y ⇔ f x ↓ y

as desired to establish that Θ is universal.
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6.2. Essential Incompleteness of Robinson Arithmetic

In the case of total functions, the capturing condition can be slightly simplified.

Fact 6.20. Assuming CTQ, for all f : N→ N there exists a Σ1-formula ϕ(x, y) with:

∀x.Q ` ∀̇y′. ϕ(x, y′) ↔̇ y′ ≡ f x

From CTQ we can derive all the representability conditions employed in Section 6.1.
In fact, we obtain more precise conditions involving Σ1-formulas ϕ(x) providing uniform
encoding functions r n := ϕ(n).

Definition 6.21. Given P, P ′ : N→ P and a Σ1-formula ϕ(x) we say that

• ϕ weakly Σ1-represents P if P n↔ Q ` ϕ(n) and

• ϕ strongly Σ1-separates P and P ′ if P n→ Q ` ϕ(n) and P ′ n→ Q ` ¬̇ϕ(n).

So if ϕ for instance Σ1-represents P : N → P, then r n := ϕ(n) witnesses that SQ
weakly represents P in the sense of Definition 6.5, analogously for strong Σ1-separability.

Theorem 6.22 (Representability). Assuming CTQ, Q can represent predicates as follows:

1. Every enumerable predicate over N is weakly Σ1-representable.

2. Every pair of disjoint enumerable predicates over N is strongly Σ1-separable.

Proof. We establish both claims independently:

1. An enumerator e of P can be recast as a function N→ N with P x iff ∃n. e n = x+1.
Applying CTQ, we obtain a Σ1-formula ϕ capturing e and deduce:

P x ⇔ ∃n. e n = x+1 ⇔ ∃n.Q ` e n = S x ⇔ ∃n.Q ` ϕ(n, S x) ⇔ Q ` ∃̇k. ϕ(k, S x)

Thus ψ(x) := ∃k. ϕ(k, S x) weakly Σ1-represents P .

2. A partial decider d : N ⇀ B can be constructed with P x iff d x ↓ tt, and P ′ x iff
d x ↓ ff, analogously to the partial decider defined in Lemma 6.3. Applying CTQ,
we obtain a Σ1-formula ϕ capturing d and deduce:

P x ⇒ d x ↓ tt ⇒ Q ` ϕ(x, 1)
P ′ x ⇒ d x ↓ ff ⇒ Q ` ϕ(x, 0) ⇒ Q ` ¬̇ϕ(x, 1)

Thus ψ(x) := ϕ(x, 1) strongly Σ1-separates P and P ′.

Note that the weak representability property (1) of Theorem 6.22 could be used to
obtain independent sentences for all sound extensions of Q based on the intermediate
result Theorem 6.10. Already given the strong separability property (2), however, we
immediately conclude the stronger essential incompleteness of Q based on Theorem 6.14.

Theorem 6.23 (Essential Incompleteness). Assuming CTQ, any consistent axiomatisa-
tion A ⊇ Q admits an independent sentence.

Proof. We apply Theorem 6.14, so we only need to show that Q strongly separates K1
Θ

and K0
Θ. Since these are enumerable, this follows from (2) of Theorem 6.22.

Similarly, we can observe the essential undecidability of Q based on Theorem 6.15.

Theorem 6.24. Assuming CTQ, any consistent axiomatisation A ⊇ Q is undecidable.
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6. Synthetic Incompleteness

Proof. We apply Theorem 6.15 and then argue as in the proof of Theorem 6.23.

Arguably, by the assumption of CTQ we have sidestepped much of the actual technical
work needed to establish the essential incompleteness of Q. To showcase that most of
this work concerned with the representability properties can actually be done feasibly and
only an axiom connecting the synthetic level with a concrete model of computation is
necessary, we now derive CTQ from a version of Church’s thesis for µ-recursive functions
(EPFµ). Note that Church’s thesis for any Turing complete model could be consistently
assumed in CIC (see [58] for a discussion) and thus by the upcoming derivation we in
particular justify the consistency of CTQ. We also remark that our derivation relies on
the heavy-weight DPRM theorem as mechanised in [153], however, one could also give a
less informative but more direct arithmetisation of formal computation.
We refer to [153] for full detail about an encoding of µ-recursive functions in CIC and

only require a step-indexed interpreter Θµ : N → (N ⇀ N). For Θµ we then state EPFµ
which will only be used to show that the graph of a given partial function is µ-enumerable,
and therefore Diophantine by the DPRM theorem.

Definition 6.25. EPFµ states that Θµ is universal for all partial functions:

∀f : N⇀ N.∃c : N. ∀xy.Θµ
c x ↓ y ↔ f x ↓ y

To prepare the result that EPFµ implies CTQ, we need a bit more machinery about
Σ1-formulas ϕ, especially the completeness property that for deriving Q ` ϕ it suffices
to show N � ϕ. This and forthcoming observations can be simplified by the fact that a
prefix of existential quantifiers can be compressed into a single existential quantifier:

Lemma 6.26. For every Σ1-formula ϕ there is a ∆1-formula ψ with Q ` ϕ ↔̇ ∃̇ψ.

Proof. By induction on the length of the quantifier prefix of ϕ. For the inductive step
it suffices to show that two quantifiers can be merged into one, i.e. that for a given
∆1-formula ϕ there is a ∆1-formula ψ with Q ` (∃̇x. ∃̇y. ϕ(x, y)) ↔̇ (∃̇z. ψ(z)). We set:

ψ(z) := ∃̇x. (∃̇k. z ≡ x⊕ k) ∧̇ ∃̇y. (∃̇k. z ≡ k ⊕ y) ∧̇ϕ(x, y)

The sought equivalence is not hard to establish as one can instantiate z := x⊕y. Proving
that ψ is ∆1 is more tedious but less insightful as this requires to establish decidability of
bounded quantifications via their equivalence to iterated disjunctions, formally in Q.

Note that from now on we use x≤̇y as the common notation for ∃̇k. y ≡ x⊕ k but that
we indeed also need to employ the symmetric variant ∃̇k. y ≡ k⊕ x in the previous proof
since Q does not recognise addition as commutative.

Fact 6.27 (Σ1-completeness). If ϕ is closed and Σ1, then N � ϕ implies Q ` ϕ.

Proof. By Lemma 6.26 we may assume that ϕ has the form ∃̇ψ where ψ is ∆1. Then
from N � ϕ we obtain n : N such that N � ψ(n). Now since ψ(n) is closed we have
either Q ` ψ(n) or Q ` ¬̇ψ(n) by the definition of ∆1, where the former immediately
yields Q ` ϕ and where the latter contradicts N � ϕ via soundness.

We can now give a proof that EPFµ implies CTQ based on a technique resembling
Rosser’s trick in his refinement of Gödel’s original incompleteness proof. In order to
provide some intuition first: the idea is to refine a formula weakly Σ1-representing a
predicate such that a witness not only guarantees a solution but also that all potential
smaller solutions show similar behaviour.
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6.3. Tennenbaum’s Theorem

Fact 6.28. EPFµ implies CTQ.

Proof. Let f : N ⇀ N be given, the goal is to capture f by some Σ1-formula ϕ. From
EPFµ we obtain some c such that f is computed by Θµ

c . Now since Θµ
c is µ-recursive,

we can apply the DPRM theorem to obtain a polynomial equation p = q recognising the
graph of Θµ

c . From the reduction verified in Section 5.7 we obtain that solvability of the
equation p = q agrees with derivability of its embedding ϕp,q = ∃̇N p∗ ≡ q∗ in Q:

f x ↓ y ↔ Q ` ϕp,q(x, y)

This intermediate result states that the graph of f is weakly Σ1-representable and can
be refined to a capturing as needed in CTQ using a variant of Rosser’s trick. First, with
Lemma 6.26 we refine ϕp,q(x, y) to a formula ∃̇k. ψ(x, y, k) where ψ is ∆1. Then we set

ϕ′(x, y, k) := ψ(x, y, k) ∧̇ ∀̇y′k′. y′ ⊕ k′ ≤̇ y ⊕ k →̇ψ(x, y′, k′) →̇ y′ ≡ y

followed by ϕ(x, y) := ∃̇k. ϕ′(x, y, k) and verify that ϕ captures f as desired for CTQ:

• Assuming f x ↓ y, we want to derive ∀̇y′. ϕ(x, y′) ↔̇ y′ ≡ y formally within Q. Note
that from f x ↓ y we obtain some natural number k with ψ(x, y, k) as base. Using
Σ1-completeness, we can in fact derive ϕ′(x, y, k) as this is straightforward to verify
in the standard model N .
This establishes the backwards direction of the sought equivalence, for the forward
direction assume ϕ(x, y′) for some variable y′. Hence ϕ′(x, y′, k′) for some variable
k′, complementing ϕ′(x, y, k) from before. As Q can derive that either y⊕k ≤ y′⊕k′
or y′ ⊕ k′ ≤ y ⊕ k, we obtain y′ ≡ y in either case from the construction of ϕ′.

• If conversely Q ` ∀̇y′. ϕ(x, y′) ↔̇ y′ ≡ y, then in particular Q ` ∃̇k. ψ(x, y, k) from
which we obtain f x ↓ y by the representability property of ϕp,q.

We expect that CTQ implies EPFµ as this boils down to the same proof as in Fact 6.19,
only with all computability arguments done for µ-recursive functions instead of synthet-
ically. However, we leave this considerably harder to mechanise result for future work.
We remark that the remaining assumption of EPFµ is a common formulation of Church’s

thesis, already mentioned as a consistent axiom in the early textbook by Troelstra and
van Dalen [252]. Though no consistency proof for the specific case of EPFµ formulated
in CIC has been conducted, equivalent formulations of Church’s thesis have been shown
consistent in closely related type theories [242, 267]. See also [58] for an overview on
formulations of Church’s thesis in CIC and a discussion of their consistency.

6.3. Tennenbaum’s Theorem
Connected with incompleteness from a more semantic perspective, we now investigate
Tennenbaum’s theorem [246] in our setting of constructive type theory and synthetic
computability. The theorem states that all computable models of PA are standard, which
is straightforward to formulate for our notion of Tarski semantics relying on (synthetically
computable) functions to interpret function symbols. We give three proofs of different
strength regarding the concrete requirements imposed on the model, where the first two
are constructivisations of standard classical outlines [22, 116] only using MP and the last
one is an inherently constructive proof [176] based on a computable variant of Tarski
semantics. After the formal discussion of the proofs, we briefly and informally explain
the connection of Tennenbaum’s theorem to variants of incompleteness.

77

https://www.ps.uni-saarland.de/extras/kirst-thesis/website/Undecidability.FOL.Incompleteness.ctq.html#epf_mu_ctq


6. Synthetic Incompleteness

In this section we fix an extensional model M of PA (i.e. a model interpreting the
equality symbol with the equality of the domain type) over a discrete domain D. More-
over, we now assume CTQ tacitly as defined in the previous section. Especially, we let
Π(x, y) denote the capturing Σ1-formula, obtained from CTQ, for the function π : N→ N
computing a sequence of distinct primes and abbreviate by Π(x) the (unique) value y
with Π(x, y). In general, we will relax the notations in this section especially by reusing
arithmetical symbols +,× instead of ⊕,⊗ on object level and by writingM � ϕ(x) for
x :M instead of providing the actual environment ρ : N →M. Moreover, for elements
x, y :M we now also write x < y to denote S x ≤ y and x | y to denote that x divides y,
i.e. that there is k with x× k = y.
As a preparation, we establish a further representability property following from CTQ.

Definition 6.29 (Strong Representability). Given P : N → P and a Σ1-formula ϕ(x)
we say that ϕ strongly Σ1-represents P if P n→ Q ` ϕ(n) and ¬(P n)→ Q ` ¬̇ϕ(n).

Fact 6.30. Every decidable predicate over N is strongly Σ1-representable.

Proof. Let d : N → B be a decider for an assumed predicate P : N → P. From CTQ in
the totalised formulation (Fact 6.20) we obtain a Σ1-formula ϕ(x, y) capturing d:

∀n. Q ` ∀̇y. ϕ(n, y)↔̇y ≡ d n

Then we show that ψ(x) := ϕ(x, 1) strongly Σ1-represents P as follows

P n ⇒ d n = tt ⇒ Q ` 1 ≡ d n ⇒ Q ` ϕ(n, 1)
¬P n ⇒ d n = ff ⇒ Q ` 1 6≡ d n ⇒ Q ` ¬̇ϕ(n, 1),

where in the second line we used that Q can show 1 distinct from 0.

Next, we formally introduce the notions of standard and non-standard elements.

Definition 6.31. We call x :M standard if there is n : N with x = n and non-standard
otherwise. We callM standard, writtenM' N , if all x :M are standard.

Although these notions are in general not decidable, by the supposed discreteness of
M we observe that standardness is enumerable and therefore stable when assuming MP.

Fact 6.32. Assuming MP, the property of an element x : M to be standard is stable.
Especially, the propertyM' N ofM itself to be standard is stable.

Proof. By definition, x is standard if ∃n. x = n which follows to be standard immediately
from applying MP to the assumed equality decider of M. Now assume ¬¬M ' N , to
showM' N we need to show an arbitrary x to be standard. By the first claim we may
exploit stability, so we assume that x is non-standard and need to show a contradiction.
But given the negative goal we can now positively assume M ' N , contradicting the
assumption that x were non-standard.

All proofs of Tennenbaum’s theorem we will consider share two conflicting ideas: in non-
standard models one can encode infinite predicates using divisibility while in computable
models divisibility is decidable. Thus a computable non-standard model would give rise
to decision procedures for suitable undecidable problems and by the previous fact, from
such a contradiction we can deriveM' N .
Regarding the first idea, we begin by studying how bounded predicates can be encoded

in arbitrary models, exploiting divisibility (c.f. [222, Section 5]). The intuition is that a
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6.3. Tennenbaum’s Theorem

predicate P : N → P up to a bound n can be represented as the product e of all prime
numbers πk with k < n and P n, since then P k ↔ πk | e holds. Since here P need not
be decidable, on constructing the product e we cannot single out the k with P k and
therefore obtain the result constructively only up to a leading double negation.

Lemma 6.33 (Finite Coding). For every P : N → P and bound n : N there potentially
exists some number e : N encoding P up to n, i.e. satisfying ∀k < n. P k ↔M � πk | e.

Proof. We show a slightly stronger claim by induction on n:

¬¬∃e : N.∀k : N. (k < n→ (P k ↔M � πk | e)) ∧ (M � πk | e→ k < n)

In the case n = 0 we can simply instantiate e with 1. In the successor case n+ 1, we first
exploit the negative goal to make a case distinction P n ∨ ¬P n. To obtain an encoding
up to n+ 1, in the case P n we multiply πn to e obtained by the inductive hypothesis as
encoding up to n and in the case ¬P n we simply keep e.

That this coding procedure can be extended in non-standard models to possibly infi-
nite predicates follows from a general phenomenon called overspill, discovered by Robin-
son [115, pp. 70ff.]. It states that any formula ϕ(x) satisfied by all numerals n must also
be satisfied by some non-standard element.

Fact 6.34 (Overspill). Given some formula ϕ(x), ifM 6' N andM � ϕ(n) for all n : N,
then not all x :M withM � ϕ(x) are standard. Thus in particular assuming MP, there
potentially exists a non-standard element x :M withM � ϕ(x).

Proof. Under the given assumptions, assume that all x :M withM � ϕ(x) are standard.
By the first-order induction scheme for the instance ϕ we can showM � ∀̇x. ϕ(x) since
M � ϕ(0) is given and whenever M � ϕ(x) for some x : M we obtain n with x = n
and thereforeM � ϕ(S x) since S x = n+ 1. But then having shownM � ∀̇x. ϕ(x) we
obtain exactly that all x :M are standard as desired from the assumption.
For the second claim assume there would not exist a non-standard element x :M with
M � ϕ(x), then in fact we could deduce that all x : M withM � ϕ(x) were standard,
employing the stability of standardness provided MP (Fact 6.32).

Note that overspill in particular implies that no formula ϕ(x) can exactly describe
the standard numbers. This phenomenon can be exploited to extend the encodings of
a predicate P up to a standard bound n to some non-standard bound x, which then
necessarily exhausts all of P . We here only give the rather simple proof for decidable P
as needed in Theorem 6.39, a more general form will be used in Theorem 6.40.

Lemma 6.35 (Infinite Coding). Assuming MP and M 6' N , then for every decidable
P : N→ P there potentially exists e :M encoding P , i.e. satisfying ∀n. P n↔M � πn | e.

Proof. Let ϕ(x) strongly Σ1-represent P as justified by Fact 6.30. Rephrasing the finite
coding lemma (Lemma 6.33) withinM, we then obtain:

∀n : N.M � ¬̇¬̇(∃̇e. ∀̇u < n. ϕ(u) ↔̇ Π(u) | e)

But then using overspill (Fact 6.34) there potentially exists some non-standard x with:

∀n : N.M � ¬̇¬̇(∃̇e. ∀̇u < x. ϕ(u) ↔̇ Π(u) | e)

But since for every n we have n < x this means that there potentially is some e exactly
encoding ϕ(n) and therefore P n.
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6. Synthetic Incompleteness

We now move to the second idea regarding decidability of divisibility. At the heart of
this decision procedure is the Euclidean algorithm, computing a divisor and remainder
for the division operation x/y. This algorithm familiar from N can indeed be performed
in any modelM of PA, at least in propositional form claiming the unique existence of a
result.

Lemma 6.36 (Euclid). Given x, y :M there are unique d, r :M such that

x = d× y + r and 0 < d→ r < y,

i.e. denoting the divisor and remainder of the operation to divide x by y.

Proof. By replaying the usual proof by induction on x withinM.

If M provides the means to extract the Euclidean algorithm as an actual function,
divisibility can be decided by checking whether the computed remainder is zero. We here
only state the sufficient condition whereM is enumerable, but any model over a domain
admitting guarded linear search (Fact 2.6) would work.

Definition 6.37. We callM Euclidean if the predicate λnx.M � n | x is decidable.

Fact 6.38. IfM is enumerable, then it is Euclidean.

Proof. Given n : N and x :M, the Euclidean lemma yields d, r :M with x = d× n+ r.
SinceM is enumerable and discrete, d and r can actually be computed by linear search
and to decide whether or notM � n | x it suffices to check whether or not r = 0.

With the two ideas in place, we now give the first proof of Tennenbaum’s theorem based
on direct diagonalisation as outlined in the textbook by Boolos, Burgess, and Jeffrey.

Theorem 6.39 (Tennenbaum [22]). Assuming MP, ifM is enumerable thenM' N .

Proof. If M is enumerable, we can in particular assume a surjection g : N → M. To
show M ' N , by Fact 6.32 it suffices to suppose M 6' N and derive a contradiction.
We observe that the predicate P n := M 6� πn | g n is decidable by Fact 6.38, hence
Lemma 6.35 potentially yields some e : M with ∀n. P n ↔ M � πn | e. Now given
the negative goal we obtain e positively and given that g is surjective we obtain k with
g k = e. But then

M 6� πk | g k
def⇔ P k

6.35⇔ M � πk | g k

yields the desired contradiction.

Note that obviously fromM' N one obtains thatM is enumerable, so this condition
is strict. We next give a proof based on recursively inseparable sets following Kaye [116],
where we employ the seemingly weaker requirement thatM is Euclidean.

Theorem 6.40 (Tennenbaum [116]). Assuming MP, ifM is Euclidean thenM' N .

Proof. As in the previous proof, by Fact 6.32 it suffices to supposeM 6' N and derive
a contradiction. Now let ∃̇x. ϕ(n, x) and ∃̇x. ψ(n, x) weakly Σ1-represent the enumerable
but recursively inseparable predicates K1

Θ and K0
Θ, i.e. we particularly assume ϕ and ψ

to be ∆1-formulas. Since K1
Θ and K0

Θ are disjoint and since the involved formulas are Σ1,
we know that for every natural bound n : N the disjointness is recognised inside ofM:

M � ∀̇x < n, x′ < n, k < n. ¬̇(ϕ(k, x)∧̇ψ(k, x′))
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But then using overspill (Fact 6.34) there (potentially) exists some non-standard y with

M � ∀̇x < y, x′ < y, k < y. ¬̇(ϕ(k, x)∧̇ψ(k, x′))

and we can define the predicate P n :=M � ∃̇x < y. ϕ(n, x). We derive a contradiction
by showing that P separates K1

Θ and K0
Θ while being decidable, in conflict with Fact 6.13:

• K1
Θ ⊆ P : assuming K1

Θ n, then by the assumed representability property there is
some standard x withM � ϕ(n, x). Since y is non-standard and therefore greater
than all standard elements, we can also deriveM � x < y.

• K0
Θ ⊆ P : assuming K0

Θ n we obtain M � ∃̇x′ < y. ψ(n, x′) similar as above, but
further assuming P n we also haveM � ∃̇x < y. ϕ(n, x). Together, these contradict
the disjointness of ϕ and ψ up to y recognised byM.

• P decidable: by a more general version of the infinite coding lemma (Lemma 6.35)
we (potentially) obtain e : M encoding P , i.e. satisfying ∀n. P n ↔ M � πn | e.
SinceM is assumed to be Euclidean, we therefore obtain the decidability of P .

Note that again the used requirement is strict, so if M ' N we in particular obtain
thatM is Eucledian, thus this condition and the enumerability required in Theorem 6.39
are actually equivalent in the presence of MP.
A third variant of the proof without any visible condition can be given in the fully

constructive setting studied by McCarty [176]. In his setting, there is no actual difference
between a disjunction and a computational decision, which we can simulate by assuming
the axiom of unique choice, or, more conservatively, by adjusting the Tarski satisfaction
relation to a variantM 
� ϕ where disjunction is interpreted by the sum type (and also
existential quantification by the dependent sum type). Now we do not even require M
to be discrete any more as this is induced by the computational reading of disjunction.

Theorem 6.41 (Tennenbaum [176]). Assuming MP, ifM 
� HA thenM' N .

Proof. IfM 
� HA, then it follows thatM is discrete and Euclidean as for every formula
ϕ(x, y) such thatM � ∀̇xy. ϕ(x, y)∨̇¬̇ϕ(x, y) one obtains a decider for λxy.M � ϕ(x, y).
For ϕ(x, y) := x ≡ y this yields discreteness and for ϕ(x, y) := x | y this yields thatM
is Euclidean. ThusM' N follows from Theorem 6.40.

We close this section with an informal explanation of the connections between Tennen-
baum’s theorem and incompleteness from two perspectives, relying on results that have
not been treated formally in this thesis.
First, as noted by Kaye [116], Tennenbaum’s theorem yields a model-theoretic strategy

to establish an anonymous form of essential incompleteness of PA, i.e. without an explicit
independent sentence. Indeed, assuming there were a complete but consistent extension
A of PA, then with the usual argument (Fact 6.4) we obtain that A` is decidable. In the
weak computational incompleteness proof (Theorem 6.16) we observed next that therefore
H10 would be decidable as it is weakly represented by PA, provided that A is still sound.
Using Tennenbaum’s theorem, the soundness requirement can be lifted by applying the
model-existence theorem to A (cf. Theorem 4.2 but for the full syntax required for PA) to
obtain a modelM � PA. NowM would be computable, since the syntactic interpretation
is obviously computable, and discrete since the decidability of A` is preserved during the
extension steps for quantifier-free formulas. But then also Σ1-formulas ∃x. ϕ(x) must be
decided inM since they are equivalent to the quantifier-free formulas ϕ(xc) where xc is
the added Henkin constant for ϕ(x). This means that M must be non-standard, since
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the standard model cannot decide Σ1-formulas (see Section 5.7), thus by Tennenbaum’s
theorem the assumption of the axiomatisation A being complete can be refuted.
Secondly, McCarty [176] suggests another sense in which Tennenbaum’s theorem in-

duces incompleteness, namely in the sense of Chapter 4 that not all formulas valid in the
constructive semantics 
� ϕ can be syntacticly derivable. The reason is that Theorem 6.41
imposes no further condition on the model M, therefore showing HA categorical in the
sense that all modelsM 
� HA are standard, i.e. behave exactly like N . But since N for
instance validates the formula Con(HA) formalising the consistency of HA and therefore
HA 
� Con(HA), completeness fails as HA 6` Con(HA) would follow from Gödel’s second
incompleteness theorem. In Section 7.2 we will see that second-order logic is another
formalism where both notions of incompleteness coincide due to categoricity.

6.4. Discussion and Related Work
Variants of Gödel’s incompleteness theorems The Gödel-Rosser approach to incom-
pleteness was developed in the 1930s, primarily by Gödel [75] and Rosser [209]. Kleene
presented his approach to incompleteness prominently in both of his books [134, 135], as
well as multiple papers [131, 132, 133, 134, 135]. Turing mentioned similar ideas to show
incompleteness in his seminal paper on the Entscheidungsproblem [253].
Different proofs of Gödel’s first incompleteness theorem, among some abstract ones,

have been considered by Beklemishev [16], Smullyan [228], as well as Popescu and Tray-
tel [198]. Our approach especially shares similarities with the former two, as they also
consider Kleene’s computational proofs in an abstract setting, while the latter approach
is mechanised but based on the Gödel-Rosser strategy. Another computational account
of Gödel’s incompleteness theorem was anticipated independently by Post [199].

Chuch’s thesis in CIC The basic principles of synthetic computability theory [206, 11]
were first applied to CIC by Forster et al. [60]. An investigation of Church’s thesis [141,
143, 252] to enhance the expressivity and applicability of synthetic computability theory
in CIC was conducted by Forster [56, 58, 57]. Note that Forster uses an abstract interface
for partial functions which can be instantiated with our representation (Definition 2.10).
Moreoever, the obtained framework was used to mechanise various incompleteness results
for several decision problems [65], including the solvability of Diophantine equations [153].

Mechanisations of Gödel’s incompleteness theorems The earliest mechanisation of
Gödel’s first incompleteness theorem was developed by Shankar in 1994 [216] using
Nqthm [24], also called the Boyer-Moore theorem prover, a proof assistant implemented
in Lisp. Shankar does not mechanise incompleteness of arithmetic, but of a finite set
theory, which simplifies encoding recursive structures, such as formulas and proofs, im-
mensely. His development consists of around 20 000 lines of code. A mechanisation of
incompleteness of first-order arithmetic, based on an axiomatisation similar to Robinson
arithmetic, was first developed by O’Connor in 2005 [185] using Coq, consisting of almost
44 000 lines of code. Another mechanisation of incompleteness of arithmetic using HOL
Light [85] was developed by Harrison in 2009 [86].
More recently, both of Gödel’s incompleteness theorems were mechanised by Paulson

in 2014 [190] in around 12 000 lines of Isabelle [181] code. He showed incompleteness of
a finite set theory slightly different from the one used by Shankar. To our knowledge, he
was the first to give a complete mechanisation of Gödel’s second incompleteness theorem,
relying on a proof by Swierczkowski [243]. Also using Isabelle, Popescu and Traytel [197,
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198] in 2019 mechanised both incompleteness theorems using the Gödel-Rosser approach
abstractly, based on a much more subtle notion of formal systems than ours, additionally
incorporating substitutions, soundness, arithmetic, and more.
None of the mechanisations mentioned above used Kleene’s approach to incomplete-

ness, let alone a synthetic approach to computability arguments. However, for example
O’Connor used the representability of primitive recursive functions to show weak repre-
sentability of first-order provability, similar to Gödel’s original proof.

Tennenbaum’s Theorem Classical proofs of Tennenbaum’s theorem can be found in [22,
222, 116]. There are further refinements of the theorem which show that computability of
either arithmetical operation suffices [173] as well as a weaker induction scheme [265, 36].
Constructive accounts were given by McCarty [175, 176], Plisko [196], as well as van den
Berg and van Oosten [256]. A relatively recent investigation into Tennenbaum phenom-
ena with a focus on the computational role of interpreted equality was conducted by
Godziszewski and Hamkins [244].
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We end the first part of this thesis with a chapter illustrating that the methods and
techniques investigated for the completeness, undecidability, and incompleteness of first-
order logic are general enough to apply to related formalisms. Concretely, for each of the
previous three chapters we derive similar results for one other logic, respectively. By this
structure, this chapter will have a more overview-like character than the previous ones.
Proceeding in backwards order, we first show how considerations about incomplete-

ness discussed in Chapter 6 apply to the case of second-order logic [217, 258]. Here
the phenomenon of categoricity already touched in Section 6.3 will play an important
role, connecting two aspects of incompleteness. Next, we consider the undecidability of
separation logic [205, 110] using the synthetic approach exploited in Chapter 5. Being a
programming logic of assertions about finite data structures, it is a classic result that sep-
aration logic can be shown undecidable by reduction from finite satisfiability (Section 5.4).
Finally, with intuitionistic epistemic logic we study an example of a propositional modal
logic admitting completeness with respect to finite contexts fully constructively, while
completeness with respect to infinite contexts is subject to the same non-constructive
assumptions as analysed in Chapter 4. This particular logic, corresponding to the trun-
cation operation in constructive type theory, is interpreted in a form of Kripke models
(cf. Section 4.3) but we expect that several observations concerning intermediate results
apply to the completeness analysis of a general class of logics, including first-order logic.
The main purpose of these case studies is to emphasise that, although the previous

chapters were focused on first-order logic, the discussed methods and techniques are of
higher generality. Following the same principles, we expect that many further formalisms
could be fruitfully scrutinised with the constructive lens offered by formalisation in con-
structive type theory and feasibly mechanised using the Coq proof assistant.
Outline Section 7.1 is concerned with the synthetic incompleteness of second-order logic,
Section 7.2 with the synthetic undecidability of separation logic, and Section 7.3 with the
constructive completeness of intuitionistic epistemic logic.
Sources The first section reports results of a paper with Mark Koch [137] following up
on his Bachelor’s project [136]. The second section largely consists of Section 7 of a paper
with Dominique Larchey-Wendling [151], reusing text mostly written by the author of
this thesis. The third section is in parts based on a paper with Christian Hagemeier [81]
and its journal version [80], following up on his Bachelor’s project [79]. The results up to
Theorem 7.24 are from the paper and the remainder is new material.
Contributions The main contributions of this chapter are the technically involved mech-
anisation of second-order logic and the concrete incompleteness proof exploiting the un-
decidability of H10, the mechanisation of the undecidability of separation logic, as well as
the constructive development of the meta-theory of intuitionistic epistemic logic. On top
of the collaborative work on the respective projects, contributions made by the author
of this thesis are the overall approach to the mechanisation of second-order logic and its
incompleteness results, the mechanisation of the undecidability of separation logic, as well
as the strategy to obtain constructive finitary completeness for intuitionistic epistemic
logic and the observations following Theorem 7.24.
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7.1. Synthetic Incompleteness of Second-Order Logic
Extending first-order logic with quantifiers for predicates, second-order logic is a close syn-
tactic relative of the former. However, its meta-theory is of strikingly different character:
by the strength of second-order quantification, infinite structures like the natural numbers
can be uniquely axiomatised, a property usually called categoricity. As a consequence of
categoricity, the properties of completeness, compactness, and the Löwenheim-Skolem
theorems so central to the meta-theory of first-order logic must fail for the second-
order case. For a general introduction into second-order logic, we refer to Shapiro’s
textbook [217] and for further conceptual discussion of its properties to the work of
Väänänen [258, 259, 260].
Reporting on the main results of the publication [137], in this section we shall study

incompleteness theorems concerned with second-order logic, mostly in the sense of Chap-
ter 4 rather than Chapter 6. That means we not only encounter incompleteness in the
form of deductively independent sentences but even of underivable though valid sentences,
violating the completeness theorem. As a by-product, we will also obtain undecidability
results similar to the ones of first-order logic established in Chapter 5.
We begin by extending the representation of first-order logic in CIC described in Chap-

ter 3 to second-order logic, i.e. we add second-order variables and quantifiers to the syntax
over a fixed signature Σ = (FΣ;PΣ), to the deduction system, and to the model-theoretic
semantics, culminating in an axiomatisation of second-order Peano arithmetic.

Definition 7.1. The syntax F2 of second-order formulas extends F as follows:

ϕ : F2 := . . . | P k
n
~t | ∀̇kϕ | ∃̇kϕ (k, n : N,~t : Tk)

P k
n denotes the k-ary predicate variable with de Bruijn index n, hence ∀̇k and ∃̇k bind P k

0 .
By Pk we denote the type of predicate variables P k

n and symbols P : PΣ with |P | = k.

This representation is stratified in the sense that we explicitly annotate arities to predi-
cate variables and quantifiers, simplifying the de Bruijn setup of binding and substitution
a bit. Still, especially on mechanisation level, the treatment of predicate variables of ar-
bitrary arities is quite involved, for instance since every operation needs to discriminate
on the arity first, introducing many case distinctions that need to be handled.
Also note that some formulations of second-order logic include function variables and

function quantifiers, however they are more subtle to treat in our setting and the extension
with predicates suffices for the purposes of this chapter (see the paper [137] for such an
extended representation and a discussion of the involved subtleties).
As base for the upcoming results, we observe that F2 is computationally well-behaved:

Fact 7.2. F2 is discrete and enumerable.

Proof. Using the standard techniques discussed in [60].

Matching the stratified syntax, we extend substitution (Definition 3.3) in a stratified
way, i.e. add an instantiation operation for every predicate arity k.

Definition 7.3. Instantiation ϕ[σ]k with a substitution σ : N→ Pk is defined by

(P k
n
~t )[σ]k := (σ n)~t (∇̇k ϕ)[σ]k := ∇̇k ϕ[P k

0 ;λn. ↑k(σ n)]k

(P l
n
~t )[σ]k := P l

n
~t (∇̇l ϕ)[σ]k := ∇̇l ϕ[σ]k (k 6= l)

in the relevant cases, the other connectives are just recursively traversed. In the top right
case of quantifiers of matching arity, ↑k denotes instantiation with the shift λn. P kn+1.
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A deduction system for second-order logic can be obtained by adding rules for the
second-order quantifiers. These rules are analogous to the rules for individual quantifiers
in their usage of shift substitutions to obtain a canonical free variable. More traditional
rules omitting the shifts but introducing freshness conditions as in Fact 3.9 can then be
derived by the same combination of weakening and substitutivity.
As is usual for a second-order deduction system, we also add a form of comprehension,

allowing the formation of predicates from formulas. We add this rule in fully arbitrary
form, while restricting comprehension to specific formula classes would yield a variety of
strictly weaker deduction systems [219].

Definition 7.4. The natural deduction systems are extended to F2 with the rules

↑kΓ ` ϕ
Γ ` ∀̇kϕ

AI2
Γ ` ∀̇kϕ

Γ ` ϕ[P ]k
AE2

Γ ` ϕ[P ]k

Γ ` ∃̇kϕ
EI2

Γ ` ∃̇kϕ ↑kΓ, ϕ `↑kψ
Γ ` ψ

EE2

handling the second-order quantifiers, as well as all instances of the comprehension axiom:

∃̇k.∀̇x1 . . . xk. P
k
0 (x1, . . . , xk)↔̇ ↑k ϕ

CO

Given T : F2 → P we write T ` ϕ if there exists a finite context Γ ⊆ T with Γ ` ϕ.

The deduction system is still computationally well-behaved as one would expect:

Fact 7.5. If a theory T : F2 → P is enumerable, then so is λϕ. T ` ϕ.

Proof. Again using the standard techniques discussed in [60].

Now regarding the canonical Tarski semantics, a notion of second-order satisfaction can
be given over the same structures as in the first-order case (Definition 3.13). It is only
necessary to track stratified assignments for the predicate variables, where we interpret
the second-order quantifiers as ranging over the full cartesian predicate space Dk → P
of the domain.

Definition 7.6. We fix some (first-order) modelM over a domain D and an (individual)
assignment ρi : N → D. Further given a predicate environment ρk : N → Dk → P for
every k : N, we extend the satisfaction relationM �ρ ϕ to F2 by

M �ρ P k
n
~t := ρk n (ρ̂i ~t ) M �ρ ∇̇k ϕ := ∇Q : Dk → P.M �P ;ρ ϕ

where ρ consists of ρi and all ρk and the extension P ; ρ refers to P ; ρk, leaving all other
assignments untouched. As before, we derive the semantic entailment relation T � ϕ.

As usual, soundness is a check for the interplay of syntactic and semantic entailment:

Fact 7.7 (Soundness). If T `i ϕ then T � ϕ and, assuming LEM, if T `c ϕ then T � ϕ.

Proof. Analogous to Fact 3.16. To show the comprehension axioms for a formula ϕ sound
in a modelM and environment ρ, the leading k-ary existential quantifier is instantiated
with the predicate Q~a :=M �~a;ρ ϕ and the remainder is straightforward.

Now that we have outlined the general representation of second-order logic in CIC,
we consider a prominent instantiation. The axiomatisation PA2 of second-order Peano
arithmetic consists of PA over the arithmetical signature as in Section 3.4, with the first-
order induction scheme replaced by a single second-order formula:

∀̇1P. P (O) →̇ (∀̇x. P (x) →̇P (S x)) →̇ ∀̇x. P (x)
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Note that second-order induction is still satisfied by the standard model N and that it
in particular implies all instances of the first-order scheme. That the second-order axiom
is strictly stronger is witnessed by the following characteristic property of PA2.

Fact 7.8 (Categoricity). For everyM � PA2 we haveM' N .

Proof. SinceM satisfies the second-order induction axiom, we can apply induction inter-
nally for every predicate Q : M→ P. We use Qx := ∃n : N. x = n to show that every
x :M is standard. For QOM we have OM = 0 by definition. Assuming Qx for some x
we obtain x = n for some n, hence we can show Q (SM x) since then SM x = n+ 1 by
definition.

Recall that the notionM' N introduced in Definition 6.31 establishes the operation
λn. n as a bijective homomorphism from N toM. Although the converse homomorphism
need not be computable in general, the observation M ' N suffices to show that both
models behave the same:

Corollary 7.9. For modelsM andM′ of PA2 we haveM � ϕ iffM′ � ϕ for all ϕ : F2.

Proof. By symmetry it suffices to consider the case whereM′ = N which we establish by
induction on the formula ϕ. For atomic formulas we first establish that evaluation of a
term t inM corresponds to the numeral of its respective evaluation in N . For composite
formulas the inductive hypotheses suffice for each claim, where in the case of quantifiers
the categoricity isomorphismM' N yields the necessary translation of individuals and
predicates between the models.

Now turning to incompleteness, first note that since PA2 encompasses PA, the instan-
tiation of the abstract (negation-)incompleteness results to PA relying on the axiom CTQ
as described in Section 6.2 extends to PA2. However, as in the light of essential incom-
pleteness (Theorem 6.14) it is unsurprising that even stronger systems are incomplete,
we here instead focus on the more distinctive lack of completeness in the semantic sense
of Chapter 4, i.e. the similarly well-known fact that second-order logic does not admit
a deduction system characterising the valid sentences (see for instance Shapiro’s text-
book [217]). As already mentioned in the case of Tennenbaum’s theorem (Section 6.3),
both notions of incompleteness are connected via categoricity, namely since axiomatisa-
tions with a single model have a completely determined (heavily ineffective) semantic
theory that the (effective) deduction-system necessarily fails to exhaust.
Here we begin with a simple proof that no deduction system for second-order logic can

be strongly complete, i.e. derive all validities with respect to an arbitrary theory. This
result can already be found in Tennant’s textbook [245], we just explicitly observe that
it even suffices to only consider decidable theories.

Theorem 7.10 (Failure of Decidable Completeness). For every sound second-order de-
duction system `2 there is a decidable theory T and a sentence ϕ with T � ϕ but T 6`2 ϕ.

Proof. We consider the decidable theory T comprising PA2 as well as the formulas x0 6≡ n
for all n : N. Exploiting categoricity, there cannot be a model M �ρ T over some
assignment ρ as then in particularM' N but ρ 0 cannot be standard as it is axiomatised
to differ from all numerals. Hence we obtain T � ⊥̇, but if it also were T 6`2 ϕ then in
particular Γ 6`2 ϕ for some finite Γ ⊆ T which can be refuted as N �ρ Γ for a choice of
ρ 0 large enough to be above all axioms x0 6≡ n contained in Γ.
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Given Fact 7.7, the observation of Theorem 7.10 yields incompleteness in particular
of our concrete deduction system defined in Definition 7.4. Remarkably, the result does
not even use the computational properties of deduction but solely relies on the built-in
compactness of the system that fails for the full second-order semantics. In contrast,
for the stronger incompleteness result relaxing the assumption to finite or even empty
contexts, such computational properties play a central role. In fact, it is instructive to
first consider undecidability results similar to the ones discussed in Section 5.7.

Theorem 7.11 (Undecidability). Given ϕ : F2, the following problems are undecidable:

1. N � ϕ

2. M � ϕ for allM � PA2

3. M � ϕ for someM � PA2

4. � ϕ

Proof. We reuse the reduction from H10 verified in Section 5.7.

1. The undecidability of N � ϕ follows from Facts 5.56 and 5.57, since together they
show that N � ϕp,q iff the Diophantine equation p = q has a solution.

2. Follows from the first claim and categoricity.

3. Again by the first claim and categoricity.

4. Follows from the second claim, given that PA2 hast only finitely many axioms.

Now the stronger failure of completeness regarding empty contexts, usually framed
as a consequence of Gödel’s incompleteness [217], can be obtained as a consequence of
undecidability. Since here we refrain from assuming an axiom like CTQ, we obtain the
result only up to the computational taboo that H10 must not be co-enumerable.

Theorem 7.12 (Failure of Finitary Completeness). If there exists a sound and enumer-
able deduction system `2 with `2 ϕ whenever � ϕ, then H10 is co-enumerable.

Proof. Assuming a deduction system `2 as specified, then in particular PA2 `2 ϕ iff
PA2 � ϕ, employing that PA2 is finitely axiomatised and can therefore be pushed to the
premises (cf. Facts 3.11 and 3.15). Since by categoricity PA2 � ϕ iff N � ϕ, we in particular
obtain that the latter is enumerable, given that we assume `2 to be enumerable. But
since N � ¬̇ϕp,q iff the Diophantine equation p = q is unsolvable (using the equivalence
established in the proof of the first claim of Theorem 7.11), we obtain indeed that H10 is
co-enumerable.

We conclude this section with the remark that more general versions of Theorem 7.11
for arbitrary signatures could be obtained from quantifying over the symbols necessary
to express arithmetic theories. However, this would require the extension to function
variables and quantifiers that we left out as explained above, so we refer to [137] for these
generalisations.
Also note that the failure of completeness can be located in the full semantics described

in Definition 7.6, where the quantifier interpretation ranges over all predicates on the
domain. So-called Henkin semantics is obtained if the quantifiers only range over a
variable class of predicates, a restriction that allows for more models and in fact admits
completeness [89]. In [137], the concrete deduction system of Definition 7.4 is shown
complete for Henkin semantics by a syntactic translation to (multi- and mono-sorted)
first-order logic followed by an application of the completeness result from Chapter 4.
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7.2. Synthetic Undecidability of Separation Logic
Trakhtenbrot’s theorem, which Section 5.4 was concerned with, can be used to establish
several negative results concerning first-order logic and other decision problems. Regard-
ing first-order logic, a direct consequence is that the completeness theorem fails in the
sense that no (enumerable) deduction system can capture finite validity, as this would turn
FSAT co-enumerable in contradiction to Corollary 5.34. Examples of decision problems
shown undecidable by simple reduction from FSAT are the finite satisfiability problem
in the first-order theory of graphs and problems such as query containment and query
equivalence in data base theory.
In this section based on the publication [124], we outline our adaptation of the unde-

cidability proof of separation logic given by Calcagno et al. [32] to our synthetic proof
of Trakhtenbrot’s theorem. Separation logic [205, 110] as an assertion language for finite
data structures bears an obvious connection to finitely interpreted first-order logic. In
particular the formulation in [32] adding pointers to binary heap cells (t 7→ t1, t2) to the
spatial operations ϕ ∗ ψ and ϕ −* ψ for separating conjunction and implication, as well
as emp for the emptiness assertion in extension of the pure first-order language, admits a
compact reduction from the FSAT2 problem over the binary signature (Section 5.5). For
the purpose of this section, we focus on the technical details concerning discreteness and
decidability induced by our particular approach and refer to Jung’s PhD thesis [112] for
a more comprehensive introduction to separation logic.
We represent the syntax of separation logic as an inductive type SL of formulas by

ϕ, ψ : SL ::= (t 7→ t1, t2) | emp | ϕ ∗ ψ | ϕ−* ψ | t1 ≡ t2 | ⊥̇ | ϕ �̇ ψ | ∇̇ϕ (t : O(N))

with �̇ ∈ {→̇, ∧̇, ∨̇} and ∇̇ ∈ {∀̇, ∃̇} as in F and isolate a minimal fragment MSL by

ϕ, ψ : MSL ::= (t ↪→ t1, t2) | ⊥̇ | ϕ �̇ ψ | ∇̇ϕ (t : O(N)).

Informally, the assertions expressed by SL and MSL are interpreted over a memory
model consisting of a finite heap addressing binary cells and a stack mapping variables
to addresses. The first-order fragment is interpreted as expected, where quantification
ranges over addresses. The pointer (t 7→ t1, t2) is interpreted strictly as the assertion that
the heap consists of a single cell containing the pair denoted by t1 and t2 referenced at t,
while (t ↪→ t1, t2) just asserts that the heap contains such a pair.
Definition 7.13. Given a stack s : N → V mapping variables to possibly invalid ad-
dresses V := O(N) and a heap h : L(N× (V× V)) representing a finite map of valid
addresses to pairs of addresses, we define the satisfaction relation h �s ϕ for ϕ : SL by
h �s (t 7→ t1, t2) := ∃a. ŝ t = paq ∧ h = [(a, (ŝ t1, ŝ t2))] h �s t1 ≡ t2 := ŝ t1 = ŝ t2

h �s emp := h = [ ] h �s ⊥̇ := ⊥
h �s ϕ ∗ ψ := ∃h1h2. h ≈ h1++h2 ∧ h1 �s ϕ ∧ h2 �s ψ h �s ϕ �̇ ψ := h �s ϕ � h �s ψ

h �s ϕ−* ψ := ∀h′. h#h′ → h′ �s ϕ → h++h′ �s ψ h �s ∇̇ϕ := ∇v : V. h �v·s ϕ

where ŝ pxq := s x and ŝ ∅ := ∅, where h ≈ h′ denotes equivalence ∀a p. (a, p) ∈ h ↔ (a, p) ∈ h
and h#h′ denotes disjointness ¬∃a p p′. (a, p) ∈ h ∧ (a, p′) ∈ h′, and where for the first-order
fragment each logical connective �̇/∇̇ is mapped to its meta-level counterpart �/∇.

For ϕ : MSL the relation h �s ϕ is obtained by the same rules with additionally

h �s (t ↪→ t1, t2) := ∃a. ŝ t = paq ∧ (a, (ŝ t1, ŝ t2)) ∈ h

and we define the satisfiability problem SLSAT (MSLSAT) on ϕ : SL (ϕ : MSL) as the existence
of a stack s and a functional heap h (i.e. ∀app′. (a, p) ∈ h→ (a, p′) ∈ h→ p = p′) with h �s ϕ.
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7.2. Synthetic Undecidability of Separation Logic

The outline of the following reduction is to first establish FSAT2 � MSLSAT to empha-
sise that already the fragment MSL is undecidable and then continue with MSLSAT �
SLSAT by a mere syntax embedding. The idea for the main reduction is to encode the
binary relation P [x; y] : F on the heap by (a ↪→ x, y) : MSL at some address a while
tracking the domain elements x via empty cells (x ↪→ ∅, ∅).
Formally, we translate first-order formulas ϕ : F over the binary signature (0;P ) to

formulas ϕ : MSL in the sufficiently expressive fragment of separation logic by

P [x; y] := (∃̇z. (pzq ↪→ pxq, pyq)) ∧̇ (pxq ↪→ ∅, ∅) ∧̇ (pyq ↪→ ∅, ∅)

∀̇x. ϕ := ∀̇x. (pxq ↪→ ∅, ∅) →̇ ϕ ∃̇x. ϕ := ∃̇x. (pxq ↪→ ∅, ∅) ∧̇ ϕ

and by recursively descending through the remaining logical operations. The next two
lemmas verify the correctness of the reduction function.

Lemma 7.14. Given a modelM over a discrete listable domain D coming with decidable
predicate interpretation PM : D → D → P, one can compute a functional heap h and
from every environment ρ : N→ D a stack sρ such thatM �ρ ϕ iff h �sρ ϕ for all ρ.

Proof. Let fP denote the decider for PM and let lD denote the list exhausting D, which
by discreteness ofD may be assumed to be free of duplicates. We encode domain elements
d : D as natural numbers by the unique index nd < | lD | at which d occurs in lD and pairs
(d, e) : D ×D as numbers nd,e ≥ | lD | by nd,e := π(nd, ne) + | lD | employing an injective
pairing function π : (N × N) → N. We then construct a heap h encoding both the full
domain D and the binary relation PM by

h := [(nd, (∅, ∅)) | d ∈ lD] ++ [(nd,e, (pndq, pneq)) | fP d e = tt]

which is functional by the injectivity of the encodings nd and nd,e that are taken care not
to overlap by the addition of | lD | in the definition of nd,e.
Given an environment ρ, we convert it to a stack sρ x := pnρ xq and prove the claimed

equivalence by induction on ϕ with ρ generalised. We only discuss the case ϕ = P [x; y].
Assuming M �ρ P [x; y] we have PM[d; e] and so fP d e = tt for d := ρ x and e :=
ρ y. Therefore (nd,e, (pndq, pneq)) ∈ h. Since by construction also (nd, (∅, ∅)) ∈ h and
(ne, (∅, ∅)) ∈ h, we can conclude h �sρ P [x; y]. Conversely, given h �sρ P [x; y], we know
that (a, (pndq, pneq)) ∈ h at some address a and hence can deduce that fP d e = tt. Thus
M �ρ P [x; y].

The converse transformation extracts a finite first-order model from a heap.

Lemma 7.15. Given a heap h containing at least one element of the form (a0, (∅, ∅)),
one can compute a decidable model M over a discrete and listable domain D and from
every stack s an environment ρs : N → D such that M �ρs ϕ iff h �s ϕ for all stacks s
that satisfy the condition ∀x ∈ FV(ϕ).∃a. s x = paq ∧ (a, (∅, ∅)) ∈ h.

Proof. As domain D we take the type of all addresses a such that (a, (∅, ∅)) ∈ h, formally
defined as D := {a | (a, (∅, ∅)) ∈ h} using the Boolean counterpart of list membership
for unicity of proofs. By this construction, elements a and a′ of D are equal iff they are
equal as addresses in N and so D is discrete and, since it is bounded by h, also listable.
To turn D into a modelM, we set

PM[a1; a2] := ∃a. (a, (pa1q, pa2q)) ∈ h

which is decidable since it expresses a bounded quantification over a list.
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7. Similar Results for Related Logics

Given the dummy element a0 of D, we can convert a stack s into an environment ρs
mapping x to a if s x = paq with (a, (∅, ∅)) ∈ h, and to a0 in any other case. With these
constructions in place, the claim is established by induction on ϕ with s generalised,
we again just discuss the case ϕ = P [x; y]. First suppose M �ρs P [x; y], then since
x, y ∈ FV(P [x; y]) we know that ρs is well-defined on x, y by the condition on s and obtain
corresponding a1, a2 : D. From PM[a1; a2] we obtain a with (a, (pa1q, pa2q)) ∈ h and
therefore conclude h �s P [x; y]. Conversely, starting with h �s P [x; y] straightforwardly
yieldsM �ρs P [x; y].

Since Lemma 7.14 requires discreteness of the domain and Lemma 7.15 imposes a
condition on the free variables of the input first-order formula, it is convenient to start
from a refinement FSAT2

dc of FSAT2 to discrete domains and closed formulas. Fortunately,
these additional conditions can be easily observed for the reduction UDPC � FSAT2 given
in Section 5.5. Alternatively, one could give a direct reduction FSAT2 � FSAT2

dc which
in the case of discreteness would however require much more machinery (cf. [124]). The
following theorem then summarises the three parts comprising the overall reduction chain
UDPC � SLSAT establishing the undecidability of separation logic:

Theorem 7.16. We have reductions as follows:

1. UDPC � FSAT2
dc

2. FSAT2
dc � MSLSAT

3. MSLSAT � SLSAT

Proof. We establish each reduction separately.

1. By observing that the reduction UDPC � FSAT2 given in Theorem 5.43 produces
closed formulas and was verified over a discrete standard model.

2. Given a closed formula ϕ over the binary signature, we define ϕ′ : MSL by

ϕ′ := (∃̇ (p0q ↪→ ∅, ∅)) ∧̇ ϕ

and show that ϕ has a finite and discrete model iff ϕ′ is MSL-satisfiable.
First, ifM �ρ ϕ over a listable and discrete domain D, we can apply Lemma 7.14
to obtain h �sρ ϕ. Moreover, D at least contains the element d := ρ 0 and hence
by construction of h we have (nd, (∅, ∅)) ∈ h, establishing the guard ∃̇ (p0q ↪→ ∅, ∅).
So in total h �sρ ϕ′.
Secondly, from h �s ϕ′ we obtain h �s ϕ and some a0 with (a0, (∅, ∅)) ∈ h. Since ϕ is
closed, the condition in Lemma 7.15 holds vacuously and thus we obtainM �ρs ϕ.

3. We embed MSL into SL by the map sending the sole deviating assertion (t ↪→ t1, t2)
to (t 7→ t1, t2)∗>̇ where >̇ := ⊥̇→̇⊥̇. To verify this reduction, it suffices to establish
that h �s (t ↪→ t1, t2) iff h �s (t 7→ t1, t2) ∗ >̇, which follows by straightforward list
manipulation.

Corollary 7.17. FSAT2 reduces to SLSAT, therefore SLSAT is undecidable.

Proof. By composing the three parts of Theorem 7.16 with Theorem 5.43.
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7.3. Constructive Completeness of Intuitionistic Epistemic Logic

In comparison to Calcagno et al. [32], our reduction is formulated for satisfiability
problems instead of the dual validity problems. However, this change is inessential since
the models are transformed pointwise as visible in Lemma 7.14 and Lemma 7.15 and
so the only consequence is a flipped quantifier in the proof of (2) of Theorem 7.16.
More importantly, the formal setting forced us to be more explicit about the handling
of addresses, in particular the encoding of a given finite first-order interpretation. For
instance, the way chosen in Lemma 7.14 to start with an abstract domain D and encode
both elements and pairs over D as numbers is not the only alternative but allowed us
to maintain the explicit representation of the address space as N. Moreover, our syntax
fragments differ slightly since we do not need equality in MSL as it is not a primitive in
F but on the other hand keep all logical connectives and not just the classically sufficient
negative connectives as this is (in the general case) constructively insufficient.
We end this section with the remark that the reduction given in [32] and adapted here

crucially relies on the binary pointers (t 7→ t1, t2) as a language primitive. As discussed
in [28], with a less explicit memory structure, the considered fragment of separation logic
is decidable and only turns undecidable on addition of separating implication ϕ−* ψ.

7.3. Constructive Completeness of Intuitionistic Epistemic Logic

Intuitionistic epistemic logic (IEL), introduced by Artemov and Protopopescu [8], is a
relatively recent formalism modelling an intuitionistic conception of knowledge. While
classical epistemic logics [97, 203] typically include the reflection principle �A→ A, read
as “known propositions must be true”, IEL is based on the co-reflection principle A →
�A, read as “from the presence of proofs we can gain knowledge by verification”. This
striking disagreement is explained by the divergent notions of truth: while a proposition
is determined classically true by its binary truth value, it is considered intuitionistically
true if an (intuitionistic) proof in the computational Brouwer-Heyting-Kolmogorov (BHK)
interpretation has been constructed. While the sole addition of co-reflection and the
distribution rule (�(A → B) → �A → �B) to intuitionistic propositional logic results
in the logic of intuitionistic belief (IEL−), Artemov and Protopopescu propose the further
addition of intuitionistic reflection �A→ ¬¬A for IEL. This principle reestablishes, up to
a double negation, the factivity of truth classically expressed by reflection, and therefore
places intuitionistic knowledge as a modality between intuitionistic and classical truth. In
this sense IEL is closely related to the propositional truncation operation ||X|| for types
in CIC, which is governed by the same principles.
Complementing the philosophical arguments for (and against) IEL, the original pa-

per [8] already contains several technical results such as soundness and completeness
with respect to a suitable Kripke semantics, as well as derived observations concerning
the disjunction property and admissibility of reflection. This formal investigation has
been carried on by Su and Sano [239, 238] with proofs of the finite model property and
semantic cut-elimination, and by Krupski [148] with proofs of syntactic cut-elimination
and decidability. However, especially the arguments for completeness relying on the
Lindenbaum construction manifestly employ classical logic, which left the state of the
meta-theory of IEL unsatisfactory: while the formalism itself successfully embraces in-
tuitionistic principles to tackle classical knowability paradoxes, as already explained by
the inventors [8], no visible attempts are made to describe its semantics in constructive
terms.
In this section based on the publication [81, 80], we contribute to a more satisfying

picture by developing all mentioned results in a purely constructive setting. Concretely,
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we illustrate that by preparing an argument for the finite model property along the lines of
Su and Sano by a syntactic decidability proof inspired by Smolka, Brown, and Dang [225,
43], completeness of IEL with respect to finite contexts can be obtained without appeal
to classical logic. Secondly, in the fashion of constructive reverse mathematics [109],
we show that completeness with respect to possibly infinite contexts as entailed by the
development in [8] is equivalent to the law of excluded middle LEM, while even the
restriction of completeness to enumerable contexts is still strong enough to imply Markov’s
principle MP, both observations following similar arguments as applicable to first-order
logic (Chapter 4). Finally, we conduct a more fine-graded analysis of intermediate results
like the Lindenbaum construction and observe connections to the weak exluded middle
(WLEM) and double-negation shift (DNS). Although we conduct these finer analyses with
respect to the exemplary case of IEL, we expect that the same observations hold for other
logics, thus in particular connecting back to Chapter 4.
As for all logics considered in this thesis, we begin by formalising the syntax, deduction

system, and semantics of IEL in CIC. The representation follows the same ideas and is
particularly simple, given that IEL is a propositional logic without binders.
Definition 7.18. The syntax F� of propositional modal logic is defined as follows:

ϕ, ψ : F� ::= ⊥̇ | Pn | ϕ→̇ψ | ϕ∧̇ψ | ϕ∨̇ψ | �ϕ (n : N)

We write ¬̇ϕ for ϕ→̇⊥̇ and consider � to bind stronger than the other connectives.
A natural deduction system can be defined by the usual propositional rules plus rules

for co-reflection, intuitionistic reflection, and distributivitiy of the knowledge modality.
Definition 7.19. The natural deduction system ` for IEL comprises the propositional
rules of `i together with the following rules handling the knowledge modality:

Γ ` ϕ
Γ ` �ϕ CR

Γ ` �ϕ
Γ ` ¬̇¬̇ϕ IR

Γ ` �(ϕ→̇ψ)
Γ ` �ϕ→̇�ψ D

Given T : F� → P we write T ` ϕ if there exists a finite context Γ ⊆ T with Γ ` ϕ.
The semantics is given by Kripke models with one accessibility relation � to handle

the intuitionistic connectives as in Section 4.3 and a further relation �� to handle the
epistemic modality.
Definition 7.20. A Kripke model K for IEL is a quadruple (W ,V ,�,��) such that:

• W is a type of worlds and V :W → N→ P a valuation function

• � is a preorder on W

• �� is a total relation on W

• �� is subsumed by �, i.e. w �� w′ implies w � w′

• �� is closed under � to the left, i.e. if w � u and u �� v, then w �� v

• V is monotonic regarding �, i.e. if Vwn and w � w′, then Vw′n
Given such a Kripke model K, we define the forcing relation w � ϕ by recursion:

w 
 Pn := Vwn w 
 ⊥̇ := ⊥
w 
 ϕ∧̇ψ := w 
 ϕ ∧ w 
 ψ w 
 ϕ→̇ψ := ∀w′ � w.w′ 
 ϕ→ w′ 
 ψ

w 
 ϕ∨̇ψ := w 
 ϕ ∨ w 
 ψ w 
 �ϕ := ∀w′ �� w.w′ 
 ϕ

We write T 
 ϕ if in all Kripke models w 
 T implies w 
 ϕ for all worlds w.
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7.3. Constructive Completeness of Intuitionistic Epistemic Logic

As usual, we establish soundness as a first sanity check for the previous definitions:

Fact 7.21 (Soundness). T ` ϕ implies T 
 ϕ.

Proof. As usual, we show by induction on the derivation that Γ ` ϕ implies Γ 
 ϕ, which
entails the more general claim. The propositional rules are treated exactly as in Fact 4.18,
relying on monotonicity of the forcing relation. For the (CR) rule, we assume Γ 
 ϕ and
need to show Γ 
 �ϕ, so we assume some K and w with w 
 Γ and w′ �� w and need
to show w′ 
 ϕ. By Γ 
 ϕ and w 
 Γ we obtain w 
 ϕ and since �� is subsumed by �,
we conclude w′ 
 ϕ by monotonicity. The remaining modal rules are similar, where (IR)
relies on the totality of �� and (D) on the closure of �� under �.

On the other hand, completeness of IEL in the strong form for arbitrary or even enumer-
able theories T cannot be established constructively, similar to the previous observations
regarding first-order logic (Theorems 4.5 and 4.31).

Fact 7.22. Completeness for arbitrary T implies LEM, respectively MP for enumerable T .

Proof. First note that T � ⊥̇ is stable since it is equivalent to the negative statement
that there is no model of T . Hence assuming completeness then also turns T ` ⊥̇ stable,
from which it is possible to derive the claimed logical principles for the respective classes
of theories.
Regarding LEM, we assume P : P and pick the theory T ϕ := P ∨¬P . Now ¬¬(T ` ⊥̇)

follows constructively from the constructively provable ¬¬(P ∨¬P ), so by the complete-
ness assumption we obtain T ` ⊥̇. By consistency, this means that T must have been
non-empty, so we obtain P ∨ ¬P as desired for LEM.
For MP, given a function f : N→ B with ¬¬(∃n. f n = tt) we do a similar trick for the

theory T containing the n-th formula of F� whenever f n = tt. This ultimately yields
an actual solution of f .

Therefore the completeness proof given in [8] is inherently classical and we follow
two strategies for a more constructive meta-theoretical analysis of IEL: first, we show
that exploiting the fact that IEL is decidable allows for a constructive completeness proof
regarding finite T , and secondly, we analyse which logical principles play a role for some of
the intermediate steps of the classical, fully general completeness result. The presentation
of the former will be rather brief as it relies on standard techniques and follows the overall
outline of the latter, which we will present in more detail to highlight several subtleties.
So starting with the decidability property, we basically follow the proof-theoretic results

by Krupski [148], formulated with the techniques of Smolka, Brown, and Dang [225, 43]
for a smooth mechanisation.

Fact 7.23 (Decidability). Given Γ and ϕ, it is decidable whether or not Γ ` ϕ.

Proof. One suitable way to establish decidability without employing completeness is by
showing Γ ` ϕ equivalent to a cut-free sequent calculus Γ ⇒ ϕ for IEL, as provided
by Krupski [148]. Given that such a cut-free sequent calculus satisfies the subformula
property, i.e. for a derivation Γ ⇒ ϕ only subformulas of Γ and ϕ occur, a standard
proof search algorithm exploring this finite subformula universe can be devised. This
algorithm is based on a fixed-point iteration and formally described by Smolka, Brown,
and Dang [225, 43]. Also see the publication [81] for more detail.

Decidability constructivises the usual universal Kripke model employed in the complete-
ness proof of intuitionistic logics (cf. Section 4.3).
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Theorem 7.24 (Finitary Completeness). Γ 
 ϕ implies Γ ` ϕ.

Proof. We assume Γ 
 ϕ and by decidability (Fact 7.23) we may also assume that Γ 6` ϕ
for a contradiction. By the standard argument given in more generality below (in partic-
ular Lemma 7.30), one can construct a separating model K and world w of K with w 
 Γ
but w 6
 ϕ, contradicting the assumption Γ 
 ϕ. In contrast to Lemma 7.30 this works
constructively in the finitary case only involving contexts Γ, as one can restrict against
the subformula universe as in the proof of Fact 7.23 and all classical case distinctions on
derivability are justified by decidability. Again, we refer to [81] for more detail.

Note that this proof is easily modified to work with the sequent calculus Γ ⇒ ϕ
for IEL, therefore yielding a semantic form of cut-elimination as similarly explained in
Section 4.3. Also, the constructed model K is finite as it is bounded by the subformula
universe of Γ and ϕ, establishing a form of the finite model property of IEL. Both these
observations have already been proven by Su and Sano [239, 238], however using classical
logic. Furthermore, we remark that all mentioned results can be obtained with the same
techniques for the closely related case of IEL− but also for standard classical modal logics
like K, D, and T [80].
We now take a closer look at the classical completeness proof, i.e. we try to pin down

which classical principles are necessary locally in some of the intermediate steps. For
this goal, a detailed presentation sensitive to constructive elements of the proof outline
is necessary, starting from the central notion of prime theories:

Definition 7.25 (Prime Theories). We call T prime if ϕ∨̇ψ ∈ T implies ϕ ∈ T ∨ ψ ∈ T .
Constructively weaker, we call T quasi-prime if ϕ∨̇ψ ∈ T just implies ¬¬(ϕ ∈ T ∨ψ ∈ T ).

Prime theories are needed to interpret disjunction in the universal model, therefore they
did not come up in the completeness proof for intuitionistic first-order logic restricted to
negative connectives as presented in Section 4.3. Moreover, compared to the proofs in
Section 4.3 we now also need a form of the constructive Lindenbaum extension similar to
the one given in Section 4.1 so that primeness can be guaranteed as an invariant.

Lemma 7.26 (Lindenbaum). Given T 6` ϕ, one can construct a deductively closed, quasi-
prime theory T ′ with T ′ 6` ϕ and stable membership, i.e. ψ ∈ T ′ whenever ¬¬(ψ ∈ T ′).

Proof. The proof is analogous to Lemma 4.1, i.e. we construct T ′ in stages Tn where we
start with T0 := T and Tn+1 adds the n-th formula to Tn, provided non-derivability of ϕ
is preserved. Here this single iteration suffices and no explosion or Henkin axioms need
to be added on top. Proving that T ′ obtained as the union of all Tn is deductively closed
and does not derive ϕ is then exactly as items (1) and (2) of Lemma 4.1.
Regarding quasi-primeness, suppose ψ∨̇ψ′ ∈ T ′ and ¬(ψ ∈ T ′ ∨ ψ′ ∈ T ′) in order to

derive a contradiction. Given the negative goal, we may do case distinction whether or
not ψ ∈ T ′ and ψ′ ∈ T ′. In the only non-trivial case we have both ψ 6∈ T ′ and ψ′ 6∈ T ′.
By the maximality of T ′, this means T ′, ψ ` ϕ and T ′, ψ′ ` ϕ but then by the rule (DE)
also T ′, ψ∨̇ψ′ ` ϕ This contradicts that given ψ∨̇ψ′ ∈ T ′ we already have T ′ 6` ϕ.
Lastly regarding stability, we suppose ¬¬(ψ ∈ T ′) and want to show ψ ∈ T ′, for which
T ′, ψ 6` ϕ would suffice. So we assume that T ′, ψ ` ϕ and use the negative goal to obtain
ψ ∈ T ′ from ¬¬(ψ ∈ T ′). But then T ′, ψ ` ϕ together with ψ ∈ T ′ yields T ′ ` ϕ.

We now define the universal model over theories providing enough properties for the
interpretation of formulas. The intuitionistic accessibility relation on such theories is
simple inclusion while the epistemic accessibility relation is provided by a projected form
of inclusion sensitive to the knowledge modality.
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Definition 7.27 (Universal Model). We define a universal model U = (W ,V ,�,��) by:

• W is the type of consistent, deductively closed, quasi-prime, and stable theories.

• V is the valuation defined by VTn := Pn ∈ Tn.

• � is the inclusion relation, i.e. T � T ′ := T ⊆ T ′.

• �� is the projected inclusion relation, i.e. T �� T ′ := ∀ϕ.�ϕ ∈ T → ϕ ∈ T ′.

All conditions but the totality of �� are straightforward to verify. For the latter, given T
one shows that T �� T ′� where T ′� is the Lindenbaum extension of the projected theory
T� containing ϕ whenever �ϕ ∈ T .

The goal is to show that a world T of U forces a formula ϕ exactly if ϕ ∈ T because
then U is a separating model in the situation T 6` ϕ. Showing this so-called truth lemma
in fully positive form requires the assumption of weak excluded middle (WLEM), stating
that ∀P : P.¬P ∨ ¬¬P . Note that this principle is a direct consequence of LEM and in
contrast to MP constructively still completely unacceptable. We can localise the actual
use of WLEM in the proof of the truth lemma with the following observation:

Fact 7.28. Assuming WLEM every stable, quasi-prime theory T is prime.

Proof. We assume WLEM and a quasi-prime theory T with ϕ∨̇ψ ∈ T . By quasi-primeness
we have ¬¬(ϕ ∈ T ∨ψ ∈ T ). Now we use WLEM on ϕ ∈ T , so either ϕ 6∈ T or ¬¬(ϕ ∈ T ).
In the former case we obtain ψ ∈ T by stability and ¬¬(ϕ ∈ T ∨ ψ ∈ T ), in the latter
case we directly obtain ϕ ∈ T by stability and ¬¬(ϕ ∈ T ).

Now the truth lemma can be proven with no further but this localised use of WLEM:

Lemma 7.29 (Truth Lemma). Assuming WLEM, then T 
 ϕ iff ϕ ∈ T over U .

Proof. By induction on ϕ with T quantified, the proof is routine up to the usage of
stability to establish ϕ ∈ T constructively. We consider the crucial cases of disjunction,
implication, and the modality:

• For disjunctions ϕ∨̇ψ we need to show T 
 ϕ ∨ T 
 ψ iff ϕ∨̇ψ ∈ T . Since T is
quasi-prime and we assume WLEM, by Fact 7.28 T is actually prime and therefore
the right-hand side is equivalent to ϕ ∈ T ∨ ψ ∈ T . Hence we can close with the
inductive hypotheses for ϕ and ψ.

• For implications ϕ→̇ψ we need to show ∀T ′ ⊇ T .T ′ 
 ϕ → T ′ 
 ψ iff ϕ→̇ψ ∈ T .
For the simpler backwards direction, assume ϕ→̇ψ ∈ T and T ′ 
 ϕ for some
T ′ ⊇ T by the inductive hypothesis for T ′ and ϕ we obtain ϕ ∈ T ′ and since also
ϕ→̇ψ ∈ T ′, this yields ψ ∈ T ′ by deductive closure of T ′. But then the goal T ′ 
 ψ
follows from the inductive hypothesis for T ′ and ψ.
For the forwards direction, instead of showing ϕ→̇ψ ∈ T , by stability of T we
may assume ϕ→̇ψ 6∈ T for a contradiction. By deductive closure, this assumption
means that T , ϕ 6` ψ, to which we can apply the Lindenbaum lemma (Lemma 7.26)
to obtain a theory T ′ ⊇ T as a world of U with T ′ ` ϕ but T ′ ` ψ. By the
inductive hypothesis, this yields T ′ 
 ϕ but T ′ 
 ψ, contradicting the assumption
that T ′ 
 ϕ implies T ′ 
 ψ for all T ′ ⊇ T .
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7. Similar Results for Related Logics

• For a modal formula �ϕ, we need to show that ∀T ′ ⊇ T�.T ′ 
 ϕ iff �ϕ ∈ T . Again
starting with the simpler backwards direction, assume �ϕ ∈ T and some T ′ ⊇ T�.
By the inductive hypothesis, showing the claim T ′ 
 ϕ amounts to ϕ ∈ T ′, which
exactly follows from �ϕ ∈ T and T ′ ⊇ T�.
For the forward direction, we again use stability and assume �ϕ 6∈ T for a con-
tradiction. By deductive closure this means T 6` �ϕ, from which one can derive
T� 6` ϕ. But then the Lindenbaum lemma yields an extension T ′ ⊇ T� with T ′ 6` ϕ
and thus T ′ 6
 ϕ by the inductive hypothesis, contradicting the assumption that
T ′ 6
 ϕ for all T ′ ⊇ T�.

From the truth lemma we obtain the existence of separating models as needed in the
proof of completeness, again with no further use of WLEM but still using its full strength.

Lemma 7.30 (Model Existence). Assuming WLEM, if T 6` ϕ, then there exists a model
K and world w of K with w 
 T but w 6
 ϕ. In fact, this property is equivalent to WLEM.

Proof. First given T 6` ϕ we can extend T into a world T ′ of U with T ′ 6` ϕ using
Lemma 7.26. By Lemma 7.29, then in particular T ′ 
 T but T ′ 6
 ϕ.
For the converse direction, assuming a proposition P : P we consider the theory

T := {P0∨̇¬̇P0} ∪ {P0 | P} ∪ {¬̇P0 | ¬P}

for which it is possible to show T 6` ⊥̇: assuming T ` ⊥̇ and given the negative goal, we
may do a case distinction whether P or ¬P holds and in either case construct a simple
single-point model K 
 T , refuting T ` ⊥̇ by soundness.
But then, now employing T ` ⊥̇ the supposed model existence yields a model K 
 T

forced to make a decision K 
 P0 ∨K 
 ¬̇P0 given K 
 P0∨̇¬P0. If K 
 P0 we can show
¬¬P , since if ¬P would hold also K 
 ¬̇P0 and thus K 
 ⊥̇. Similarly, if K 
 ¬̇P0 we
can show ¬P , thus establishing WLEM for P .

In summary, by the localised usage of WLEM for Fact 7.28 we observe a full coincidence:

Theorem 7.31. The following principles are equivalent:

1. WLEM

2. Every stable, quasi-prime theory T is prime.

3. Every world T of U satisfies T 
 ϕ iff ϕ ∈ T .

4. If T 6` ϕ, then there exists a model K and world w of K with w 
 T but w 6
 ϕ.

The next step on the path to completeness is the slightly weaker quasi-completeness:

Lemma 7.32 (Quasi-Completeness). Assuming WLEM, T 
 ϕ implies ¬¬(T ` ϕ).

Proof. Assuming T 
 ϕ and T 6` ϕ, from the latter and model existence (Lemma 7.30) we
obtain a separating model K with world w such that w 
 T but w 6
 ϕ. This contradicts
the assumption T 
 ϕ.

Once again, no further use of WLEM was made but as we will see below, quasi-
completeness will not be equivalent to WLEM anymore. In light of Fact 7.22, the re-
maining double negation can only be eliminated for completeness by the use of full LEM:

Theorem 7.33 (Completeness). Assuming LEM, T 
 ϕ implies T ` ϕ.
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7.3. Constructive Completeness of Intuitionistic Epistemic Logic

Proof. Follows from quasi-completeness (Lemma 7.32) given that LEM implies WLEM
and that ¬¬(T ` ϕ) is classically equivalent to T ` ϕ.

The fact that from quasi-completeness no direct derivation of WLEM seems possible
leaves hope for a constructively more acceptable principle to close the gap. Indeed, as we
show next, the principle of double negation-shift (DNS), stating

∀(X : T)(P : X → P). (∀x.¬¬(P n))→ ¬¬(∀n. P n)

allows for an alternative route to quasi-completeness based on weaker intermediate steps.
Note that DNS is still a consequence of LEM but in contrast to WLEM preserves the
characteristic disjunction property of intuitionistic logic [108].

Theorem 7.34. Assuming DNS, the following variations can be proven:

1. Truth Lemma: ¬¬(T 
 ϕ) iff ϕ ∈ T over U .

2. Model Existence: if T 6` ϕ, then there exist K and w with ¬¬(w 
 T ) but w 6
 ϕ.

3. Quasi-Completeness: T 
 ϕ implies ¬¬(T ` ϕ).

Proof. We prove the three statements with the same strategy as before, and only highlight
the differences regarding the use of DNS instead of WLEM:

1. For the weakened truth lemma proved by induction on ϕ, we again only consider
disjunction, implication, and the modality. All share that the forward direction
remains unchanged given stability of T , while the backwards direction behaves more
constructively given the additional double negation. Disjunctions ϕ∨̇ψ ∈ T are
unproblematic, since quasi-primeness is strong enough to derive ¬¬(T 
 ϕ∨T 
 ψ)
from the inductive hypotheses. Implications ϕ→̇ψ ∈ T require a proof of

¬¬(∀T ′ ⊇ T .T ′ 
 ϕ→ T ′ 
 ψ)

which by DNS becomes equivalent to the constructively weaker claim

∀T ′ ⊇ T .T ′ 
 ϕ→ ¬¬(T ′ 
 ψ)

which can be established by the same strategy as before. Modal formulas �ϕ ∈ T
similarly rely on DNS to push the double negation through the outer quantification
of the goal ¬¬(∀T ′ ⊇ T�.T ′ 
 ϕ).

2. For the weakened model existence, we use the same strategy to extend T with
T 6` ϕ to T ′ as a world of U with T ′ 6` ϕ. The weakened truth lemma is enough to
derive T ′ 6
 ϕ but only yields ¬¬(T ′ 
 ψ) for all ψ ∈ T . Hence another application
of DNS is necessary to obtain ¬¬(T ′ 
 T ) as claimed.

3. Weakened model existence is still enough to derive quasi-completeness construc-
tively, since on assumption of T 
 ϕ and T 6` ϕ for the sought contradiction we
can turn ¬¬(w 
 T ), provided by weakened model existence, into w 
 T . From
there one proceeds as before.

As a consequence, completeness for enumerable theories follows from DNS and MP.

Corollary 7.35. Assuming DNS and MP, T 
 ϕ implies T ` ϕ for enumerable T .
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7. Similar Results for Related Logics

Proof. Given DNS, from T 
 ϕ we obtain ¬¬(T ` ϕ) by quasi-completeness as es-
tablished in (3) of Theorem 7.34. By enumerability of T we obtain enumerability of
derivability from T , so given MP we observe stability of the latter and thus T ` ϕ.

Together with Fact 7.22, this means that completeness for enumerable theories relies
on MP and some, possibly rather weak fragment of DNS. That not the full strength of
DNS is needed for quasi-completeness or one of the other variations of Theorem 7.34 is
ensured by the fact that they also follow from WLEM as observed before, but we do not
expect DNS to be a consequence of WLEM. However, that at least a weak combination
both of DNS and WLEM is required is suggested by the following fact:

Fact 7.36. Assuming that T 
 ϕ implies ¬¬(T ` ϕ), then the following principle holds:

∀P : N→ P.¬¬(∀n.¬p n ∨ ¬¬p n)

Note that this principle is visibly both a consequence of DNS and of WLEM.

Proof. Assuming a predicate P : N→ P with ¬(∀n.¬p n ∨ ¬¬p n), our goal is to derive
a contradiction. Similarly as in Lemma 7.30, to this end we consider the theory

T := {Pn∨̇¬̇Pn} ∪ {Pn | P n} ∪ {¬̇Pn | ¬(P n)}

which can still be shown consistent: assuming T ` ⊥̇ then only a finite context Γ ⊆ T
with Γ ` ⊥̇ was used. Since the model K with single world w, interpreting each variable
Pn with the proposition P n satisfies ¬¬(w 
 ϕ) for every ϕ ∈ T by the usual constructive
tricks, we in particular obtain ¬¬(w 
 Γ), contradicting Γ ` ⊥̇ via soundness.
The thus derived consistency of T allows us to apply the assumed quasi-completeness

to derive the sought contradiction, which provides us with a model of T . This model is
now forced to make a decision for each formula Pn∨̇¬̇Pn, from which we can finally derive
the remaining claim ∀n.¬p n ∨ ¬¬p n by case analyses for each n as in Lemma 7.30.

To conclude this section, let us emphasise that the sole necessity for classical axioms
stems from the inclusion of disjunction in the syntax and, since the completeness proof
is modular, if disjunction were left out, everything up to quasi-completeness would be
constructive. Moreover, the remaining classical step from quasi-completeness to complete-
ness could be circumvented in the similar fashion as in Sections 4.1 and 4.3, employing
Veldman’s exploding models [257].
We expect that the previous and all other observations made in this section regarding

IEL transfer to all related formalisms such as (fragments of) intuitionistic and classical
propositional or first-order (modal) logics. Concretely, we expect that many decidable
logics constructively admit finitary completeness while general completeness will be equiv-
alent to LEM. Moreover, if a logic has disjunction, already quasi-completeness will require
some weak form of DNS while model existence will be equivalent to WLEM.
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8. First-Order Set Theory

Orthodoxy has it that axiomatic set theory, as conceived by Cantor, Zermelo, Fraenkel,
and many others, serves as the uniform foundation for all of mathematics. The abstract
concept of sets X and membership x ∈ X is flexible enough to encode all mathematical
objects in terms of a handful of operations on sets like the empty set ∅, pairing {X, Y },
unions ⋃X, power sets P(X), and subsets {y ∈ x | ϕ(y)}. Historically, this phenomenon
satisfied the reductionistic tendency of the metamathematical programme, aiming for a
single solid and surveyable basis for the growing tower of mathematical theories.
From a contemporary perspective, the role of set theory as a foundational system may

well be contested [167, 5, 119] and previous chapters of this thesis showcased some advan-
tages of constructive type theory as suitable alternative, especially for topics concerning
computation. Nevertheless transcending its historical significance, set theory evolved
into an interesting mathematical field on its own, and in the second part of this thesis
we shall investigate some of its meta-theoretical properties employing our approach of
formalisation in CIC and mechanisation in Coq.
In this first chapter of Part II, we begin with the system of Zermelo-Fraenkel set theory

(ZF) cast as a first-order theory, which evolved as the most common formal representation
and still fits to the framework of Part I. The next two chapters will be concerned with
more direct representations of set theory disposing of the need for formal syntax, where
in Chapter 9 sets are shallowly embedded with a type satisfying the natural second-order
axioms of set theory and where in Chapter 10 type-theoretic structure itself is used to
synthesise set-theoretic notions. In total, our comparison evaluates three approaches to
the formalisation and mechanisation of set-theoretic results of different nature.
The results considered in this chapter concern undecidability and incompleteness as

already developed for Peano arithmetic PA in Chapters 5 and 6, and therefore necessitate
a deep embedding of set theory with full control over the syntax. The strategy is exactly
as in the case of PA: we verify (synthetic) reductions into the target axiomatisations and
observe (weak) forms of incompleteness as a by-product. In contrast to the case of PA,
however, constructing models of set theory (as required by our method) is more involved
and, depending on the concrete axiomatisation, relies on additional assumptions.
Since for the proofs in this chapter no complicated set-theoretic techniques are needed,

we refrain from a comprehensive introduction to set theory and focus on the symbolic
verification of the undecidability reductions. A more didactic account will be chosen in
Chapter 9, then also using the more accessible framework of second-order set theory.

Outline In Section 8.1, we introduce several axiomatisations of first-order set theory
and in Section 8.2 we construct related models, adapting ideas from the literature. Next,
we establish the undecidability of ZF with function symbols in Section 8.3, of ZF without
function symbols in Section 8.4, and of several finitary set theories in Section 8.5. We
close with an overview of related work in Section 8.6.

Sources This chapter consists largely of parts of the paper [121] with Marc Hermes and
its extended journal version [120] that were mostly written by the author of this thesis.
Moreover, Section 8.2 is contains some passages of the paper [129] with Gert Smolka that
were also mostly written by the author of this thesis.
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8. First-Order Set Theory

Contributions The main contributions of this chapter are the mechanised undecidabil-
ity (and derived incompleteness) proofs of several formulations of first-order set theory
based on a seemingly novel reduction from the Post correspondence problem PCP, the
necessary adaptation of respective model constructions, as well as a mechanised proof of
the (deductive) conservativity of set theory with function symbols over symbol-free set
theory. All these contributions were made by the author of this thesis alone.

8.1. Axiomatisations
We first work in a signature providing function symbols for the operations of ZF set
theory. So for the rest of this section we fix the ZF-signature

Σ := (∅, {_,_}, ⋃_, P(_), ω ; _ ≡ _, _ ∈ _)

with function symbols denoting the empty set, pairing, union, power set, the set of
natural numbers, next to the usual relation symbols for equality and membership. Using
such function symbols for axiomatic and other definable operations is common practice
in set-theoretic literature and eases the definition and verification of the undecidability
reduction in our case. That the undecidability result can be transported to minimal
signatures just containing equality and membership, or even just the latter, is subject of
the next section. As common shorthands we introduce singletons {x} := {x, x}, binary
unions x ∪ y := ⋃

{x, y}, and set inclusion x ⊆ y := ∀̇z. z ∈ x→̇z ∈ y.
We list the axioms in Figure 8.1 and refer to standard literature (eg. [103, 229]) for a

more detailed explanation. The only point worth emphasising again is the representation
of axiom schemes as functions F→ F, for instance by the separation scheme expressed as

λϕ. ∀̇x. ∃̇y. ∀̇z. z ∈ y ↔̇ z ∈ x ∧̇ϕ[x]

providing the formation of subsets {z ∈ x | ϕ(z)} in usual set-builder notation.
We then distinguish the following axiomatisations:

• Z′ contains extensionality and the specifications of the set operations.

• Z is obtained by adding all instances of the separation scheme.

• ZF is obtained by further adding all instances of the replacement scheme.

Note that in ZF we do not include the axiom of regularity since this would force the theory
to be classical and would require to extend Coq’s type theory even further to obtain a
model [180]. Alternatively, one could add the more constructive axiom for ε-induction,
but instead we opt for staying more general and just leave the well-foundedness of sets
unspecified.
A first way to axiomatise finite set theory is to work in the same signature and simply

leave the set ω unspecified. Then on top, one can add an axiom ruling out any inductive
sets like ω, i.e. sets containing ∅ and being closed under successors x ∪ {x}.

• FZ′ denotes Z′ without the axiom specifying ω as the least inductive set.

• FZ′ + ¬Inf denotes FZ′ plus the axiom that no set is inductive.

An alternative, more incisive formulation of finitary set theory just axiomatises the
empty set in addition to the adjunction operation x.y (usually definable from union and
pairing via {x} ∪ y ) (see for instance [117]), i.e. we work in the signature

ΣPS := (∅, _._ ; _ ≡ _, _ ∈ _)
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8.1. Axiomatisations

Structural axioms

Extensionality: ∀xy. x ⊆ y → y ⊆ x→ x ≡ y

Set operations

Empty set: ∀x. x 6∈ ∅

Unordered pair: ∀xyz. z ∈ {x, y} ↔ x ≡ y ∨ x ≡ z

Union: ∀xy. y ∈
⋃
x↔ ∃z ∈ x. y ∈ z

Power set: ∀xy. y ∈ P(x)↔ y ⊆ x

Infinity: (∅ ∈ ω ∧ ∀x. x ∈ ω → x ∪ {x} ∈ ω)
∧ (∀y. (∅ ∈ y ∧ ∀x. x ∈ y → x ∪ {x} ∈ y)→ ω ⊆ y)

Axiom schemes

Separation: λϕ.∀x.∃y.∀z. z ∈ y ↔ z ∈ x ∧ ϕ[x]

Replacement: λϕ. (∀xyy′. ϕ[x, y]→ ϕ[x, y′]→ y ≡ y′)
→ ∀x. ∃y.∀z. z ∈ y ↔ ∃u ∈ x. ϕ[u, z]

Equality axioms

Reflexivity: ∀x. x ≡ x

Symmetry: ∀xy. x ≡ y → y ≡ x

Transitivity: ∀xyz. x ≡ y → y ≡ z → x ≡ z

Congruence: ∀xx′yy′. x ≡ x′ → y ≡ y′ → x ∈ y → x′ ∈ y′

Figure 8.1.: Overview of axioms of first-order ZF set theory. Here we intentionally leave
out the dots above the logical symbols to improve the readability.
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8. First-Order Set Theory

where the term x.y is enforced to behave like {x} ∪ y by the axiom
∀̇z. z ∈ x.y ↔̇ z ≡ x ∨̇ z ∈ y.

Moreover, to rule out infinite sets, one can require an induction scheme on top:
λϕ. ϕ[∅] →̇ (∀̇xy. ϕ[x] →̇ ϕ[y] →̇ ϕ[x.y]) →̇ ∀̇x. ϕ[x]

• PS denotes the axioms characterising ∅ and x.y as well as extensionality.

• PS + Ind denotes PS plus all intances of the induction scheme.

8.2. Model Constructions
Models of set theory arise in constructive type theory in form of inductive types of trees,
where well-founded trees model the general axiomatisation, following Aczel [2, 263, 10],
and finite (binary) trees suffice for finitary set theory, following Smolka and Stark [227].
In this section, we summarise both approaches and analyse the underlying assumptions
necessary to obtain the operations needed for our concrete axiomatisations.
We start with the general case of (infinitely-branching) well-founded trees:

Definition 8.1. We define the inductive type A : T of well-founded trees with a single
constructor τ : ∀(A : T). (A→ A)→ A and projections p1(τ A f) :=A and p2(τ A f) :=f .
Following Aczel [2, 3], we interpret the trees in A as sets, where the trees f a for a : A

correspond to the elements of the tree τ A f . However, since intensionally distinct types
and functions can yield structurally equal trees, one first needs to impose a notion of tree
equivalence and then define a respectively generalised version of membership.
Definition 8.2. Equivalence ≡ : A → A → P of trees is defined inductively by:

∀a : A. ∃b : B. f a ≡ g b ∀b : B. ∃a : A. f a ≡ g b

τ A f ≡ τ B g

Membership is defined by s ∈ τ A f :=∃a. s ≡ f a and inclusion s ⊆ t in the natural way.
Note that we intentionally overload the relation symbols from the first-order signature

and continue doing so below for the function symbols for all constructed models.
Lemma 8.3. The relation ≡ is an equivalence and respected by membership ∈.
Proof. Reflexivity, symmetry and transitivity of ≡ all follow by structural induction on
A. Now let s ≡ s′, t ≡ t′, and s ∈ t. By definition of s ∈ t we have a : p1 t with s ≡ p2 t a.
Now since t ≡ t′ we obtain a′ : p1 t

′ with p2 t a ≡ p2 t
′ a′. Then by transitivity s′ ≡ p2 t

′ a′

and so s′ ∈ t′. It follows that inclusion respects ≡ as well.

All set operations have counterparts in type theory: the empty set in the empty type
⊥, pairing in Booleans B, union sets in sigma types, power sets in predicate types, and ω
in the natural numbers N. Along those lines, one can define the set operations for trees:
Definition 8.4. We turn A into an interpretation for the ZF-signature by defining

∅ := τ ⊥E⊥
{s, t} := τ B (λb. if b then s else t)⋃(τ A f) := τ (Σa. p1(f a)) (λ(a, b). p2(f a) b)

P(τ A f) := τ (A→ P) (λP. τ (Σa. a ∈ P ) (f ◦ π1))
ω := τ N (λn. σn ∅)

where σn ∅ denotes the n-fold application of the successor operation x ∪ {x} to ∅.
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8.2. Model Constructions

Moreover, A admits operations related to separation and replacement (cf. Chapter 9),
where the former corresponds to refinement types and the latter to function composition.

Definition 8.5. Given P : A → P and F : A → A, we define:

P ∩ (τ A f) := τ (Σa. (f a) ∈ P ) (f ◦ π1)
F@(τ A f) := τ A (λa. F (f a))

Now as a first concrete result, we observe that A is a model of Z that is standard in
the sense that every x ∈ ω corresponds to an external number n : N.

Theorem 8.6. A is an intensional standard model of Z.

Proof. The equality axioms were already shown in Lemma 8.3 and extensionality is
straightforward by the definition of equivalence and membership. The set operation ax-
ioms are fairly routine and we refer to the Coq development for full detail. As instances,
we justify the empty set and pairing.
For the former, we have to show s 6∈ ∅ for all s : A. This is the case, since the definition

of s ∈ ∅ carries an inhabitant of ⊥.
Now for the latter let s, t : A and u ∈ {s, t}. Hence there is b : B with u ≡

(if b then s else t) and by a Boolean case analysis we obtain either u ≡ s or u ≡ t.
Now conversely, suppose we start with either u ≡ s or u ≡ t. To show u ∈ {s, t} we
have to give a matching b : B and, depending on the case concerning u, we just pick the
respectively correct Boolean value.
Moreover, concerning the separation scheme, given some formula ϕ(x) and tree s we

obtain the subset of all t ∈ s such that A � ϕ(t) by the operation P ∩ s for the choice
P t := A � ϕ(t). The formal specification is simple to check.
Finally, A is standard since for every s ∈ ω we obtain s ≡ σn ∅ for some n : N.

Although the operation F@s introduced above provides a form of replacement for func-
tions, it seems not possible to construct a more general operation applicable to functional
relations (expressed by first-order formulas) as required by the replacement scheme of ZF.
The way to obtain a model of ZF we choose is to assume axioms strengthening the ambient
type theory such that A can be refined to extensional models satisfying replacement.
A first approximation is to simply work on the quotient type of all equivalence classes

[s] := λt. s ≡ t and lift all set operations from trees to classes. The key requirement for
this approach to go through is class extensionality on well-founded trees.

Axiom 8.7 (CE). ∀P, P ′. (∀s. P s↔ P ′ s)→ P = P ′

Note that CE follows from the combination of FE and PE, and itself implies PE and
therefore also PI (cf. Section 2.2). Crucially, CE implies [s] = [t] whenever s ≡ t.

Definition 8.8. We define the type S ′ of equivalence classes by S ′ :=ΣP. ∃s. P = [s]. We
write X, Y, Z for the members of S ′ as well as the underlying classes. Membership on S ′
is defined by X ∈ Y :=∀s, t. s ∈ X → t ∈ Y → s ∈ t and inclusion is defined accordingly.

Since by the assumption of CE in particular PI holds as mentioned above, the equality
on S ′ is well-behaved in the sense that two members X and Y are equal exactly iff their
underlying classes are equal, which in turn is exactly the case if there are s ∈ X and
t ∈ Y with s ≡ t. In particular, the natural interpretation of X ≡ Y is then just X = Y ,
meaning that S ′ is extensional. Moreover, to consider S ′ a model, it suffices to lift all
structure from A to equivalence classes over A.
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8. First-Order Set Theory

Lemma 8.9. [s] ∈ [t]↔ s ∈ t as well as [s] ⊆ [t]↔ s ⊆ t.

Proof. First suppose [s] ∈ [t] so s′ ∈ t′ for all s′ ∈ [s] and t′ ∈ [t]. Since in particular
s ∈ [s] and t ∈ [t] we conclude s ∈ t. Conversely, let s ∈ t. Now we have to show s′ ∈ t′
for all s′ ∈ [s] and t′ ∈ [t]. This follows since membership respects the equivalences s ≡ s′

and t ≡ t′. The statement for inclusion follows directly.

Definition 8.10. We turn S ′ into an interpretation for the ZF-signature by defining

∅ := [∅]
{X, Y } := λu.∃s, t. s ∈ X ∧ t ∈ Y ∧ u ≡ {s, t}⋃

X := λt.∃s. s ∈ X ∧ t ≡
⋃
s

PX := λt.∃s. s ∈ X ∧ t ≡ Ps
ω := [ω]

where it is unproblematic to justify that the constructed classes are indeed members of S ′.

Theorem 8.11. Assuming CE, S ′ is an extensional standard model of Z.

Proof. Verifying the axioms for S ′ becomes simple when making use of Lemma 8.9. The
equality axioms are trivial anyway since S ′ is extensional. For the extensionality axiom,
assume X ⊆ Y and Y ⊆ X. Since constructing a proof of X = Y , we can replace the
classes by concrete witnesses and obtain [s] ⊆ [t] and [t] ⊆ [s]. But then s ⊆ t and t ⊆ s,
so the extensionality axiom of A implies s ≡ t, from which we in turn conclude [s] = [t]
and thus X = Y .
All set operation axioms are established by the same idea. This time, unions and power

sets serve as instances. Concerning union, we first show that [⋃ s] = ⋃[s] which follows
from the assumed extensionality of classes. Then the union axiom reads

[u] ∈ [⋃ s]↔ ∃t.[u] ∈ [t] ∧ [t] ∈ [s]

which is exactly turned into the corresponding axiom of A by Lemma 8.9. The proof for
power sets is analogous after the fact [Ps] = P [s] has been established.
For the separation scheme, we argue similarly as in Theorem 8.6 for the operation

P ∩X := λt.∃s. s ∈ X ∧ t ≡ (λz. [z] ∈ P ) ∩ s

witnessing separation for arbitrary predicates P : S ′ → P.

Unfortunately, it still seems impossible to define a replacement operation since this
would require the representatives of equivalence classes to be accessible computationally.
Hence S ′ only constitutes an extensional model of Z.
A way to solve the persisting problem concerning replacement is to assume canonical

representatives for the equivalence classes of ≡ in form of a description operator for
well-founded trees:

Axiom 8.12 (TD). ∃(δ : (T → P)→ T ). ∀P. (∃t. P = [t])→ P (δ P )

Note that δ associates to any class [s] the canonical representative δ [s] ∈ [s]. We
abbreviate by γ s the operation δ [s] with the crucial property γ s = γ t whenever s ≡ t.
With TD in addition to CE, one could now indeed show that S ′ satisfies the replacement

scheme, but TD in fact makes a simpler model available that spares the detour through
equivalence classes.
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8.2. Model Constructions

Definition 8.13. We define the type S of canonical representatives by S := Σs. γ s = s.
We write s for the members of S where s : A and by idempotency we can judge γ s : S for
every s : A. Membership is inherited from A, i.e. s ∈ t := s ∈ t, similarly for inclusion.
As in the case of S ′ the natural interpretation of equality s ≡ t on S is given by s = t as

this is equivalent to s ≡ t. The set operations in S are obtained by just taking canonical
representatives for the set operations in A:
Definition 8.14. We turn S into an interpretation for the ZF-signature by defining

∅ := γ ∅
{s, t} := γ ({s, t})⋃

s := γ (⋃ s)
P s := γ (Ps)
ω := γ (ω)

and further set P ∩ s := γ((P ◦ γ) ∩ s) and F@ s := γ((F ◦ γ)@s).
Theorem 8.15. Assuming CE and TD, S is an extensional standard model of ZF.
Proof. As before, the equality axioms are trivial since S is extensional and the extension-
ality axiom is directly inherited from A.
Regarding the set operation axioms, we discuss the cases of the empty set and pairing.

For the former, suppose there were s ∈ γ ∅, then by definition of membership over S we
have s ∈ ∅ which contradicts the empty set axiom in A. For the latter, we need to show

u ∈ γ {s, t} ↔ u = s ∨ u = t

which by the properties of γ exactly reduces to the pairing axiom in A.
Finally, we consider the replacement scheme, for which it suffices to show a more general

variant as in the case of specification before. Concretely, we show

∀R. (∀xyy′. R x y → Rxy′ → y = y′)→ ∀x. ∃y.∀z. z ∈ y ↔ ∃u ∈ x.R u z

where the functional relations R : S → S → P subsume any first-order formula ϕ(x, y).
This more general replacement operation can be established by a combination of P ∩ s
and F@ s, we refer to Definition 9.4 and the Coq code for more detail.

We conclude this section with a sketch of the fully constructive models of the finitary
set theories FZ′ and PS, originally given by Ackermann [1] via a natural number encoding.
Here following the construction by Smolka and Stark [227], also adapted more recently
for [123], a model T2 of FZ′ can be obtained by taking the common inductive type of binary
trees quotiented by tree equivalence and implementing the set operations by suitable tree
manipulations. In particular, this model is standard in the above sense and does not
contain inductive sets:
Theorem 8.16. T2 is an extensional standard model of FZ′ + ¬Inf.
Proof. To establish that T2 is standard, we show that for every x : T2 we can compute
a number nx : N such that x = nx. By induction on the well-foundedness of x we may
assume that every element y ∈ x is a numeral ny. Since x is finite, we can compute a
bound n such that ny < n for all y ∈ x. Then we can obtain that x is a numeral (and in
fact compute nx) since x is a transitive subset of the numeral n by induction on n.
Regarding the second claim, suppose x were inductive. By finiteness of x we obtain the

cardinality N of distinct elements in x. But since x is inductive, it must contain the set
of the first N+1 numerals that are distinct by construction, yielding a contradiction.
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8. First-Order Set Theory

Similarly, T2 satisfies the axioms of PS including the induction scheme for adjunction:

Theorem 8.17. T2 is an extensional standard model of PS + Ind.

Proof. That T2 is standard was part of Theorem 8.16 and that it models PS was shown
by Smolka and Stark [227]. They also established the second-order induction principle

∀P : T2 → P. P ∅ → (∀xy. P x→ P y → P (x.y))→ ∀x. P x

which is easily seen to entail the first-order induction scheme.

8.3. Undecidability of Set Theory
Following the general outline for the undecidability proofs introduced in Section 5.6,
we first focus on verifying a reduction to the base theory Z′ and then extend to the
stronger axiomatisations by use of Theorem 5.47. As a seed problem for this reduction,
we could naturally pick just any decision problem since set theory is a general purpose
foundation expressive enough for most standard mathematics. However, the concrete
choice has an impact on the formalisation and mechanisation overhead, where formalising
Turing machine halting directly is tricky enough in Coq’s type theory itself, and even a
simple problem like Diophantine equations H10 used in the Section 5.7 would presuppose
a modest development of number theory and recursion in the axiomatic framework. We
therefore base our reduction to Z′ on the Post correspondence problem PCP as introduced
in Section 5.1.
Encoding data like numbers, Booleans, strings, and PCP stacks in set theory is stan-

dard, based on the set-theoretical encoding of ordered pairs (x, y) by {{x}, {x, y}}:

• 0 := ∅ and n+ 1 := n ∪ {n}

• tt := {∅} and ff := ∅

• b1, . . . , bn := (b1, (. . . (bn, ∅) . . . ))

• S := {(s1, t1), . . . , (sm, tm)}

Starting informally, the solvability condition of PCP can be directly expressed in set
theory by just asserting the existence of a set encoding a match for S:

∃̇x. (x, x) ∈
⋃
k∈ω

S
k where S

0 = S and S
k+1 = S � S

k =
⋃

(s,t)∈S
{(sx, ty) | (x, y) ∈ Sk}

Unfortunately, formalizing this idea is not straightforward, since the iteration operation
S
k is described by recursion on set-theoretic numbers k ∈ ω missing a native recursion

principle akin to the one for type-theoretic numbers n : N. Such a recursion principle can
of course be derived but in our case it is simpler to inline the underlying construction.
The main construction used in the recursion theorem for ω is a sequence of finite

approximations f accumulating the first k steps of the recursive equations. Since in our
case we do not need to form the union of this sequence requiring the approximations to
agree, it suffices to ensure that at least the first k steps are contained without cutting off,
namely

f � k := (∅, S) ∈ f ∧̇ ∀̇(l, B) ∈ f. l ∈ k →̇ (l ∪ {l}, S �B) ∈ f
where we reuse the operation S � B appending the encoded elements of the list S
component-wise to the elements of the set B as specified above. Note that this oper-
ation is not really definable as a function L(B)→ T→ T and needs to be circumvented
by quantifying over candidate sets satisfying the specification. However, for the sake of
a more accessible explanation, we continue using S �B as a function.
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8.3. Undecidability of Set Theory

Now solvability of S can be expressed formally as the existence of a functional approx-
imation f of length k containing a match (x, x):

ϕS := ∃̇k, f,B, x. k ∈ ω ∧̇ (∀(l, B), (l, B′) ∈ f.B = B′) ∧̇ f � k ∧̇ (k,B) ∈ f ∧̇ (x, x) ∈ B

We proceed with the formal verification of the reduction function λS. ϕS by proving
the three facts necessary to apply Theorem 5.47. As always starting with the semantic
part for clarity, we fix a model M � Z′ for the next lemmas in preparation of the facts
connecting PCPS with M � ϕS . We skip the development of basic set theory in M
reviewable in the Coq code and only state lemmas concerned with encodings and the
reduction function:

Lemma 8.18. Let n,m : N and s, t : L(B) be given, then the following hold:
1. M � n ∈ ω

2. M � n 6∈ n

3. M � n ≡ m implies n = m

4. M � s ≡ t implies s = t

Proof. 1. By induction on n, employing the infinity axiom characterising ω.

2. Again by induction on n, using the fact that numerals n are transitive sets.

3. By trichotomy we have n < m, m < n, or n = m as desired. If w.l.o.g. it were
n < m, then M � n ∈ m would follow by structural induction on the derivation
of n < m. But then the assumption M � n ≡ m would also yield M � n ∈ n in
conflict with (2).

4. By induction on the given strings, employing injectivity of Boolean encodings b.

In order to match the structure of iterated derivations encoded in ϕS , we reformulate
S . (s, t) by referring to the composed derivations Sn of length n, now definable by
recursion on n : N via S0 := S and Sn+1 := S � Sn reusing the notation � for the
operation on lists as expected.

Lemma 8.19. S . (s, t) iff there is n : N with (s, t) ∈ Sn.

Then Sn can be encoded as set-level functions fnS := {(∅, S), . . . , (n, Sn)} that are
indeed recognised by the modelM as correct approximations:

Lemma 8.20. For every n : N we haveM � fnS � n.

Proof. In this proof we work inside of M to simplify intermediate statements. For the
first conjunct, we need to show that (∅, S) ∈ fnS which is straightforward since (∅, S) ∈ f0

S

and fmS ⊆ fnS whenever m ≤ n. Regarding the second conjunct, we assume (k,B) ∈ fnS
with k ∈ n and need to show (k ∪ {k}, S � B) ∈ fnS . From (k,B) ∈ fnS we obtain that
there is m with k = m and B = Sm. Then from m ∈ n and hence m < n we deduce that
also (m+ 1, Sm+1) ∈ fnS . The claim follows since m+ 1 = k ∪ {k} and

Sm+1 = S � Sn = S � Sn = S �B

using that � on lists respectively sets interacts well with string encodings.

With these lemmas in place, we can conclude the first part of the semantic verification.

Fact 8.21. If PCPS then Z′ � ϕS.
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8. First-Order Set Theory

Proof. Assuming PCPS, there are s : L(B) and n : N with (s, s) ∈ Sn using Lemma 8.19.
Now to prove Z′ � ϕS we assume M � Z′ and show Z′ � ϕS . Instantiating the leading
existential quantifiers of ϕS with n, fnS , Sn, and s leaves the following facts to verify:

• M � n ∈ ω, immediate by (1) of Lemma 8.18.

• Functionality of fnS , straightforward by construction of fnS .

• M � fnS � n, immediate by Lemma 8.20.

• M � (n, Sn) ∈ fnS , again by construction of fnS .

• M � (s, s) ∈ Sn, by the assumption (s, s) ∈ Sn.

For the converse direction, we again restrict to models M only containing standard
natural numbers, i.e. satisfying that any k ∈ ω is the numeral k = n for some n : N.
Then the internally recognised solutions correspond to actual external solutions of PCP.

Lemma 8.22. If in a standard modelM there is a functional approximation f � k for
k ∈ ω with (k,B) ∈ f , then for all p ∈ B there are s, t : L(B) with p = (s, t) and S .(s, t).

Proof. SinceM is standard, there is n : N with k = n, so we have f � n and (n,B) ∈ f .
In any model with f � n we can show that (k, Sk) ∈ f by induction on k, so in particular
(n, Sn) ∈ f inM. But then by functionality of f it must be B = Sn, so for any p ∈ B
we actually have p ∈ Sn for which it is easy to extract s, t : L(B) with p = (s, t) and
(s, t) ∈ Sn. We then conclude S . (s, t) with Lemma 8.19.

Fact 8.23. Every standard modelM � Z′ withM � ϕS yields PCPS.

Proof. A standard model of Z′ with M � ϕS yields a functional approximation f � k
for k ∈ ω with some (k,B) ∈ f and (x, x) ∈ B. Then by Lemma 8.22 there are s, t : L(B)
with (x, x) = (s, t) and S . (s, t). By the injectivity of ordered pairs and string encodings
((4) of Lemma 8.18) we obtain s = t and thus S . (s, s).

Finally, we just record the fact that the semantic argument in Fact 8.23 can be repeated
deductively with an analogous intermediate structure but heavier mechanisation work.

Fact 8.24. If PCPS then Z′ ` ϕS.

With the three facts verifying ϕS , we conclude several reductions by Theorem 5.47.

Theorem 8.25. We have the following reductions:

• PCP � Z′, provided a standard model of Z′ exists.

• PCP � Z, provided a standard model of Z exists.

• PCP � ZF, provided a standard model of ZF exists.

Proof. By Facts 8.21, 8.23, and 8.24 as well as Theorem 5.47.

By the model constructions given in Section 8.2, this can be reformulated as follows.

Theorem 8.26. Assuming CE implies both PCP � Z′ and PCP � Z, and assuming both
CE and TD implies PCP � ZF.

Proof. By combining Theorems 8.11, 8.15, and 8.25.
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8.4. Undecidability of Symbol-Free Set Theory

Corollary 8.27. Assuming CE and TD, the problems ZF� and ZF`i are undecidable.
Moreover, assuming LEM, also the problem ZF`c is undecidable.

Note that assuming CE to obtain a model of Z is unnecessary if we allow the interpre-
tation of equality by any equivalence relation congruent for membership, backed by the
fully constructive model given in Theorem 8.6. This intensional variant is included in the
Coq development but we focus on the simpler case of extensional models in this text.
We close this section with the derivation of weak incompleteness of ZF:

Theorem 8.28. Assuming CE, TD, and LEM, if ZF is complete, then PCP is decidable.

Proof. We have PCP � PA` by Corollary 8.27, so the formal system SZF weakly represents
PCP. Then if ZF were complete, PCP were decidable by Theorem 6.6.

8.4. Undecidability of Symbol-Free Set Theory
We now work in the signature Σ̃ := (_ ≡ _, _ ∈ _) only containing equality and
membership. To express set theory in this syntax, we reformulate the axioms specifying
the function symbols used in the previous signature Σ to just assert the existence of
respective sets, for instance:

∅ : ∀̇x. x 6∈ ∅  ∃̇u. ∀̇x. x 6∈ u
P(x) : ∀̇xy. y ∈ P(x) ↔̇ y ⊆ x  ∀̇x. ∃̇u. ∀̇y. y ∈ u ↔̇ y ⊆ x

In this way we obtain axiomatisations Z̃′, Z̃, and Z̃F as the respective counterparts of Z′,
Z, and ZF. In this section, we show that these symbol-free axiomatisations admit the
same reduction from PCP.
Instead of reformulating the reduction given in the previous section to the smaller

signature, which would require us to replace the natural encoding of numbers and strings
as terms by a more obscure construction, we define a general translation ϕ̃ : FΣ̃ of
formulas ϕ : FΣ. We then show that Z̃′ � ϕ̃ implies Z′ � ϕ (Fact 8.32) and that Z′ ` ϕ
implies Z̃′ ` ϕ̃ (Fact 8.35), which is enough to deduce the undecidability of Z̃′, Z̃, and Z̃F
(Theorem 8.36) from previous results.
The informal idea of the translation function is to replace terms t : TΣ by formulas

ϕt : FΣ̃ characterising the variable x0 to behave like t, for instance:

xn  x0 ≡ xn+1 ∅  ∀x0 6∈ x1 P(t)  ∃̇ϕt[x0; ↑2] ∧̇ ∀̇x0 ∈ x2 ↔̇x0 ⊆ x1

The formula expressing P(t) first asserts that there is a set satisfying ϕt (where the substi-
tution ↑n shifts all indices by n) and then characterises x0 (appearing as x2 given the two
quantifiers) as its power set. Similarly, formulas are translated by descending recursively
to the atoms, which are replaced by formulas asserting the existence of characterised sets
being in the expected relation, for instance:

t ∈ t′  ∃̇ϕt[x0; ↑2] ∧̇ ∃̇ϕt′ [x0; ↑3] ∧̇ x1 ∈ x0

We now verify that the translation ϕ̃ satisfies the two desired facts, starting with the
easier semantic implication. To this end, we denote by M̃ the Σ̃-model obtained from
a Σ-modelM by forgetting the interpretation of the function symbols not present in Σ̃.
Then for a model M � Z′, satisfiability is preserved for translated formulas, given that
the term characterisations are uniquely satisfied over the axioms of Z′:
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8. First-Order Set Theory

Lemma 8.29. x = ρ̂ t iff M̃ �x;ρ ϕt in all modelsM � Z′.

Proof. By induction on t with x generalised. We only consider the cases xn and ∅:

• We need to show x = ρ̂ xn iff M̃ �x;ρ x0 ≡ xn+1 which is immediate by definition.

• First assuming x = ∅, we need to show that ∀y. y 6∈ x, which is immediate sinceM
satisfies the empty set axiom. Conversely assuming ∀y. y 6∈ x yields x = ∅ by using
the extensionality axiom also satisfied byM.

Lemma 8.30. M �ρ ϕ iff M̃ �ρ ϕ̃ in all modelsM � Z′.

Proof. By induction on ϕ with ρ generalised, all cases but atoms are directly inductive.
Considering the case t ∈ t′, we first need to show that if ρ̂ t ∈ ρ̂ t′, then there are x and
x′ with x ∈ x′ satisfying ϕt and ϕt′ , respectively. By Lemma 8.29 the choice x := ρ̂ t and
x′ := ρ̂ t′ is enough. Now conversely, if there are such x and x′, by Lemma 8.29 we know
that x = ρ̂ t and x′ = ρ̂ t′ and thus conclude ρ̂ t ∈ ρ̂ t′. The case of t ≡ t′ is analogous.

Then the semantic implication follows since pruned models M̃ satisfy Z̃′:

Lemma 8.31. IfM � Z′ then M̃ � Z̃′.

Proof. We only need to consider the axioms concerned with set operations, where we
instantiate the existential quantifiers introduced in Z̃′ with the respective operations
available in M. For instance, to show M̃ � ∃̇u. ∀̇x. x 6∈ u it suffices to show that
∀x. x 6∈ ∅ in M̃, which is exactly the empty set axiom satisfied byM.

Fact 8.32. Z̃′ � ϕ̃ implies Z′ � ϕ.

Proof. Straightforward by Lemmas 8.30 and 8.31.

We now turn to the much more involved deductive verification, beginning with the fact
that Z̃′ proves the unique existence of sets satisfying the term characterisations:

Lemma 8.33. For all t : T we have Z̃′ ` ∃̇ϕt and Z̃′ ` ϕt[x] →̇ϕt[x′] →̇x ≡ x′.

Proof. Both claims are by induction on t, the latter with x and x′ generalised. The
former is immediate for variables and ∅, we discuss the case of P(t). By induction we
know Z̃′ ` ∃̇ϕt yielding a set x simulating t and need to show

Z̃′ ` ∃̇ ∃̇ϕt[x0; ↑2] ∧̇ ∀̇x0 ∈ x2 ↔̇ x0 ⊆ x1.

After instantiating the first quantifier with the set u guaranteed by the existential power
set axiom for the set x and the second quantifier with x itself, it remains to show ϕt[x]
and ∀̇x0 ∈ u ↔̇ x0 ⊆ x which are both straightforward by the choice of x and u.
The second claim follows from extensionality given that the characterisation ϕt specifies

its satisfying sets exactly by their elements. So in fact the axioms concerning the set
operations are not even used in the proof of uniqueness.

Next, during translation, term can be simulated by variables:

Lemma 8.34. Forall ϕ : F and t : T we have Z̃′ ` ϕt[x] →̇ (ϕ̃[x] ↔̇ ϕ̃[t]).

Proof. By induction on ϕ, all cases but the atoms are straightforward, relying on the fact
that the syntax translation interacts well with variable renamings in the quantifier cases.
The proof for atoms relies on a similar lemma for terms stating that ϕs[y;x] and ϕs[t][y]
are interchangeable whenever ϕt[x], the rest is routine.
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8.4. Undecidability of Symbol-Free Set Theory

This is the main ingredient to verify the desired proof transformation:

Fact 8.35. Z′ ` ϕ implies Z̃′ ` ϕ̃.

Proof. We prove the more general claim that Γ++Z′ ` ϕ implies Γ̃++ Z̃′ ` ϕ̃ by induction
on the first derivation. All rules but the assumption rule (A), ∀-elimination (AE), and
∃-elimination (EE) are straightforward, we explain the former two.

• If ϕ ∈ Γ ++ Z′, then either ϕ ∈ Γ or ϕ ∈ Z′. In the former case we have ϕ̃ ∈ Γ̃, so
Γ̃ ++ Z̃′ ` ϕ̃ by (A). Regarding the latter case, we can verify Z̃′ ` ϕ̃ for all ϕ ∈ Z′
by rather tedious derivations given the sheer size of some axiom translations.

• If Γ ++ Z′ ` ϕ[t] was derived from Γ ++ Z′ ` ∀̇ϕ, then by the inductive hypothesis
we know Γ̃ ++ Z̃′ ` ∀̇ ϕ̃. Given Lemma 8.33 we may assume ϕt[x] for a fresh
variable x. Then by instantiating the inductive hypothesis to x via (AE) we obtain
Γ̃ ++ Z̃′ ` ϕ̃[x] and conclude the claim Γ̃ ++ Z̃′ ` ϕ̃[t] with Lemma 8.34.

Now we obtain the undecidability of the symbol-free axiomatisations.

Theorem 8.36. Assuming CE implies both PCP � Z̃′ and PCP � Z̃, and assuming both
CE and TD implies PCP � Z̃F.

Proof. By Theorem 5.47, using Facts 8.32 and 8.35 and the results of Section 8.3.

Corollary 8.37. Assuming CE and TD, the problems Z̃F� and Z̃F`i are undecidable.
Moreover, assuming LEM, also the problem Z̃F`c is undecidable.

Note that Fact 8.35 almost yields deductive conservativity, i.e. the fact that if Z′ proves
a symbol-free formula over Σ̃ then so does Z̃′. The only missing lemma is that from Z̃′
such a formula ϕ is provably equivalent to its translation ϕ̃ (after tacitly embedding ϕ
into the full signature Σ):

Lemma 8.38. Z̃′ ` ϕ↔̇ϕ̃ for all ϕ over Σ̃.

Proof. By induction on ϕ, all composite cases are trivial. For the atom x ∈ y, we have
to show its equivalence to ∃̇x′. x ≡ x′ ∧̇ ∃̇y′. y ≡ y′ ∧̇ x ∈ y, similarly for x ≡ y.

We can then record conservativity results as follows:

Fact 8.39. If Z′/ Z/ ZF proves a formula ϕ over Σ̃, then so does Z̃′/ Z̃/ Z̃F.

Proof. First let Z′ ` ϕ. Then by Fact 8.35 we have Z̃′ ` ϕ̃ and thus Z̃′ ` ϕ by Lemma 8.38.
If we instead suppose Z ` ϕ, we have in particular Z′++Γ ` ϕ, where Γ contains finitely

many instances of the separation scheme. Then by the generalised goal used in the proof
of Lemma 8.38 also Z̃′ ++ Γ̃ ` ϕ̃ and therefore Z̃′ ++ Γ̃ ` ϕ again using Lemma 8.38. We
hence conclude Z̃ ` ϕ since every translated instance of separation for a formula ψ can
be proved from the respective instance for ψ̃ available in Z̃.
The case for ZF is analogous by further decomposing into the finitely many used in-

stances of the replacement scheme.

For the sake of completeness, we also establish the converse directions. To this end, we
first verify a deductive counterpart of Lemma 8.31:

Lemma 8.40. Z′ ` Z̃′, i.e. Z′ proves every axiom from Z̃′ (embedded into Σ).
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8. First-Order Set Theory

Proof. By instantiating every existentially formulated axiom from Z̃′ with the respective
symbol available in Z′.

Fact 8.41. If Z̃′/ Z̃/ Z̃F proves a formula ϕ over Σ̃, then so does Z′/ Z/ 2ZF.

Proof. If Z̃′ ` ϕ, we obtain the same deduction if we consider both Z̃′ and ϕ embedded
into the full signature. Then by Lemma 8.40 we can conclude that Z′ ` ϕ.
The respective results for Z̃ and Z̃F follow by similar decompositions regarding the

axiom schemes as used in the proof of Fact 8.39.

Note that in the absence of unique choice there is no direct proof for semantic conser-
vativity, i.e. the fact that if Z′ validates a symbol-free formula over Σ̃ then so does Z̃′,
since this would involve constructing a Σ-model from a Σ̃-model, where the latter only
exhibits the set operations existentially.
We conclude this section with a brief observation concerning the further reduced sig-

nature Σ̌ := (_ ∈ _), full detail can be found in the Coq development. Since equality
is expressible in terms of membership by x ≡ y := ∀̇z. x ∈ z ↔̇ y ∈ z, we can rephrase
the above translation to yield formulas ϕ̌ : FΣ̌ satisfying the same properties as stated in
Facts 8.32 and 8.35 for a corresponding axiomatisation Ž′. Moreover, since Ž′ does not
refer to primitive equality, we can freely interpret it with the fully constructive model
given in Theorem 8.6 and therefore obtain PCP � Ž′ without assumptions. This allows us
to deduce the undecidability of the Entscheidungsproblem in its sharpest possible form:

Theorem 8.42. First-order logic with a single binary relation symbol is undecidable.

Proof. By Fact 5.48 and the reduction PCP � Ž′.

Note however that this observation is strictly subsumed by the previous Theorem 5.43.

8.5. Undecidability of Finitary Set Theory
In this final section of the chapter, we consider the undecidability of the finitary set the-
ories introduced in Section 5.6. Given our setting, the undecidability and incompleteness
of such systems can be established either by indirectly reducing from set theories such
as Z′ or by modifying the direct reduction function PCP � Z′. We discuss both of these
strategies where applicable.
That FZ′ as a mere subset of Z′ is undecidable follows immediately by our general

considerations regarding undecidability of first-order axiom systems.

Fact 8.43. Z′ � FZ′ and therefore, provided CE, also PCP � FZ′.

Proof. By (2) of Fact 5.49 and Theorem 8.26.

However, this direct result is unsatisfactory by the reliance on the extensional standard
model T of Z′ requiring CE and containing infinite sets. So in order to show FZ′ + ¬Inf
undecidable and dispense with CE, we have to rework the reduction PCP � Z′ from
Section 8.3 to avoid mention of ω, such that the constructive model of hereditarily finite
sets [227] can be employed.
In this model, the numerals are exactly the hereditarily transitive sets (i.e. sets x that

are transitive, meaning y ⊆ x for all y ∈ x, and every element of x is transitive, written
HT(x)), allowing us to modify the reduction formula ϕS given a PCP-instance as follows:

ϕS := ∃̇k, f, B, x. k ∈ ω ∧̇ f � k ∧̇ . . .  ψS := ∃̇k, f, B, x.HT(k) ∧̇ f � k ∧̇ . . .
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8.5. Undecidability of Finitary Set Theory

Note that the bound k ∈ ω was only used to express that k is a natural number such
that (at least in standard models) the approximation f � k corresponds to a faithful
accumulation of PCP-solutions. This bound can be replaced by any defining property of
numerals in the intended model and in the present case, HT(x) is particularly easy to
express.
By accordingly modifying the proofs for ϕS we can verify the new reduction ψS with

respect to standard models, in which every hereditarily transitive set is a numeral:

Lemma 8.44. The following facts about ψS hold:

1. If PCPS then FZ′ � ψS.

2. Every standard modelM � FZ′ withM � ψS yields PCPS.

3. If PCPS then FZ′ ` ψS.

Proof. Analogous to Facts 8.21, 8.23, and 8.24, using the fact that HT(n) for all n : N.

So we can conclude the undecidability of FZ′ and FZ′ + ¬Inf as usual:

Theorem 8.45. PCP � FZ′ and PCP � FZ′ + ¬Inf.

Proof. By applying Theorem 5.47 to Lemma 8.44 and Theorem 8.16.

Next aiming for the alternative axiomatisation PS+Ind, we again begin with the indirect
argument to establish undecidability of the core PS, which is still compatible with Z′.
First note that, while the usual ZF-operations can define adjunction, the converse does
not hold since the ZF-operations are strictly stronger on infinite models. We can therefore
not directly translate formulas in the ZF-signature to the new signature ΣPS. Instead,
the translation has to go through the function-free signature Σ̃ := (_ ≡ _, _ ∈ _) used
in Section 8.4, reusing the verified translation ϕ̃.

Fact 8.46. PCP � PS

Proof. We use the reduction formula ϕPS
S := Z̃′ →̇ ϕ̃S tacitly embedding the translated

formulas from Z̃′ and ϕ̃S in Σ̃ into the signature ΣPS. Then the sufficient facts are that
PCPS implies PS ` ϕPS

S and, conversely, that PS � ϕPS
S implies PCPS.

Regarding the former, from PCPS we obtain Z̃′ ` ϕ̃S from Facts 8.24 and 8.35. So in
particular ` Z̃′→̇ϕ̃S and by weakening (and correctness of the tacit embedding) PS ` ϕPS

S .
Regarding the latter, suppose PS � ϕPS

S . The (intensional) standard model A from
Theorem 8.6 interprets the full ZF-signature, so in particular ΣPS and the axioms of PS.
We therefore obtain that A � ϕPS

S . Then by Lemmas 8.30 and 8.31 we can deduce that
A (now equipped with the full ZF-structure again) satisfies ϕS and conclude PCPS with
Fact 8.23.

As with Fact 8.43 before, this indirect method does not extend to the axiomatisation
PS + Ind, which is not satisfied by the standard model A. We therefore sketch the direct
reduction from PCP obtained by further modifying the formula ψS , full detail is given in
the Coq formalisation.
First, the encodings of numbers and strings is mostly unaffected since the adjunction

operation is exactly the natural successor function and can define unordered pairs {x, y}
by x.y.∅, from which we obtained the ordered pairs used for strings. Secondly, the only
other usage of a ZF-function in ψS is the (binary) union used to implement the operation
S�B recursively, which can be replaced by any set enforced to behave accordingly. Thus
we obtain a formula ψPS

S in the signature ΣPS that we can verify to capture PCP as usual:
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8. First-Order Set Theory

Lemma 8.47. The following facts about ψPS
S hold:

1. If PCPS then PS � ψPS
S .

2. Every standard modelM � PS withM � ψPS
S yields PCPS.

3. If PCPS then PS ` ψPS
S .

Proof. Analogous to Lemma 8.44 with the expectable differences regarding the altered
data encodings and the elimination of binary unions.

Theorem 8.48. PCP � PS and PCP � PS + Ind.

Proof. By applying Theorem 5.47 to Lemma 8.47 and Theorem 8.17.

We conclude with a formulation of PS in the binary signature Σ̌ := (_ ∈ _) introduced
in Section 8.4. As done with Z′ to obtain Ž′, we can replace the two axioms from PS
specifying ∅ and x.y by existentially quantified versions, express equality via membership,
and hence obtain the axiomatisation P̌S over Σ̌. This is a particularly compact system
showing a single binary relation symbol undecidable, by virtue of the following reduction:

Fact 8.49. Ž′ � P̌S and thus also PCP � P̌S.

Proof. To obtain Ž′ � P̌S we use (1) of Fact 5.49, so we have to show Ž′ ` P̌S. The only
axiom of P̌S not already present in Ž′ is the existential specification of adjunction, which
can be established by the existential specification of union and pairing available in Ž′.
The full reduction PCP � P̌S is obtained by composition with the reduction PCP � Ž′
underlying Theorem 8.42.

8.6. Discussion and Related Work
Models of set theory in type theory In comparison to prior work by Werner [263] and
Barras [10] based on Aczel’s interpretation of constructive set theory in type theory [2],
we clarify that tree description (TD) rather than a full choice axiom is sufficient for
the extensional model constructions. In contrast, in alternative type theories such as
homotopy type theory [249], a system coming with higher inductive types and the strong
extensionality principle of univalence, extensional model constructions do not rely on
additional quotient axioms [155, 13, 77].

Mechanised first-order set theory The Isabelle/ZF library contains many results about
ordinals and cardinals as well as proofs of the equivalence between 20 formulations of the
axiom of choice (AC) and 7 formulations of the well-ordering principle (WO) [191]. More-
over, Paulson [189] mechanises the relative consistency of the continuum hypothesis (CH)
and AC based on the constructible universe L. Using Coq, Sun and Yu [240] mechanise AC
and some of its equivalences in Morse-Kelley set theory. Working in Lean, Han and van
Doorn [83, 84] mechanise the independence of CH over ZFC. Notably, they establish the
consistency part by σ-closed forcing instead of the classical approach via constructibility
chosen by Paulson. We are not aware of any previous mechanised undecidability proof
for set theory.
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9. Second-Order Set Theory

Some operations in ZF set theory have a second-order character: starting from a set x,
separation yields subsets { y ∈ x | P y } based on predicates P , and replacement yields
image sets { z | ∃y ∈ x.R y z } based on functional relations R. In the conventional ax-
iomatisation of first-order ZF studied in the previous chapter, the predicates P and
relations R were required to be expressible in the syntax of first-order logic. However, in
Zermelo’s original formulation of set theory, no such requirement is imposed [268, 269]
and it were Fraenkel and Skolem who argued for it [220], with long-lasting success.
In our setting, Zermelo’s axiom system could be expressed in the syntax of second-

order logic given in Section 7.1, where such a deep embedding would allow to study
meta-theoretic properties like undecidability and incompleteness as before. To study
more internal statements, i.e. consequences of the axiom system, there is a shortcut: one
can immediately work on the semantic level in form of an assumed model characterised
by type-theoretic operations and axioms. Such a shallow embedding disposes of the need
for an explicit syntax and is only applicable to second-order set theory where separation
and replacement range over all type-theoretic predicates with no syntactic restriction.
In this chapter, we use a shallow representation of second-order ZF to study several

internal results concerned with the cumulative hierarchy and ordinal numbers, as well as
connections of the continuum hypothesis and the axiom of choice. With this approach,
we attain a very natural and accessible angle on formalised set theory in CIC, particularly
comfortable to mechanise. Differing from textbook presentations, we for instance study
the cumulative hierarchy and ordinals numbers as inductive predicates and state the
continuum hypothesis and the axiom of choice with reference to type-theoretic functions.
As discussed in Section 7.1 for the case of PA, replacing the axiomatic schemes of

first-order ZF by single higher-order statements yields a stronger and semantically more
determined theory, especially in the presence of excluded middle (LEM). In fact, as a
consequence of Zermelo’s non-constructive embedding theorem [269], models of second-
order ZF only vary in the height of their internal cumulative hierarchies [255]. Notably,
this height is reflected by the amount of Grothendieck universes, i.e. large sets that are
closed under all axiomatic set operations, thus adding axioms controlling their amount
yields categorical axiomatisations describing unique models (up to isomorphism).
In Aczel’s sets-as-trees interpretation [2], already observed in the previous chapter to

provide the second-order operations, Grothendieck universes arise from embedding the
tree model at a low type universe into itself at a higher type universe. The relevance
of the existence of Grothendieck universes is then the induced measure of consistency
strength: a large type-theoretical model of set theory proves the consistency of axiomatic
systems like ZF with certain large cardinal axioms. Specifically, since the type theory
underlying CIC comes with a countably infinite hierarchy of type universes, we can iterate
the mentioned self-embedding and thus obtain models with finitely many Grothendieck
universes. This correspondence of expressive strength of a constructive type theory and
ZF set theory with a hierarchy of Grothendieck universes was observed by Werner [263]
and Aczel [3]. Our mechanisation of these large model constructions relies on universe-
polymorphic [233] definitions of the tree type and the recursive embedding function.
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The benefits of shallowly embedded second-order set theory are best illustrated with
a further case study included in this chapter. An early and somewhat surprising result
in axiomatic set theory states that the generalised continuum hypothesis (GCH) implies
the axiom of choice (AC), announced by Tarski in 1926 [161] and proven by Sierpiński in
1947 [218]. GCH, generalising Cantor’s continuum hypothesis that there are no cardinal-
ities between the set N of natural numbers and its power set P(N), rules out cardinalities
between X and P(X) for every infinite set X. Therefore, GCH narrows the range of the
power set operation otherwise left rather underspecified by the usual Zermelo-Fraenkel
axioms. AC, in one typical set-theoretic formulation, states that every setX of non-empty
sets admits a choice function f such that f(x) ∈ x for all x ∈ X.
That GCH as a statement about power sets and cardinality implies AC, a statement

providing a means to uniformly pick elements from non-empty sets, may seem surprising
indeed [72]. However, since AC is equivalent to the well-ordering theorem (WO), assert-
ing that every (infinite) set can be well-ordered, and since well-orders transport along
injections, there is a well-established strategy how Sierpiński’s result can be deduced: to
any infinite set X one can associate a well-ordered set ℵ(X) such that iterated application
of GCH enforces an injection from X into ℵ(X) and therefore induces WO. As a result
in first-order set theory, Sierpiński’s theorem has been canonised in textbooks1 and in
fact mechanised in Metamath by Carneiro [33]. In this chapter, in contrast, we study
Sierpiński’s theorem as a statement in second-order set theory, disposing of the need for
unhandy first-order encodings and provide a respective mechanisation in Coq.
Since this chapter will be concerned with internal results of set theory, it will often be

necessary to assume classical logic in form of LEM or other axioms. To still track the use
of these assumptions, we will from now explicitly annotate statements relying on classical
axioms (see Lemma 9.22 for an example). Only extensionality axioms like FE and PE will
be assumed tacitly, then clearly indicated in the introduction of each section.
Outline In Section 9.1, we introduce several shallow axiomatisations of second-order set
theory 2ZF, including variants 2ZFn controlling the amount of Grothendieck universes.
Subsequently, we investigate the cumulative hierarchy based on an inductive definition
(Section 9.2) and establish categoricity results and some of their applications (Section 9.3).
Then in Section 9.4 we construct large models of 2ZFn containing finitely many universes,
continuing on the model constructions already presented in Section 8.2. Finally, we
introduce notions of cardinality as well as an inductive definition of ordinals (Section 9.5)
and outline a proof of Sierpiński’s theorem in second-order set theory (Section 9.6). We
close in Section 9.7 with some general remarks and an overview of related work.
Sources Sections 9.1 to 9.4 are based on the journal paper [121] with Gert Smolka
which extends [128] with material from [129]. Sections 9.5 and 9.6 are based on the
publication [127] with Felix Rech, including some results of his Master’s thesis [202].
All reused text was mostly written by the author of this thesis, with the exception of
Sections 9.5 and 9.6 containing passages written jointly with Felix Rech.
Contributions Main contributions of this chapter are the theory of the inductively char-
acterised cumulative hierarchy and ordinals as well as the proof of Sierpiński’s theorem in
2ZF, all mechanised in Coq. On top of the collaborative work on the respective projects,
further main contributions made by the author of this thesis are the formulation of the
concrete axiomatisations 2ZFn, the adaptation of Zermelo’s categoricity result to 2ZFn,
and the construction of the (unique) large models of 2ZFn in CIC.

1See the textbook by Smullyan and Fitting [229] for an example. We follow their wording of “Sier-
piński’s theorem” for simplicity and are aware of other results referred to by the same name.
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9.1. Axiomatisations
In this section, we introduce various shallow axiomatisations of second-order set theory
differing in their provided operations, their interpretation of equality, and their strength
regarding the available amount of Grothendieck universes. Additionally, we clarify the
connection of two forms of the replacement operation and discuss the notions of model
embeddings and isomorphisms.
We introduce a few preliminary definitions and notations. For any type A we call a

unary predicate P : A→ P a class over A and write a ∈ P for P a. As always, in every
context of the symbol ∈ we employ the canonical meaning of ⊆, so for instance P ′ ⊆ P
denotes that a ∈ P for all a ∈ P ′. Furthermore, for a binary relation R : A → B → P
on two types A and B we define classes dom(R) :=λa.∃b. R a b and ran(R) :=λb. ∃a.R a b
representing domain and range of R. Finally, two types A and B are called equipotent if
there are mutually inverse functions f : A→ B and f−1 : B → A.

Definition 9.1. A set structure is a type M with a relation ∈: M → M → P called
membership. M is a ZF-structure if it further provides the following constants:

∅ :M (empty set)
{_,_} :M→M→M (unordered pair)⋃ :M→M (union)

P :M→M (power set)

_ ∩ _ : (M→ P)→M→M (separation)
_@_ : (M→M)→M→M (replacement)

δ : (M→ P)→M (description/unique choice)

Note that the upper four constants are first-order, whereas the lower three operations
take classes or functions as arguments. A class P over a set structureM is called small
if there exists x : M that agrees with P , i.e. y ∈ x iff y ∈ P for all y : M. Given
any ZF-structure, we employ the usual shorthands {x} := {x, x} and x ∪ y := ⋃

{x, y}.
Moreover, we identify sets x with their corresponding classes λy. y ∈ x.

Definition 9.2. We write A for the class Aε of well-founded sets (cf. Section 2.1).
The corresponding induction principle eliminating into P is called ∈-induction and the
recursion principle eliminating into T is called ∈-recursion.

Definition 9.3. A ZF-structureM is a model of 2ZF if the following propositions hold:

Ext : x ⊆ y → y ⊆ x→ x = y

WF : x ∈ A
Inf : ∃ω.∀x. x ∈ ω ↔ ∃n : N. x = σn ∅

Eset : x 6∈ ∅
Pair : z ∈ {x, y} ↔ z = x ∨ z = y

Union : z ∈
⋃
x↔ ∃y ∈ x. z ∈ y

Power : y ∈ P(x)↔ y ⊆ x

Sep : y ∈ P ∩ x↔ y ∈ x ∧ y ∈ P (P :M→ P)
Frep : z ∈ F@x↔ ∃y ∈ x. z = F y (F :M→M)
Desc : (∃!x. x ∈ P )→ δP ∈ P (P :M→ P)
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9. Second-Order Set Theory

We write M � 2ZF if M is a model of 2ZF and similar for upcoming axiomatisations.
We define 2ZF∗ to be 2ZF without Inf and 2Z to be 2ZF without Frep and Desc.

Note that the first three axioms determine structural aspects of the available models
whereas the other axioms clarify the membership laws of the first- respectively second-
order set operations.
Our axiomatisation is similar to a formulation of intensional second-order ZF given by

Barras [10]. In comparison, 2ZF imposes extensionality via Ext, however, we will also
encounter intensional versions in Definition 9.13. We further use a version of replacement
for functions together with a description operator and reconstruct the equivalent relational
formulation from Barras [10]. For this and the upcoming facts we fix a modelM of 2ZF.

Definition 9.4. We set R@x := (λy. δ(Ry))@(dom(R) ∩ x).

Relational replacement (Rep) then holds for the class F(M) of functional relations
R :M→M→ P, i.e. relations R with y = y′ whenever Rxy and Rxy′.

Fact 9.5. R ∈ F(M)→ (z ∈ R@x↔ ∃y. y ∈ x ∧Ry z)

Proof. Let R be functional and let z ∈ R@x. Then by the above definition and the
functional replacement axiom we know there is y ∈ dom(R) ∩ x with z = δ(Ry). By
y ∈ dom(R) and the functionality of R we know that the description axiom applies, so
Ry (δ(Ry)) and thus Ry z.
Conversely, suppose that there is y ∈ x with Ry z. By this assumption we can again

deduce Ry (δ(Ry)) and hence z = δ(Ry). Since we also know y ∈ dom(R) the functional
replacement axiom implies z ∈ R@x.

Relational replacement in turn is strong enough to easily express the operations of
pairing, separation, functional replacement and description (cf. [241], [188]).

Fact 9.6. The following equations hold:
1. {x, y} = (λab. (a = ∅ ∧ b = x) ∨ (a = P(∅) ∧ b = y))@P(P(∅))
2. P ∩ x = (λab. a ∈ P ∧ a = b)@x
3. F@x = (λab. b = F a)@x
4. δP = ⋃ ((λab. b ∈ P )@P(∅)) if there is a unique x ∈ P.

Proof. Since all relations employed are functional, the equations are straight-forward by
Rep and the other set operation axioms.

Thereby we separate relational replacement into a constructive and a non-constructive
component, where only the former is definable for the axiom-free tree model in Section 8.2,
as will be stated in Theorem 9.53. Description expresses unique choice on ZF-structures.
We now turn to the question what it means for a set or model to be large. A natural

criterion is to ask whether a set is closed under the set operations, meaning that it may
serve as a full universe for set-theoretic constructions and in fact constitutes a submodel
(Lemma 9.62). Then a nested hierarchy of universes is an indicator for increasing size.
An alternative approach would be to explicitly examine the set cardinalities, where so-
called strongly inaccessible cardinals witness largeness. In fact, in the presence of the
axiom of choice, both approaches coincide [264] and in this chapter we develop the more
instructive approach via universes, mostly following the definitions used in [264].

Definition 9.7. We call a class P over M transitive if y ∈ x ∈ P implies y ∈ P .
Similarly, we say that P is swelled if y ⊆ x ∈ P implies y ∈ P .
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9.1. Axiomatisations

Consider the von Neumann ordinal 3 := σ3 ∅ = {∅, {∅} , {∅, {∅}}}. It is easy to verify
that 3 is transitive – a general property of von Neumann ordinals n := σn ∅. However, 3
is not swelled given that {{∅}} ⊆ {∅, {∅}} ∈ 3 but {{∅}} 6∈ 3.

Definition 9.8. A transitive class U over M is ZF-closed if it is closed under all set
operations, i.e. for all x, y ∈ U , classes P :M→ P and functions F :M→M we have:

∅ ∈ U P(x) ∈ U
{x, y} ∈ U P ∩ x ∈ U⋃
x ∈ U F@x ∈ U if F@x ⊆ U

If U is ZF-closed and small, we call it (and the corresponding set) a universe.

Given that the axiomatisation 2ZF is redundant, as pairing and separation can be
derived (Facts 9.5 and 9.6), we can give a simplified criterion for ZF-closed classes:

Fact 9.9. A class U over M is ZF-closed iff it is transitive, contains ∅, and is closed
under union, power, and relational replacement.

Proof. Suppose U is ZF-closed, we just have to show that it is closed under relational
replacement. That is, we assume x ∈ U and R@x ⊆ U for a functional relation R
and have to show that R@x ∈ U . Since U is closed under separation we know that
dom(R) ∩ x ∈ U . Thus we can apply the closure under functional replacement to obtain
R@x ∈ U where the necessary condition is exactly R@x ⊆ U .
Now let U be closed under union, power and relational replacement, then we have to

show closure under pairing, separation and functional replacement. This follows since we
can express these operations by relational replacement.

Note that a ZF-closed class U yields a submodelMU that satisfies 2ZF∗ (Lemma 9.62).
As ZF-closed classes are not demanded to contain the infinite set ω in general, the sub-
modelMU does not necessarily satisfy Inf.

Definition 9.10. We define the strength of sets by saying that every set has strength 0
and that x has strength n+ 1 if there is a universe U ∈ x of strength n. Then we define:

• 2ZF≥n is 2ZF∗ plus asserting a set of strength n,

• 2ZFn is 2ZF≥n plus excluding sets of strength n+ 1,

• 2ZF≥ω is 2ZF plus asserting sets of all strengths n.

IfM � 2ZF≥n for some n we say thatM has strength n.

Note that the notion of set and model strength is only a lower bound and hence not
unique, given that every set respectively model of strength n also has strength m for all
m < n. Further, 2ZF is equivalent to 2ZF≥1 since a model contains ω exactly if it contains
a set of strength 1. Due to this equivalence and therefore to avoid 2ZF0 being inconsistent,
the definition of 2ZF≥n must be based on the more general 2ZF∗ from Definition 9.3 rather
than 2ZF.
In the light of the observations in Section 8.2, we cannot expect to freely obtain ex-

tensional models of full 2ZF. Hence we also consider some more intensional versions of
structures and axiomatisations, which will have models without additional assumptions.

Definition 9.11. ZF ′-structures are ZF-structures without a constant for description.
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9. Second-Order Set Theory

Definition 9.12. LetM be a set structure. We define the relation x ≡ y := x ⊆ y∧y ⊆ x
called set equivalence with equivalence classes [x] := λy. y ≡ x. Further, we say that
classes P :M→ P and functions F :M→M overM respect ≡, if

• ∀x, x′. x ≡ x′ → x ∈ P → x′ ∈ P and

• ∀x, x′. x ≡ x′ → F x ≡ F x′.

For these properties we write P :M ≡→ P and F :M ≡→M, respectively.

Definition 9.13. A ZF-structureM is an intensional model if the following hold:

Morph : x ≡ x′ → x ∈ y → x′ ∈ y
WF : x ∈ A
Inf : ∃ω.∀x. x ∈ ω ↔ ∃n : N. x ≡ σn ∅

Eset : x 6∈ ∅
Pair : z ∈ {x, y} ↔ z ≡ x ∨ z ≡ y

Union : z ∈
⋃
x↔ ∃y ∈ x. z ∈ y

Power : y ∈ P(x)↔ y ⊆ x

Sep : y ∈ P ∩ x↔ y ∈ x ∧ y ∈ P (P :M ≡→ P)
Frep : z ∈ F@x↔ ∃y ∈ x. z ≡ F y (F :M ≡→M)
Desc1 : (∃x ∀y. y ∈ P ↔ y ∈ [x])→ δP ∈ P (P :M ≡→ P)
Desc2 : (∀x. x ∈ P ↔ x ∈ P ′)→ δP = δP ′ (P, P ′ :M ≡→ P)

We denote the class of ZF-structures satisfying these axioms by 2ZF≡. Further, 2ZF′≡
denotes the class of ZF ′-structures satisfying all axioms of 2ZF≡ but Desc1 and Desc2.

Note that 2ZF≡ essentially expresses 2ZF with equalities replaced by equivalences and
with extensionality substituted by asserting membership to be a morphism for equiva-
lence. Furthermore, the second-order membership laws have additional side conditions
requiring the argument classes and functions to respect equivalence. Description is ad-
justed to provide witnesses for equivalence classes. In total, extending 2ZF≡ by Ext is
exactly equivalent to 2ZF.
One recurring pattern in the remainder of this chapter is the situation where we have

one model embedded into another, witnessed by a ∈-preserving injection. For such em-
beddings, both models agree on the notion of universes and strength of corresponding
sets. LetM and N be models of ZF≡.

Definition 9.14. A function h :M→N is called an embedding if

1. x ∈ y ↔ hx ∈ h y and

2. For all x′ ∈ h y there is x ∈ y with hx ≡ x′.

We define the image of a class P by h[P ] := λx′. ∃x. h x ≡ x′ ∧ x ∈ P .

Note that embeddings are in particular injective, so it is natural to call an embedding
an isomorphism if it is surjective in addition. We now assume an embedding h.

Fact 9.15. P is ZF-closed iff h[P ] is ZF-closed.
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9.2. The Cumulative Hierarchy

Proof. Clearly h respects all set operations since these are uniquely specified by their
membership laws. This implies properties like h ∅ = ∅, h (⋃x) = ⋃(hx), etc., ultimately
transporting all structure from a ZF-closed class P to h[P ] and back.

Corollary 9.16. A set U is a universe iff hU is a universe.

Proof. Follows since h[U ] agrees with hU .

Fact 9.17. A set x has strength n iff hx has strength n.

Proof. By induction on n. The case of n = 0 is trivial, so suppose x has strength n+ 1.
Then there is a universe U ∈ x of strength n. By the inductive hypothesis we know
that hU has strength n and by hU ∈ hx we conclude that hx has strength n + 1. The
converse direction is analogous.

9.2. The Cumulative Hierarchy
It is a main feature of ZF-like set theories that the domain of sets can be stratified by
a class of ⊆-well-ordered cumulative stages. The resulting hierarchy yields a complexity
measure for every set via the first stage including it, the so-called rank. One objective of
our work is to illustrate that studying the cumulative hierarchy becomes very accessible
in a constructive type theory with inductive predicates. However, since establishing the
linearity and least elements of the well-ordering relies on classical reasoning, many results
in this section will depend on LEM. In this section, we work in a fixed modelM � 2ZF.

Definition 9.18. We define the inductive class S of stages by the following rules:

x ∈ S
P(x) ∈ S

x ⊆ S⋃
x ∈ S

We refer to the elimination principle of S by stage induction.

Fact 9.19. The following hold:

1. ∅ is a stage.

2. All stages are transitive.

3. All stages are swelled.

Proof. We prove the respective statements in order.

1. Holds by the second definitional rule as ∅ ⊆ S.

2. Holds by stage induction using that power and union preserve transitivity.

3. Holds again by stage induction.

The next fact expresses that union and separation maintain the complexity of a set
while power and pairing constitute an actual rise of complexity.

Fact 9.20. Let x be a stage, P be a class and a, b ∈ x then:
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9. Second-Order Set Theory

1. ⋃ a ∈ x
2. P(a) ∈ P(x)

3. {a, b} ∈ P(x)

4. P ∩ a ∈ x

Proof. Again we show all statements independently.

1. Holds by stage induction with transitivity used in the first case.

2. Holds also by stage induction.

3. This is straight-forward using the membership axiom for pairs.

4. Follows since x is swelled and P ∩ a ⊆ a.

We now show that the class S is well-ordered by ⊆. Since ⊆ is a partial order we just
have to prove linearity and the existence of least elements, which both rely on LEM. An
economical proof of linearity employs the following double-induction principle [229]:

Fact 9.21. For a binary relation R on stages it holds that Rxy for all x, y ∈ S if

1. R (P(x)) y whenever Rxy and Ry x and

2. R (⋃x) y whenever Rz y for all z ∈ x.

Proof. By nested stage induction.

Lemma 9.22 (LEM). If x, y ∈ S, then either x ⊆ y or P(y) ⊆ x.

Proof. By double-induction we just have to establish (1) and (2) for R instantiated by
the statement that either x ⊆ y or P(y) ⊆ x. Then (1) is directly by case analysis on
the assumptions Rxy and Ry x and using that x ⊆ P(x) for stages x. (2) follows from
a case distinction whether or not y is an upper bound for x in the sense that z ⊆ y for
all z ∈ x. If so, we know (⋃x) ⊆ y. If not, there is some z ∈ x with z 6⊆ y. So by the
assumption Rz y only P(y) ⊆ z can be the case which implies P(y) ⊆ ⋃x.
Fact 9.23 (LEM). The following alternative formulations of the linearity of stages hold:

1. ⊆-linearity: x ⊆ y or y ⊆ x

2. ∈-linearity: x ⊆ y or y ∈ x

3. Trichotomy: x ∈ y or x = y or y ∈ x

Proof. (1) and (2) are by case distinction on Lemma 9.22. Then (3) is by (2).

Lemma 9.24 (LEM). If p is an inhabited class of stages, then there exists a least stage
in p. This means that there is x ∈ p such that x ⊆ y for all y ∈ p.

Proof. Let x ∈ p. By ∈-induction we can assume that every y ∈ x with y ∈ p admits a
least stage in p. So if there is such a y there is nothing left to show. Conversely, suppose
there is no y ∈ x with y ∈ p. In this case we can show that x must be the least stage in
p by ∈-linearity.

The second standard result about the cumulative hierarchy is that it exhausts the whole
domain of sets and hence admits a total rank function.

Definition 9.25. We call a ∈ S the rank of a set x if x ⊆ a but x 6∈ a. Since the rank
is unique by trichotomy we can refer to it via a function ρ :M→M using description.
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9.2. The Cumulative Hierarchy

Lemma 9.26 (LEM). We have ρ x = ⋃
P@(ρ@x) for every x. Thus every set has a rank.

Proof. For a set x we can assume that every y ∈ x has rank ρ y by ∈-induction. Then
consider the stage z :=⋃P@(ρ@x). Since for every y ∈ x we know y ∈ P(ρ y), we deduce
x ⊆ z. Moreover, suppose it were x ∈ z, so x ∈ P(ρ y) for some y ∈ x. Then this would
imply the contradiction y ∈ ρ y, so we know x 6∈ z. Thus z must be the rank of x.

It follows that the hierarchy of stages exhausts all sets:

Fact 9.27 (LEM). For every x : X there is a ∈ S with x ∈ a.

Proof. Holds since every set x is an element of the stage P(ρ x).

We now turn to studying classes of stages that are closed under some or all set con-
structors. The two introduction rules for stages already hint at the common distinction of
successor and limit stages. However, since we do not require x to contain an infinitely in-
creasing chain in the second rule, this distinction will not exactly mirror the non-exclusive
rule pattern.

Definition 9.28. We call x ∈ S a limit if x = ⋃
x and a successor if x = P(y) for some

y ∈ S. Note that this means that ∅ is a limit.

Fact 9.29 (LEM). If x ⊆ S, then either ⋃x ∈ x or x ⊆ ⋃x.
Proof. Suppose it were x 6⊆ ⋃

x so there were y ∈ x with y 6∈
⋃
x. Then to establish⋃

x ∈ x it suffices to show that y = ⋃
x. Since ⋃x is the unique ⊆-greatest element of

x, it is enough to show that y is a ⊆-greatest element, i.e. that z ⊆ y for all z ∈ x. So
let z ∈ x, then by linearity of stages it must be either z ⊆ y or y ∈ z. The latter case
implies y ∈ ⋃x contradicting the assumption.

Lemma 9.30 (LEM). Every stage is either a limit or a successor.

Proof. Let x be a stage and apply stage induction. In the first case we know that x is a
successor. In the second case we know that x is a set of stages that are either successors
or limits and want to derive a decision for ⋃x. Now we distinguish the two cases of
Fact 9.29. If ⋃x ∈ x, the inductive hypothesis yields the decision. If x ⊆ ⋃x, it follows
that ⋃x is a limit.

Lemma 9.31. If x is an inhabited limit, then x is transitive, contains ∅, and is closed
under union, power, pairing, and separation.

Proof. Transitivity and closure under union and separation hold for arbitrary stages by
Facts 9.19 and 9.20. Further, x must contain ∅ since it can be constructed from the set
witnessing inhabitance by separation. The closure under power follows from the fact that
every set y ∈ x occurs in a stage a ∈ x. Then finally, the closure under pairing follows
from Fact 9.20.

Hence, inhabited limits almost satisfy all conditions that constitute universes, only the
closure under replacement is not necessarily given. So in order to study actual inner
models one can examine the subclass of inhabited limits closed under replacement. In
fact, this subclass turns out to be exactly the universes.

Lemma 9.32. If a ∈ u for a universe u, then ρ a ∈ u.
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9. Second-Order Set Theory

Proof. By ε-induction we may assume that ρ b ∈ u for all b ∈ a, so we know ρ@a ∈ u by
the closure of u under replacement. Also, we know ρ a = ⋃

P@(ρ@a) by Lemma 9.26.
Thus ρ a ∈ u follows from the closure properties of u.

Lemma 9.33. Universes are exactly inhabited limits closed under replacement.

Proof. The direction from right to left is simple given that limits are already closed under
all set constructors but replacement. Conversely, a universe is closed under replacement
by definition and it is also easy to verify u = ⋃

u given that for x ∈ u we know that
x ∈ P(ρ x) ∈ u by the previous lemma. So we just need to justify that u is a stage. This
is done by showing that u = ⋃(S ∩u). The inclusion u ⊇ ⋃(S ∩u) is by transitivity of u.
For the converse suppose x ∈ u. Then x ⊆ ⋃(S∩u) again by knowing x ∈ P(ρ x) ∈ u.

9.3. Zermelo’s Quasi-Categoricity Theorem

Turning to model-theoretic considerations, in this section we prove the embedding theo-
rem given by Zermelo [269]. Phrased for our concrete axiomatisation, it states that of any
two models of 2ZF one embeds as a universe into the other. As applications, we derive
that 2ZF is categorical in every cardinality, that controlling the height of the cumula-
tive hierarchy yields categorical axiomatisations, and that therefore internal properties
of models such as the axiom of choice are determined. The embedding theorem and the
derived results rely on classical reasoning, so we still often assume LEM in this section.
Given two models M and N of 2ZF, we define a structure-preserving embedding ≈,

called ∈-bisimilarity, and prove that ≈ is either total or surjective. In this case we call ≈
maximal, and if it is both total and surjective, we call it full. If ≈ is full, we callM and
N isomorphic. As a convention, we let x, y, z range over the sets inM and a, b, c range
over the sets in N for the remainder of this section.

Definition 9.34. We define an inductive predicate ≈ :M→N → P by

∀y ∈ x.∃b ∈ a. y ≈ b ∀b ∈ a.∃y ∈ x. y ≈ b
x ≈ a

We call the left defining condition (bounded) totality on x and a, denoted by x . a. The
right condition is called (bounded) surjectivity on x and a, denoted by x / a. We call ≈
membership bisimilarity and if x ≈ a we call x and a bisimilar.

The following lemma captures the symmetry present in the definition:

Lemma 9.35. x ≈ a iff a ≈ x and x . a iff a / x.

Proof. We first show that a ≈ x whenever x ≈ a, the converse is symmetric. By
∈-induction on x we may assume that b ≈ y whenever y ≈ b for some y ∈ x. Now
assuming x ≈ a we show a . x. So for b ∈ a we have to find y ∈ x with b ≈ y. By x / a
we already know there is y ∈ x with y ≈ b. Then the inductive hypothesis implies b ≈ y
as wished. That x . a follows analogously and the second statement is a consequence of
the first.

As expected, it turns out that ≈ is a partial ∈-isomorphism between the models:

Lemma 9.36. The relation ≈ is functional, injective, and respects membership.
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9.3. Zermelo’s Quasi-Categoricity Theorem

Proof. We show that ≈ is functional. By induction on x ∈ A we establish a = a′ whenever
x ≈ a and x ≈ a′. We show the inclusion a ⊆ a′, so first suppose b ∈ a. Since x / a there
must be y ∈ x with y ≈ b. Moreover, since x . a′ there must be b′ ∈ a′ with y ≈ b′. By
induction we know that b = b′ and hence b ∈ a′. The other inclusion is analogous and
injectivity is by symmetry.
It remains to show that ≈ respects membership. Hence let x ≈ a and x′ ≈ a′ and

suppose x ∈ x′. Then by x′ . a′ there is b ∈ a′ with x ≈ b. Hence a = b by functionality
of ≈ and thus a ∈ a′.

This justifies calling M and N isomorphic if ≈ is full. Since all set operations are
uniquely determined by their membership laws, they are also respected by ≈.

Lemma 9.37. Given x ≈ a, R ∈ F(M), and R@x ⊆ dom(≈) we have

1. ∅M ≈ ∅N

2. ⋃x ≈ ⋃ a
3. P(x) ≈ P(a)

4. R@x ≈ R@a

where the representation R of R in N is defined by Ra b := ∃xy. x ≈ a ∧ y ≈ b ∧Rxy.

Proof. We establish each claim independently.

1. Both ∅ . ∅ and ∅ / ∅ hold vacuously.

2. By symmetry (Lemma 9.35) we just have to prove ⋃x . ⋃ a. So suppose y ∈ ⋃x,
so y ∈ z ∈ x. By x . a we have c ∈ a with z ≈ c and applying z . c we have b ∈ c
with y ≈ b. So c ∈ b ∈ a and thus b ∈ ⋃ a.

3. Again, we just show P(x) . P(a). Hence let y ∈ P(x), so y ⊆ x. Then we can
construct the image of y under ≈ by b := { c ∈ a | ∃z ∈ y. z ≈ c }. Clearly b ⊆ a so
b ∈ P(a) and by x ≈ a it is easy to establish y ≈ b.

4. We first show that R@x.R@a, so let y ∈ R@x. Then by R@x ⊆ dom(≈) there is b
with y ≈ b. It suffices to show b ∈ R@a which amounts to finding c ∈ a with Rc b.
Now by y ∈ R@x there is z ∈ x with Rz y. Hence there is c ∈ a with z ≈ c since
x . a. This implies Rc b.
We now show R@x / R@a, so let b ∈ R@a. Then there is c ∈ a with Rc b. By
definition this already yields z and y with z ≈ c, y ≈ b, and Rz y. Since ≈ respects
membership we know z ∈ x and hence y ∈ R@x.

The previously established properties in summary imply the following:

Lemma 9.38. The class dom(≈) is ZF-closed.

Proof. First, ∅ ∈ dom(≈) since ∅ ≈ ∅. Further, dom(≈) is transitive by the totality part
of x ≈ a for every x ∈ dom(≈). The remaining closure properties left by Fact 9.9 were
established in the previous lemma.

The dual statement for ran(≈) holds by symmetry. Now given that≈ preserves all struc-
ture of the models, every internally specified property holds simultaneously for bisimilar
sets. In particular, ≈ preserves the notion of stages and universes:

Lemma 9.39. If x ≈ a and x is a stage, then a is a stage.
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9. Second-Order Set Theory

Proof. We show that all a with x ≈ a must be stages by stage induction on x. So suppose
x is a stage and we have P(x) ≈ b. Since x ∈ P(x), by P(x) . b there is a ∈ b with x ≈ a.
Then by induction a is a stage. Moreover, Lemma 9.37 implies that P(x) ≈ P(a). Then
by functionality we know that b equals the stage P(a).
Now suppose x is a set of stages and we have ⋃x ≈ b. Since P(P(⋃x)) ≈ P(P(b))

by Lemma 9.37 and x ∈ P(P(⋃x)) there is some a ∈ P(P(b)) with x ≈ a. But then we
know that ⋃x ≈ ⋃ a by Lemma 9.37 and b = ⋃

a by functionality, so it remains to show
that a is a set of stages. Indeed, if we let c ∈ a then x / a yields y ∈ x with y ≈ c and
since x is a set of stages we can apply induction for y to establish that c is a stage.

Lemma 9.40. If x ≈ a and x is a universe, then a is a universe.

Proof. We first show that a is transitive, so let c ∈ b ∈ a. By bounded surjectivity there
are z ∈ y ∈ x with z ≈ c and y ≈ b. Then z ∈ x since x is transitive, which implies c ∈ a
since ≈ preserves membership.
The proofs that a is closed under the set constructors are all similar. Consider some

b ∈ a, then for instance we show ⋃
b in a. The assumption x ≈ a yields y ∈ x with y ≈ b.

Since x is closed under union it follows ⋃ y ∈ x and since ⋃ y ≈ ⋃
b by Lemma 9.37

it follows that ⋃ b ∈ a. The proof for power is completely analogous and for relational
replacement one first mechanically verifies that R@y ⊆ x for every functional relation
R ∈ F(N) with R@b ⊆ a.

In order to establish the maximality of ≈ we first prove it maximal on stages:

Lemma 9.41 (LEM). Either SM ⊆ dom(≈) or SN ⊆ ran(≈).

Proof. Suppose there were stages x 6∈ dom(≈) and a 6∈ ran(≈), then we can in partic-
ular assume x and a to be the least such stages by Lemma 9.24. We will derive the
contradiction x ≈ a. By symmetry, we just have to show x . a which we do by stage
induction for x. The case P(x) for some stage x is impossible given that, by least-
ness of P(x) 6∈ dom(≈), necessarily x ∈ dom(≈) holds which would, however, imply
P(x) ∈ dom(≈) by Lemma 9.37.
In the case ⋃x for a set of stages x we may assume that x ⊆ ⋃x by Fact 9.29. Now

suppose y ∈ z ∈ x, then we want to find b ∈ W with y ≈ b. We distinguish the cases
whether or not z ∈ dom(≈). If so, then there is c with z ≈ c. Since z ∈ x we know that
z is a stage and so must be c by Lemma 9.39. Then by linearity it must be c ∈ W and
z . c yields the wished b ∈ W with y ≈ b. If z were not in dom(≈), we have ⋃x ⊆ z since⋃
x is the least stage not in the domain. But since z ∈ x and x ⊆ ⋃x this yields z ∈ z

contradicting well-foundedness.

Theorem 9.42 (LEM). Bisimilarity ≈ is maximal.

Proof. Suppose ≈ were neither total nor surjective, so there were some x 6∈ dom(≈) and
a 6∈ ran(≈). By Fact 9.27 we know that x ∈ P(ρ x) and a ∈ P(ρ a). Then by Lemma 9.41
it is either P(ρ x) ∈ dom(≈) or P(ρ a) ∈ ran(≈). But then it follows either x ∈ dom(≈)
or a ∈ ran(≈) contradicting the assumption.

From this theorem we can already conclude that embeddability is a linear preorder on
models of 2ZF. We can further strengthen the result by proving one side of ≈ small ifM
and N are not already isomorphic.

Lemma 9.43 (LEM). If x is a stage with x 6∈ dom(≈), then dom(≈) ⊆ x.
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9.3. Zermelo’s Quasi-Categoricity Theorem

Proof. Since x 6∈ dom(≈) we know that ≈ is surjective by Theorem 9.42. So let y ≈ a,
then we want to show that y ∈ a. By exhaustiveness, a occurs in some stage b and since
≈ is surjective there is z with z ≈ b. Then Lemma 9.39 justifies that z is a stage. By
linearity, we have either z ⊆ x or x ∈ z. In the former case, we are done since y ∈ z given
that ≈ respects the membership a ∈ b. The other case is a contradiction since it implies
x ∈ dom(≈).

The dual holds for the stages of N and ran(≈), hence we summarise:

Theorem 9.44 (LEM). Exactly one of the following statements holds:

1. ≈ is full, soM and N are isomorphic.

2. ≈ is surjective and dom(≈) is a universe ofM.

3. ≈ is total and ran(≈) is a universe of N .

Proof. Suppose ≈ were not full, then it is still maximal by Theorem 9.42. So for instance
let ≈ be surjective but not total, then we show (2). Being not total, ≈ admits a stage x
with x 6∈ dom(≈). Then by Lemma 9.43 we know dom(≈) ⊆ x, so the domain is realised
by dom(≈) ∩ x. This set is a universe by Lemma 9.38.

Note that description turns the relation ≈ into an actual embedding h in the sense
of Definition 9.14 with direction depending on the outcome of Theorem 9.44. In the
outcome (1), h is an isomorphism.
Applying Zermelo’s embedding theorem, we can now examine to what extent the model

theory of 2ZF is determined and study categorical extensions. Formally, an axiomatisation
is called categorical ifM ≈ N for any two modelsM and N . As a first result, we can
prove 2ZF categorical in every cardinality:

Fact 9.45. Equipotent models of 2ZF are isomorphic.

Proof. If models M and N are equipotent, we have a function F : M → N with
inverse G : N → M. Then from either of the cases (2) and (3) of Theorem 9.44, we
can derive a contradiction. So for instance suppose ≈ is surjective and X = dom(≈)
is a universe of M. We use a variant of Cantor’s argument where G simulates the
surjection of X onto the power set of X. Hence define Y := {x ∈ X | x 6∈ G (i x) } where
i is the function obtained from ≈ by description. Then Y has preimage y := i−1 (F Y )
and we know that y ∈ X by surjectivity. Hence, by definition of Y we have y ∈ Y iff
y 6∈ G (i y) = G (i (i−1 (F Y ))) = G (F Y ) = Y , contradiction. Thus case (1) holds and so
≈ is indeed full.

An internal way to determine the cardinality of models and hence to obtain full cate-
goricity is to control the number of universes guaranteed by the axioms. In particular, it
follows that the axiomatisations 2ZFn are categorical. We hence may call the models of
2ZFn unique, provided they exist.

Fact 9.46. 2ZFn is categorical for all n : N.

Proof. LetM andN be models of 2ZFn. Again Theorem 9.44 admits three cases, whereof
(1) yields the claim. Otherwise, if (2) holds, then ran(≈) : N is a universe. Since M
has strength n by assumption, it follows that ran(≈) has strength n and thus that N has
strength n+ 1, contradicting N � 2ZFn. The case (3) is symmetric.
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9. Second-Order Set Theory

As a consequences of categoricity, all properties expressible in set-theoretic language
are evaluated equally in any two models of 2ZFn. For instance, if one model of 2ZFn
satisfies the axiom of choice, any other model does as well. To this end, consider the
following natural definition of global choice in constructive type theory:

Definition 9.47. We say that a type A is a choice type if there is a function c of type
∀(P : A→ P). (∃a. a ∈ P )→ Σa. a ∈ P .

First of all, categoricity implies that global choice is not independent in 2ZFn.

Fact 9.48. IfM and N are models of 2ZFn, thenM is a choice type iff N is.

Proof. By symmetry, we just have to show one direction, so suppose there is a choice
function cM forM. In order to construct a choice function for N , we assume a proposi-
tionally inhabited class P on N . SinceM and N are isomorphic by Fact 9.46, we know
that i is a bijection. So cM applies to the class P ◦ i overM, where we know that P ◦ i
is propositionally inhabited since P is. Hence cM yields a witness x for P ◦ i which is
turned into a witness i x for P .

We can further compare this type-theoretic version of choice to an internal set-theoretic
version. The following introduces one of the many equivalent formulations of the axiom
of choice in set theory.

Definition 9.49. LetM be a set structure. A set X is called a partition if the elements
of X are non-empty and pairwise disjoint. A set Y is called a trace of a partition X if
for every element x ∈ X there is a unique y ∈ Y with y ∈ x. We say M satisfies the
axiom of choice (AC) if every partition has a trace.

By the expressive strength of second-order ZF, type-theoretic choice always implies
set-theoretic choice and AC is not independent in 2ZFn.

Fact 9.50. IfM is a model of 2ZF and a choice type, thenM satisfies AC.

Proof. Let c be the choice function for M and X be a partition. For simplicity, for
x ∈ X we write c x for the application of c to the proof that x is not empty. Now set
Y := (λy.∃x ∈ X. y = c x) ∩ (⋃X). Then for x ∈ X we have that c x ∈ Y is unique with
c x ∈ x, so Y is a trace of X.

Fact 9.51. IfM and N are models of 2ZFn, thenM satisfies AC iff N does.

Proof. Again, by symmetry one direction suffices. So assumeM satisfies AC and let X ′
be a partition in N . SinceM and N are isomorphic by Fact 9.46, we can set X := i−1 X ′.
It follows that X is a partition as well and so there is a trace Y for X by AC for M.
Using i again, we obtain the trace Y ′ := i Y of X ′.

We remark that the idea of controlling the number of universes underlying 2ZFn can
be extended to transfinite ordinalities by asserting that the class of universes is oder-
isomorphic to some given well-order. However, these even stronger axiomatisations cannot
be modelled in CIC, as will be explained in the next section.
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9.4. Large Model Constructions

9.4. Large Model Constructions
We now construct models for the axiomatisations introduced in Section 9.1, especially
large models satisfying the systems 2ZF≥n and 2ZFn, continuing on the ideas described in
Section 8.2. To construct large models, we make explicit use of the type hierarchy Ti of
CIC and employ a universe-polymorphic [233] version of the type A of well-founded trees:

Definition 9.52. We define the universe-polymorphic family of inductive types Ai : Ti
of well-founded trees with a term constructor τ : ∀(A : Tj). (A → Ai) → Ai for j < i.
We define projections p1(τ A f) := A and p2(τ A f) := f .

We write S ′i and Si for the universe-polymorphis versions of S′ and S from Definitions 8.8
and 8.13, respectively, and summarise the arising models of second-order set theory.

Theorem 9.53. We have the following models of second-order set theory:

1. Ai � 2ZF′≡,

2. Assuming CE, S ′i � 2Z, and

3. Assuming CE and TD, Ai � 2ZF≡ and Si � 2ZF.

Proof. These claims are just reformulations of results already established in Section 8.2.

1. That Ai is a ZF ′-structure was subject of Definitions 8.4 and 8.5 and all axioms of
2ZF′≡ but Frep were shown in Theorem 8.6. That the operation F@s satisfies Frep
is straightforward.

2. Similarly, based on Definition 8.10 and Theorem 8.11.

3. Again similarly, based on Definition 8.14 and Theorem 8.15.

To make these models available, we now assume CE and TD for the rest of this section.
Intuitively, the type levels Ti correspond to set-theoretic universes and indeed, for

every (external) number n, the model Si at a universe level high enough satisfies 2ZF≥n.
Thereby the strength of Si at a high level is witnessed by recursively embedding Sj at
lower levels j < i. In fact, every intensional model embeds into some Si by ∈-recursion:

Definition 9.54. For an intensional modelM � 2ZF≡ we define a function ι :M→Ai

ι x := τ (Σy :M. y ∈ x) (ι ◦ π1)

by ∈-recursion and set UM := τM ι . This assumesM : Tj for j < i.

Lemma 9.55. The function ι respects equivalence and membership, that is:

(1) x ≡ y ↔ ι x ≡ ι y (2) x ∈ y ↔ ι x ∈ ι y

Proof. (1) Suppose x ≡ y. We have to show that for every z ∈ x there is z′ ∈ y with
ι z ≡ ι z′ and vice versa. So let z ∈ x, hence by the assumption x ≡ y we know z ∈ y and
by reflexivity of ≡ we know ι z ≡ ι z.
The converse is by ∈-induction on x for all y. We assume ι x ≡ ι y and have to show

x ⊆ y and y ⊆ x. We just show x ⊆ y since both cases are similar, so let z ∈ x. By
ι x ≡ ι y there is z′ ∈ y with ι z ≡ ι z′. Then the inductive hypothesis yields z ≡ z′ and
thus we conclude z ∈ y.
(2) The direction from left to right is immediate by definition. For the converse suppose

ι x ∈ ι y, so there is z ∈ y with ι x ≡ ι z. Then by (1) we know x ≡ z and thus x ∈ y.
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9. Second-Order Set Theory

Lemma 9.56. The function ι is an embedding.

Proof. The first condition was shown in Lemma 9.55 and the second condition is straight-
forward by definition of ι .

Lemma 9.57. IfM � 2ZF≡ then UM is a universe.

Proof. By definition UM agrees with ι [λ_.>] and is ZF-closed by Fact 9.15.

Furthermore the strength ofM is reflected by UM:

Lemma 9.58. IfM � 2ZF≥n then UM has strength n.

Proof. If M � 2ZF≥n there is x ∈ M with strength n. Then ι x ∈ UM has the same
strength by Fact 9.17 and Lemma 9.56. Hence, being transitive, UM has the same
strength.

Fact 9.59. If 2ZF≥n has a model, then 2ZF≥n+1 has a model.

Proof. LetM � 2ZF≥n withM : Ti. Then by Lemma 9.58, we know that γ UM : Si+1 has
strength n and hence P(γ UM) has strength n+ 1. Thus Si+1 is a model of 2ZF≥n+1.

Therefore we can conclude the following result about CIC:

Metatheorem 9.60. For every n, CIC + CE,TD exhibits a model of 2ZF≥n.

Proof. We construct the large models by iterating Fact 9.59. First, by Theorem 9.53 we
know that in particular Si � 2ZF≥0. For the inductive step suppose we have a model
M � 2ZF≥n. Then Fact 9.59 yields a model of 2ZF≥n+1.

This metatheorem has no formal counterpart in CIC as the type levels of the models
of 2ZF≥n depend on n. CIC only admits instances ∃M.M � 2ZF≥k or a statement like

∀n : N.∃M : Ti.M � 2ZF≥n

for some fixed type level Ti. However, this statement is not an inductive consequence of
Fact 9.59 since, in the inductive step, we assume a modelM : Ti of 2ZF≥n but only know
that Si+1 � 2ZF≥n+1 where Si+1 : Ti+1. In fact, if the statement would be provable,
it would induce the existence of a model of 2ZF≥ω which lies beyond the consistency
strength of a type theory with only countably many type levels [3, 263]:

Fact 9.61. (∀n : N.∃M : Ti.M � 2ZF≥n)→ Si+1 � 2ZF≥ω

Proof. We have to show that Si+1 contains sets of every finite strength. So let n : N, then
given the assumption there is a modelM : Ti such thatM � 2ZF≥n. Thus by Fact 9.59
we know that γ UM : Si+1 has strength n.

We finally study a truncation method for pruning models of 2ZF≥n to models of 2ZFn.
Together with the previous model construction for 2ZF≥n (Metatheorem 9.60) this implies
that 2ZFn has a model for all natural numbers n (Metatheorem 9.65).

Lemma 9.62. IfM � 2ZF∗ and U is ZF-closed, thenMU := Σx. x ∈ U with the accord-
ingly restricted set operations is a model of 2ZF∗ as in Definition 9.3.
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9.5. Cardinality and Ordinals

Proof. Since U is ZF-closed, the restrictions of the set operations of M to MU are
well-defined. For separation and replacement the argument classes P : MU → P and
functions F :MU →MU are translated to

P ′ := λx. x ∈ U ∧ x ∈ P
F ′ := λx. δ(λy. x ∈ U ∧ y ∈ U ∧ y = F x)

operating onM, where we write x for the elements ofMU with x :M and x ∈ U . The
description operator ofMU is

δU P := (λ_.∃!x. x ∈ P ) ∩ δP ′

where the separation ensures that δU P = ∅ ∈ U in the case where δ is not well-defined.
Concerning the axioms, Ext relies on PI since the members of MU carry proofs as

second component. WF follows from U ⊆ M ⊆ A and the membership axioms hold in
MU as they do inM.

The following ensures that universes and strength are preserved in submodels:

Lemma 9.63. IfM � 2ZF∗ and U is ZF-closed, then π1 :MU →M is an embedding.

Proof. The projection π1 respects membership by definition of MU . Further, assuming
x ∈ π1 y = y for y : MU we have x ∈ U by transitivity of U and x ∈ y. Then x : MU

satisfies x ∈ y and π1 x = x.

Fact 9.64 (LEM). If 2ZF≥n has a model, then 2ZFn has a model.

Proof. LetM be a model of 2ZF≥n, so there is x :M with strength n. We use LEM to
analyse whether there is x′ :M with strength n+1. If not, thenM is already a model of
2ZFn by definition. So suppose there is such x′, then we know there is a universe U ∈ x′
with strength n. Then because of the well-ordering of stages, we can assume U to be the
least universe of strength n.
We show that MU � 2ZFn. By Lemma 9.62 we know that MU is a model of 2ZF∗.

Further,MU has strength n since U does, soMU � 2ZF≥n. Finally, suppose there were
a set x′ ∈ MU with strength n + 1 and hence a universe U ′ ∈ x′ with strength n. Then
by transitivity of U it follows that U ′ ∈ U , contradicting the assumption that U is the
least universe of strength n. ThusMU � 2ZFn.

Metatheorem 9.65. For every n, CIC+ CE,TD, LEM exhibits a unique model of 2ZFn.

Proof. Fix a number n. By Metatheorem 9.60 we have a model of 2ZF≥n. Applying
Fact 9.64 yields a model of 2ZFn and Fact 9.46 implies uniqueness.

9.5. Cardinality and Ordinals
In this section, we now switch back to the internal perspective of Section 9.2 and pre-
pare the proof of Sierpiński’s theorem in 2ZF with some results about cardinality and
ordinals. To this end, we work in a fixed model M � 2ZF and tacitly assume FE and
PE. Already suggesting the type-theoretic approach to set-theoretic results described in
the next chapter, the preparations necessary for the Sierpiński’s theorem can be given
for arbitrary types and then transport in particular to types Σy. y ∈ x associated to a
set x : M. Especially, we now even write P(X) for the power type X → P of X : T,
justified by the following correspondence which is leading to the core why second-order
ZF is more convenient to mechanise than first-order ZF.
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9. Second-Order Set Theory

Definition 9.66. We call a type X : T set-like if it can be encoded as a set, i.e. if there
is a set X :M with an encoding function eX : X → X that is injective and surjective.2

Lemma 9.67 (LEM). The type N, every proposition P : P, and P itself are set-like and
if types X and Y are set-like, then so are X × Y , X + Y , X → Y , and P(X).

Proof. The infinity axiom exactly states that ω is an encoding of N witnessed by the
numeral function eN := λn. σn ∅. Similarly, the power set axiom ensures that the power
set P(X) encodes the power type P(X), since predicates on X and subsets of X are in
one-to-one correspondence due to the strong replacement axiom. Further overloading the
type-level notations, the remaining encodings are standard using the Kuratowski ordered
pairs (x, y) := {{x}, {x, y}} forX×Y , the disjoint unionX+Y := ({∅}×X)∪({{∅}}×Y ),
and the set-theoretic function space X → Y ⊆ X×Y of total functional graphs. Finally,
given P : P, we define P := (λx. P ) ∩ {∅} with eP := λh. ∅ and P := {∅, {∅}} with
eP := λP. P .

This means that the type-theoretic fragment relevant to state GCH and AC has a
faithful representation within the assumed model M of second-order ZF and all type-
theoretic notions introduced in this section regarding cardinality and orderings carry over
without need for reformulation. IfM were just a model of first-order ZF, neither power
types, function spaces, nor propositions could be shown set-like and the stricter first-
order versions of these constructs and the related notions of cardinality and orderings
were necessary to define. Sidestepping this problem, we freely reuse all type-theoretic
notation and hide the particular encodings.
The first key notion we need to represent is that of cardinality comparisons:

Definition 9.68. We write |X| ≤ |Y | if there exists an injection from X to Y .

Fact 9.69. |X| ≤ |Y | is a preorder preserved by sums, products, and powers.

Proof. All but the last are witnessed by the obvious constructions. If f : X → Y is
injective, then F p := λy.∃x. p x ∧ y = f x defines an injection from P(X) to P(Y ).
Indeed, assuming F p = F q and w.l.o.g. p x, we obtain F p (f x) and hence F q (f x).
But then f x = f x′ for some x′ with q x′ and by injectivity of f we conclude q x.

The expected cardinality comparisons for refinement types and power types hold:

Fact 9.70. For all X and p : X → P we have |Σx. p x| ≤ |X| and |X| ≤ |P(X)|.

Proof. The former is by injectivity of the first projection π1 : (Σx. p x) → X and the
latter is witnessed by λxy. x = y.

Moreover, cartesian products are bounded by two-fold power sets:

Fact 9.71. |X ×X| ≤ |P2(X)|

Proof. The pairs (x, y) ∈ X×X can be injectively mapped to the predicates representing
the Kuratowski encoding {{x}, {x, y}}.

Employing the inductive type N of natural numbers, cardinality comparisons yield a
natural definition of infinitude of types:

Definition 9.72. We call X infinite if |N| ≤ |X|.
2Note that the stronger equipotency of X and X with explicit inverse would require assuming a
stronger elimination principle for M in most cases.
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9.5. Cardinality and Ordinals

Fact 9.73. If X is infinite, then so is P(X).

Proof. This holds by Fact 9.70 and transitivity.

Slightly abusing notation, we from now on write |X| = |Y | for the equipotency relation.
Note that constructively, |X| = |Y | is indeed stronger than only requiring |X| ≤ |Y |
and |Y | ≤ |X| since the Cantor-Bernstein theorem for this setting relies on LEM [200]
and likely even on a form of unique choice, given that we are employing type-theoretic
functions and not just total functional relations.

Fact 9.74. |X| = |Y | is an equivalence congruent for sums, products, and powers.

Proof. The injections in Fact 9.69 have obvious inverses.

Having established the relevant notion of cardinality, we now approach the second
key notion involved in Sierpinski’s theorem, namely (well-)orderings. We first consider
inclusion as a canonical partial order on power types.

Fact 9.75. Inclusion p ⊆ q for p, q : P(X) is a partial order.

Proof. Reflexivity and transitivity are trivial and antisymmetry holds by FE and PE.

The missing property defining a well-order can be expressed abstractly via least ele-
ments for arbitrary (and possibly undecidable) inhabited predicates.

Definition 9.76. Let R : X → X → P be a partial order. We say that x : X is a least
element of p : P(X) if p x and if Rxy for all y : X with p y. We call R a well-order if it
is well-founded, i.e. if for every inhabited p : P(X) there exists a least element.

We also employ the related notion of strict well-orderings:

Definition 9.77. We call R : X → X → P a strict well-order if it is transitive, tri-
chotomous (∀xy.R x y ∨ x = y ∨Ry x), and accessible (∀x.AR x).

Employing LEM, one can easily verify the usual translations of well-orders R to strict
well-orders R′ x y := Rxy ∧ x 6= y and, conversely, of strict well-orders S to well-orders
S′ x y := S x y ∨ x = y. Already without LEM, given that they yield least and not just
minimal elements as frequently required, we can show that well-orders are linear:

Fact 9.78. Well-orders R are linear, i.e. Rxy ∨Ry x for all x and y.

Proof. Given R and x, y : X, consider the predicate p z := z = x ∨ z = y. Since p is
obviously inhabited, we obtain a least element z. Since either z = x or z = y, we obtain
the expected comparisons Rxy or Ry x, respectively.

Next, we show that well-orders transport along injections.

Fact 9.79. If X has a (strict) well-order and |Y | ≤ |X|, then Y has a (strict) well-order.

Proof. If RX is a (strict) well-order on X and f : Y → X an injection, then it is easy to
verify that RY y y′ := RX (f y) (f y′) is a (strict) well-order on Y .

Finally, we introduce order embeddings and order isomorphisms.

Definition 9.80. Given two relations R : X → X → P and S : Y → Y → P, a
function f : X → Y is an order embedding if it is a morphism from R to S, i.e. if
Rxx′ ↔ S (f x) (f x′) for all x, x′ : X. We write X � Y if there is an order embedding
from X to Y for relations clear from the context.
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9. Second-Order Set Theory

Fact 9.81. X � Y is a preorder.

Definition 9.82. An order embedding f : X → Y is an order isomorphism if it has an
inverse g : Y → X. We call X and Y (strongly) isomorphic, written X ≈ Y , if there is
an order isomorphism for X and Y for relations clear from the context.

Fact 9.83. X ≈ Y is an equivalence relation.

Proof. Again witnessed by the obvious constructions.

To obtain a more explicit representation of well-orderings, we now introduce ordinals.
As common in a set-theoretic foundation, ordinals are sets that serve two purposes.
First, ordinals are well-ordered by the element relation and represent equivalence classes
of well-ordered sets: for every well-ordered set, there is exactly one isomorphic ordinal.
Secondly, we can regard ordinals as a generalisation of natural numbers that allows us to
count beyond infinities: there is a zero element, a successor function, and, additionally,
every set of ordinals has a least upper bound.
There are many possible definitions of ordinals [103] but it seems difficult to find one

that expresses both properties at once. We opt for an inductive definition that is most
convenient for our purposes, relying in the concept of transitive sets (Definition 9.7).
Overall, our investigation of ordinals in 2ZF will be similar to the inductive characterisa-
tion of the cumulative hierarchy (Section 9.2).

Definition 9.84. We define the class O of ordinals inductively: an ordinal is a transitive
set of ordinals, i.e. α ∈ O if α is transitive and α ⊆ O.

Note that this inductive definition of ordinals is not expressible in first-order ZF but
remains an equivalent characterisation once one of the first-order encodings of ordinals
is chosen as definition. Analogously, we prove our definition equivalent to a first-order
characterisation (Fact 9.88) once we have established the expected ordering properties,
where we only give the proofs that differ from the standard setting.
Regarding well-orderedness, the transitivity condition is exactly what makes the ele-

ment relation on the class of ordinals transitive. Moreoever, even if we would not assume
the axiom of foundation, the inductive definition would imply that the element relation
on ordinals is well-founded. So only trichotomy is needed to conclude:

Lemma 9.85 (LEM). The class O is strictly well-ordered by ∈, hence so is every α ∈ O.

Proof. Transitivity follows from transitivity of ordinals as sets and well-foundedness of
the element relation on the class of ordinals follows by induction from the axiom of
foundation.
To show trichotomy, we fix two ordinals α and β and need to deduce α ∈ β, α = β

or β ∈ α. We apply well-founded induction on both, α and β. By LEM, we have that
α = β or α 6= β. The first case is trivial and in the second case we know that α * β
or β * α, yielding an ordinal γ ∈ α with γ 6∈ β (or vice versa) suitable to apply the
inductive hypothesis for.

Lemma 9.86. Isomorphic ordinals are equal, i.e. α ≈ β implies α = β.

Proof. Fix α, β ∈ O with an isomorphism f : α → β. We apply well-founded induction
on both. We need to show that α ⊆ β and β ⊆ α. W.l.o.g., we focus on the former. So
fix some ξ ∈ α. It suffices to show that ξ ≈ f ξ since, by the inductive hypothesis on ξ,
this implies ξ = f ξ ∈ β.
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So consider the restriction f |ξ : ξ → β. This is actually a function ξ → f ξ since for all
x ∈ ξ, we have f x ∈ f ξ by the morphism property of f . As the inverse, we have f−1|f ξ.
The function f |ξ is still a morphism since it is the restriction of a morphism.

A characteristic property of ordinals is that membership and strict inclusion coincide,
so the previous results about ∈ hold for ( as well.

Lemma 9.87 (LEM). For α, β ∈ O we have α ∈ β iff α ( β.

It is now easy to show the agreement of our inductive definition to a common first-order
characterisation of ordinals as the transitive sets well-ordered by membership:

Fact 9.88 (LEM). The class O contains exactly the transitive sets α that are strictly
well-ordered by ∈ in the first-order sense, i.e. with ∈-least elements for every non-emtpy
subset of α.

Proof. The first direction is straightforward with Lemma 9.85. For the converse direction,
we can directly show that every β ∈ α is an ordinal employing the foundation axiom.

Turning to the second announced property of ordinals, we briefly discuss how they gen-
eralise the natural numbers by deriving constructors as well as the respective elimination
principle. These results are not needed to derive Sierpiński’s theorem either but illustrate
one alternative inductive characterisation of ordinals in 2ZF.

Lemma 9.89. The following closure properties of O hold:

1. The empty set is an ordinal.

2. The successor σ α of an ordinal α is an ordinal.

3. If A is a set of ordinals then ⋃A is an ordinal.

Proof. We establish every claim independently:

1. Both conditions are trivial since ∅ is empty.

2. Assume that α is an ordinal. We need to show that every element of α is a subset
of σ α and an ordinal. Fix such an element x. By definition of the successor, x = α
or x ∈ α. The first case is trivial. In the second case, x ⊆ α ⊆ σ α by transitivity of
α and definition of the successor. Moreover, as an element of an ordinal, x is also
an ordinal.

3. Fix a set of ordinals A. We need to show that every element of ⋃A is a subset of⋃
A and an ordinal. Fix such an element x. By the union axiom, there is an ordinal

α ∈ A, such that x ∈ α. Then x ⊆ α ⊆
⋃
A by transitivity of α. Moreover, as an

element of an ordinal, x is also an ordinal.

Since O contains ∅ and is closed under the successors, we can see by induction that O
contains the encodings σn ∅ of all natural numbers n : N. Note that these constructors
could equally be taken as the inductive definition of ordinals, with Definition 9.84 then
becoming a provable property.
Similarly to the cumulative hierarchy S in Section 9.2, the constructors that we pro-

vided for O are not disjoint since α = ⋃
σ α for all α. To formulate useful induction

principles, we distinguish the ordinals that can only be constructed by the third con-
structor.
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Definition 9.90. A limit ordinal is an ordinal that is neither the empty set nor a suc-
cessor ordinal. We use λ as an identifier that implicitly ranges over limit ordinals.

It is easy to show that λ is a limit ordinal exactly iff it is non-empty and satisfies
λ = ⋃

α∈λ α = ⋃
λ. There are versions of this definition that include the empty set

as a limit ordinal but it is standard to treat the empty set separately in the following
transfinite induction principle.

Lemma 9.91 (LEM). Fix a predicate P : O → P as follows:

• The empty set satisfies P .

• If α satisfies P then the successor σ α satisfies P .

• If all elements of a limit λ satisfy P then λ satisfies P .

Then every ordinal satisfies P .

Proof. By well-founded induction on ∈ using the fact that every ordinal is either empty,
a successor, or a limit.

9.6. Sierpiński’s Theorem
We now outline the set-theoretic proof of Sierpiński’s theorem with a focus on the steps
utilising ordinals. The remaining steps that agree with the type-theoretic proof are de-
ferred to Section 10.2 for more generality. We begin with the formal statements of the
generalised continuum hypothesis and the axiom of choice in the fixed modelM � 2ZF.

GCHM := ∀AB :M. |ω| ≤ |A| ≤ |B| ≤ |P(A)|
→ |B| ≤ |A| ∨ |P(A)| ≤ |B|

ACM := ∀AB :M.∀R : A→ B → P. (∀x. ∃y.R x y)
→ ∃f : A→ B. ∀x : A.Rx (f x)

Recall that we can use the type-level function space to state GCHM and ACM since,
in second-order set theory, it agrees with the set-level function space (Lemma 9.67).

Fact 9.92. ACM is equivalent to the statement that every set A of non-empty sets admits
a choice function f : A→ ⋃

A with f x ∈ x for all x.

Proof. For such a set A the relation R : A→ ⋃
A→ P given by Rxy := y ∈ x is turned

into a choice function f by ACM. Conversely, given a total relation R : A → B → P, a
choice function f for the range defined as D := {C ∈ P(B) | ∃x ∈ A.C = Rx} yields
g : A→ B with Rx (g x) by setting g x := f (Rx).

A standard, and interestingly fully constructive, argument shows that the assumption
that every set can be well-ordered (denoted by WOM) implies ACM.

Fact 9.93. WOM implies ACM.

Proof. Given a total relation R : A→ B → P, a well-order on B, and an element a ∈ A,
there exists a unique least element of Ra. The corresponding function f : A→ B can be
defined with the description operator δ.
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With this fact we are left to show that GCHM implies WOM. To this end, we introduce
the Hartogs numbers as a means to obtain arbitrarily large ordinals.

Definition 9.94. The Hartogs number of a set A is the class

ℵ(A) := λα ∈ O. |α| ≤ |A|.

Once we have shown that the Hartogs number is an ordinal, then the crucial property
|ℵ(A)| 6≤ |A| follows immediately from this definition because otherwise, the Hartogs
number would contain itself. We proceed in three steps:

1. We show that |ℵ(A)| ≤ |P6(A)|.

2. We show that the Hartogs number is an ordinal.

3. We conclude that ℵ(A) 6≤ A.

Fact 9.95 (LEM). ℵ(A) satisfies |ℵ(A)| ≤ |P6(A)|.

Proof. We use the bound for the cartesian product given in Fact 9.71 twice to deduce

|P (P(A)× P(A× A)) | ≤ |P
(
P(A)× P3(A)

)
|

≤ |P
(
P3(A)× P3(A)

)
|

≤ |P6(A)|.

By transitivity, it suffices to define the injection

f : ℵ(A)→ P(P(A)× P(A× A))
f(α) := {x ∈ P(A)× P(A× A) | x ≈ α},

where we treat every x ∈ P(A)×P(A×A) as a subset of A with a relation on it that might
satisfy x ≈ α. To see that f is injective, fix two ordinals α, β ∈ ℵ(A) with f α = f β. By
definition of the Hartogs number, there is an injection α → A. We embed the order on
α along this injection to obtain an x ∈ P(A) × P(A × A). Note that x ≈ α. Therefore
x ∈ f α = f β and hence x ≈ β by definition of f . Together, we have α ≈ x ≈ β which
implies α = β since isomorphic ordinals are equal (Lemma 9.86).

We could use a different encoding of ordered subsets to get the bound down to P3(A)
as illustrated in the type-theoretic variant of Sierpiński’s theorem (cf. Section 10.2). In
the presence of set-theoretic ordinals, however, the above proof is charmingly compact
and leaves the set-theoretic notion of orderings on A as subsets of A× A explicit.
We next show that the Hartogs number is an ordinal.

Lemma 9.96. Classes p with |p| ≤ |A| for some set A are small.

Proof. Fix an arbitrary class p and a set A with |p| ≤ |A|. By definition, we have an
injection f : p→ A. Then the class p coincides with the set (λyx. y = fx) @A.

Fact 9.97 (LEM). The Hartogs number ℵ(A) of A is small and an ordinal.

Proof. That ℵ(A) is small follows from the previous two lemmas. Moreover, we know that
the Hartogs number ℵ(A) contains only ordinals by definition. It hence remains to show
that the Hartogs number is transitive. Fix two ordinals α and β with β ∈ α ∈ ℵ(A). Our
goal is to prove that β ∈ ℵ(A). By definition of the Hartogs number, we have |α| ≤ |A|
and need to show |β| ≤ |A|. From β ∈ α we obtain β ⊆ α and thus already |β| ≤ |α|.
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Theorem 9.98 (LEM). For all sets A, we have ℵ(A) 6≤ A.

Proof. Assuming ℵ(A) ≤ A we derive the contradiction ℵ(A) ∈ ℵ(A).

Theorem 9.99 (LEM). GCHM implies WOM and therefore also ACM.

We leave Theorem 9.99 without proof here since the remaining argument is com-
pletely analogous to the upcoming type-theoretic version presented in Section 10.2, The-
orem 10.20. The Coq development contains a self-contained proof of Theorem 9.99.
Moreover, we postpone the discussion regarding the necessity of LEM to Section 10.4.

9.7. Discussion and Related Work

General Remarks
The formalisation of set theory in a constructive type theory as examined in this chapter
differs from common textbook presentations (cf. [229, 150, 103]) in several ways, most
importantly in the use of second-order axioms and the inductive definitions of the cumu-
lative hierarchy and ordinal numbers. We briefly outline some of the consequences.
Concerning the second-order version of the replacement axiom, it has been known since

Zermelo [269] that second-order ZF admits the embedding theorem for models. It implies
that models only vary in their external cardinality, i.e. the notion of cardinality defined
by bijections on type level or, equivalently, in the height of their cumulative hierarchy.
Thus controlling these parameters induces categorical axiomatisations.
As a consequence of categoricity, all internal properties (including statements undecided

in first-order ZF) become semantically determined in that there exist no two models such
that a property holds in the first but fails in the second (cf. [142, 259]). Concretely,
Fact 9.51 shows that the axiom of choice either holds or fails in all models of 2ZFn. This
is strikingly different from the undetermined situation in first-order ZF, where models can
be arbitrarily incomparable and linearity of embeddability is only achieved in extremely
controlled situations (cf. [82]). This is a consequence of the fact that inner models of
second-order ZF are necessarily universes whereas those of first-order ZF can be subsets
of lesser structure. Moreover, since the type-theoretic version of the choice axiom as
formulated in Definiction 9.47 is independent of Coq’s type theory and violations of the
set-theoretic choice axiom induce violations on type level (Fact 9.50), the second-order
models discussed in this chapter do not invalidate the axiom of choice.
An explanation for those results is that the second-order separation axiom asserts the

existence of all subsets of a given set contrarily to only the definable subsets guaranteed
by a first-order scheme. This strength fully determines the extent of the power set, which
remains underspecified in first-order ZF. Concretely, first-order ZF admits counterexam-
ples to Lemma 9.37. Furthermore, the notions of external cardinality induced by type
bijections and internal cardinality induced by bijections encodable as sets coincide in
second-order ZF since every external bijection can be represented by a replacement set.
That the two notions of cardinality differ for first-order set theory has been pointed out
by Skolem [220]. The Löwenheim-Skolem Theorem implies the existence of a countable
model of first-order ZF (that still contains internally uncountable sets) whereas models
of second-order ZF are provably uncountable (cf. [128]).
Inductive predicates make a set-theoretic notion of ordinals in their role as a carrier for

transfinitely recursive definitions superfluous. Consider that commonly the cumulative
stages are defined by Vα :=Pα(∅) using transfinite recursion on ordinals α. However, this
presupposes at least a basic ordinal theory including the set-theoretic recursion theorem,
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making the cumulative hierarchy not immediately accessible. That this constitutes an
unsatisfactory situation has been addressed by Scott [214] where an axiomatisation of ZF
is developed from the notion of rank as starting point. In the textbook approach, the
well-ordering of the stages Vα is inherited directly from the ordinals by showing Vα ⊆ Vβ
iff α ⊆ β. Without presupposing ordinals, we have to prove the linearity of ⊆ and the
existence of least ⊆-elements directly. As it illustrated in Sections 9.2 and 9.5, these
direct proofs are not substantially harder than establishing the corresponding properties
for ordinals. Similarly, characterising the foundation axiom using an inductive predicate
seems superior to a first-order statement in that it gives immediate access to ∈-induction
and ∈-recursive definitions. Both were of substantial use throughout this chapter.

Related Work
Mechanised Second-Order Set Theory Second-order versions of ZF and CZF have
been formulated using Coq by Werner [263] and Barras [10], respectively, with a focus on
model constructions. In [118], the author of this thesis mechanises an ordinal-theoretic
proof that the axiom of choice implies the well-ordering theorem in a comparable setting
and Kaiser’s Master’s thesis [113] is concerned with an axiomatisation of second-order
Tarski-Grothendieck set theory in Coq. Moreover, a broad development of second-order
theory in Coq, including the cumulative hierarchy, ordinals, and the well-ordering theorem
is described in Smolka’s lecture notes on computational logic [224]. Brown and Pąk [31]
compare the second-order Tarski-Grothendieck set theory implemented in Egal [29] with
its first-order counterpart implemented in Mizar [9]. Brown, Kaliszyk, and Pąk [30] show
that second-order Tarski-Grothendieck set theory can serve as a common foundation for
the Isabelle/HOL and Isabelle/Mizar frameworks. The Lean mathematical library [248]
contains a model of second-order ZF with functional replacement.

Mechanisations of Sierpiński’s Theorem Carneiro [33] mechanises Sierpiński’s theo-
rem in Metamath [179], based on an existing library of first-order ZF. The mechanisation
in principle follows Specker’s local version [234, 114], requiring just two instances of GCH,
and reimplements one of the library lemmas to avoid a dependency on the axiom of choice.
Our approach differs from Carneiro’s work in three ways. First, we used the slightly less
local proof variants given in [229] and [72] since they appeared simpler to generalise to
type theory. Secondly, our development is based on a second-order axiomatisation natural
to work with in an expressive meta-logic. Concretely, this setting provides the instructive
means of inductive definitions for iterative constructions such as ordinals and allows for
reusing meta-level notions like function spaces, cardinality, orderings etc. with no need
for boilerplate set encodings. Thirdly, our set-theoretic proof serves as a bridge to the ad-
ditionally presented type-theoretic version given in the next chapter, constituting a new
instance of a set-theoretic result abstract enough to apply to constructive type theory.
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10. Synthetic Set Theory

In this final chapter, we investigate Sierpiński’s theorem as a statement of constructive
type theory itself, without referring to an axiomatised representation of set theory al-
together. With this approach we illustrate that, at least for structural results involving
only rather abstract and non-computational concepts, the two foundations share a com-
mon perspective. This circumstance was already hinted at by the idea of set-like types
(Definition 9.66), which allowed us to express set-theoretic constructions like functions,
products, and powers in second-order set theory by their type-theoretic counterparts.
Thus, acknowledging that second-order set theory as discussed in Chapter 9 is just type
theory “in sheep’s clothing” to some extent, we now investigate the option to dispose of
the intermediate layer if one is willing to give up on the set-theoretic flavour of the proofs.
The fact that, if one interprets types in a type universe T as sets, statements usu-

ally rendered in set theory have natural counterparts in constructive type theory (then
necessarily extended with axioms regarding extensionality and classical logic) has been
illustrated in many places, for instance in [106], [249], and [226] with type-theoretic ver-
sions of Zermelo’s result that the axiom of choice implies the well-ordering theorem. In
particular, type theories like CIC implemented in Coq with its impredicative universe
P of propositions, providing the necessary notions of anonymous propositional existence
and power sets, are well-suited for such a synthetic reformulation of set-theoretic results.
Regarding our case study on Sierpiński’s theorem, we can formulate GCH in CIC by

GCHT : P := ∀XY. |N| ≤ |X| ≤ |Y | ≤ |X → P| → |Y | ≤ |X| ∨ |X → P| ≤ |Y |

where |X| ≤ |Y | specifies an injection X → Y as defined in Section 9.5, and AC by

ACT : P := ∀XY. ∀R : X → Y → P. (∀x. ∃y.R x y) → ∃f : X → Y. ∀x.R x (f x).

In contrast to the axiom of choice, for instance assumed prominently in the Lean proof
assistant [47] also based on CIC, the continuum hypothesis is not a typical axiom in
constructive type theory. However, it is considered as a target for type-theoretic forcing
in [111], where a refuting model is given. Therefore we prefer to speak of synthetic set
theory in distinction from plain type theory when studying Sierpiński’s theorem or similar
results. As a prerequisite for such a project, the consistency of both ACT and GCHT is
justified by the standard set-theoretical interpretation of Coq’s type theory CIC [263],
provided one works in a strong enough set theory satisfying AC and GCH itself.
Adding a complementary perspective, we also establish Sierpiński’s theorem in homo-

topy type theory (HoTT) [249], a type theory deviating from CIC mostly in its treatment
of propositions and the use of the univalence axiom, a very general statement of extension-
ality. This setting offers an even more suitable framework for the type-theoretic rendering
of set-theoretic results, since the semantic notion of univalent (homotopy) sets in HoTT
by default shares a lot of the structural behaviour shaping conventional set theory.
As in the previous chapter, the results in this chapter will be explicitly annotated

whenever they rely on classical axioms like LEM or UC. Moreover, the extensionality
axioms FE and PE will be assumed tacitly in all of Sections 10.1 to 10.4. In Section 10.5,
switching to the setting of HoTT, the only tacit assumption will be the univalence axiom,
as will be explained in the section introduction.
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10. Synthetic Set Theory

Outline In Section 10.1, we describe a construction of large well-orders resembling the
Hartogs numbers (Definition 9.94) in CIC. They are then used to derive Sierpiński’s the-
orem, first with the additional assumption of unique choice to simulate the set-theoretic
identification of total functional relations with functions (Section 10.2) and then without
(Section 10.3). That, for several reasons, classical logic in form of the excluded middle
is unavoidable for Sierpiński’s theorem is observed in Section 10.4. Section 10.5 com-
plements the previous rendering in CIC with a proof of Sierpiński’s theorem in HoTT,
combining well-behaved set-theoretic constructions with direct formulation in construc-
tive type theory. The variants of Sierpiński’s theorem studied in Sections 9.6, 10.2, 10.3,
and 10.5 are compared in Section 10.6, also summarising related work.
Sources Sections 10.1 to 10.3 are based on the paper [127] and Section 10.5 on the
extended abstract [127], both published together with Felix Rech. All reused text was
mostly written by the author of this thesis.
Contributions The main contributions of this chapter are the construction of large well-
orders resembling Hartogs numbers in CIC, the two variants of Sierpiński’s theorem in
CIC, the construction of Hartogs numbers in HoTT, the proof of Sierpiński’s theorem
in HoTT, all accompanied by respective mechanisations in Coq. These contributions,
excluding the construction of Hartogs numbers in HoTT and the underlying development
of ordinal theory, were made by the author of this thesis alone.

10.1. Type-Theoretic Hartogs Numbers

In preparation for the type-theoretic version of Sierpiński’s theorem, we begin with a
construction of arbitrarily large well-ordered types. More precisely, still using the notation
P(X) := X → P, we fix a type X and construct a type H(X) such that H(X) is well-
ordered and |H(X)| 6≤ |X| but |H(X)| ≤ |P3(X)|. In contrast to set theory, CIC
lacks a canonical notion of ordinals natural to work with and so we directly work on a
representation of the well-orders of subsets of X. Compared to the set-theoretic Hartogs
numbers ℵ(A) defined in Section 9.6, this time we opt for the tighter representation
with |H(X)| ≤ |P3(X)| compared to the previous bound |ℵ(A)| ≤ |P6(A)| since in a
type-theoretic setting both are equally indirect. The idea is to consider inclusion p ⊆ q
for predicates p, q : P(X) to isolate the well-founded orders P,Q : P2(X) and their
corresponding equivalence classes α, β : P3(X).
As done with sets and classes before, we continue on identifying predicates p : P(Y )

on a type Y with their refinement types Σy. p y. So in particular we are able to apply
the abstract notions of well-orders, order embeddings X � Y , and order isomorphisms
X ≈ Y introduced in Section 9.5 to P,Q : P2(X) ordered by inclusion. In this particular
setting, we moreover establish the following properties regarding embeddability.

Fact 10.1. If P � Q and Q is well-founded, then so is P .

Proof. Suppose that f embeds P into Q and that Q is well-founded. Then for some
inhabited P ′ ⊆ P we obtain that Q′ := λq.∃p. P ′ p ∧ q = f p is included in Q and
inhabited as well. Hence it contains a least element q which is f p for some p with P ′ p
and since f respects inclusion it is straightforward to show that p is indeed least in P ′.

Fact 10.2. If P ⊆ Q then P � Q.

Complementing the notion of strong isomorphism P ≈ Q, we consider a weaker notion
easier to show constructively.
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10.1. Type-Theoretic Hartogs Numbers

Definition 10.3. We say that P and Q are weakly isomorphic, written P ∼ Q, if both
P � Q and Q � P hold.

Fact 10.4. P ≈ Q implies P ∼ Q and both P ≈ Q and P ∼ Q respect well-foundedness.

Proof. If f is an isomorphism between P and Q, then it is an embedding witnessing
P � Q and its inverse is an embedding witnessing Q � P . Moreover, f respects well-
foundedness by Fact 10.1.

We will later see that also P ∼ Q implies P ≈ Q, assuming LEM. Furthermore (and
without referring to additional axioms), it suffices to come up with relational embeddings
and isomorphisms to establish P � Q and P ≈ Q, respectively:

Lemma 10.5. Assume R : P → Q → P such that p ⊆ p′ ↔ q ⊆ q′ whenever Rp q and
Rp′ q′. If R is total, then P � Q and if, additionally, R is surjective, then P ≈ Q.

Proof. Let R be total. If we were to assume some form of unique choice, we could
directly reify R into a function. However, even without unique choice we can simulate
this reification since the codomain is a power type. We define f ′ : P → P(X) by
f ′ p := λx. ∀q.Q q → Rp q → q x. First, we show that Q (f ′ p) for all p. Indeed, since R
is total, we have Rp q for some q with Qq and can show f ′ p = q relying on the fact that R
respects inclusion and is hence functional. Then f ′ can be lifted to a function f : P → Q
respecting inclusion since R does. Moreover, if R is also surjective, we symmetrically
obtain an embedding g : Q→ P that is easily verified to invert f .

This is an instance of the more general fact that total functional relations with a power
type as codomain can be turned into functions constructively, provided FE and PE.
We next represent the standard notion of initial segments and establish the character-

istic property that well-orders do not embed into their initial segments.

Definition 10.6. Given P : P2(X), we define initial segments P↓ : P(X) → P2(X) by
P↓ p := λq. Pq ∧ q ⊆ p ∧ p 6⊆ q.

Lemma 10.7. If P : P2(X) is well-founded, then so is P↓p.

Proof. Straightforward since P↓p ⊆ P .

Fact 10.8. We have P↓p � P . Contrarily, P 6� P↓ p if P is well-founded and P p.

Proof. P↓p � P follows from Fact 10.2. Now suppose P is well-founded with P � P↓p′
for some p′ with P p′. By well-foundedness, there is a least element p with this property.
However, if f witnesses the embedding of P into P↓ p, then iterating f twice witnesses
P � P↓(f p) and hence p ⊆ f p, contradicting P↓p (f p).

Moreover, embeddability of segments is reflected by ⊆.

Lemma 10.9 (LEM). If P : P2(X) is well-founded with Pp and Pq, then

p ⊆ q ↔ P↓p � P↓q.

Proof. From p ⊆ q we obtain P ↓ p ⊆ P ↓ q and hence P ↓ p � P ↓ q. Conversely, let
P↓p � P↓q and, employing LEM, suppose p 6⊆ q. Then by linearity of P we have q ⊆ p
and thus P↓q = (P↓p)↓q. But then P↓p � (P↓p)↓q in conflict with Fact 10.8
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10. Synthetic Set Theory

We now proceed to the (order) embedding theorem, stating that well-orders are com-
parable, thus resembling Theorem 9.44. Afterwards, this will be the main ingredient to
show that the type of well-orders internal to X is itself well-ordered (Theorem 10.13).

Theorem 10.10 (LEM). If P : P2(X) and Q : P2(X) are well-founded, then either P
and Q are strongly isomorphic or one of them is a proper initial segment of the other:

P ≈ Q ∨ (∃q.Q q ∧ P ≈ Q↓q) ∨ (∃p. P p ∧Q ≈ P↓p)

Proof. We employ the relation p ≈ q := P p ∧ Qq ∧ P ↓ p ≈ Q↓ q. It is a morphism
for inclusion by Fact 10.2, so for its domain dom := λp.∃q. p ≈ q and range ran :=
λq.∃p. p ≈ q it induces an isomorphism dom ≈ ran via Lemma 10.5. We now employ
LEM to distinguish four cases.

• If dom = P and ran = Q we can conclude P ≈ Q.

• If dom = P but there is q with Qq and ¬ran q, we may assume that q is the least
such element. It suffices to show that Q↓ q = ran since then P ≈ Q↓ q as wished.
First, if (Q↓q) q′ we get a the contradiction q ⊆ q′ if it were ¬ran q′. Conversely, if
ran q′ we have to prove q′ ⊆ q and q 6⊆ q′. The latter holds since q 6⊆ q′ would imply
that ran q since ran is downwards closed and then the former follows with linearity.

• This is analogous to the previous case.

• If there are (least) p and q in Q and P but not in ran and dom, respectively, we
similarly obtain that P↓p ≈ Q↓q. But then ran p and dom q, contradiction.

Corollary 10.11 (LEM). P ∼ Q implies P ≈ Q.

Proof. Assume P ∼ Q. By Theorem 10.10 we obtain either P ≈ Q as claimed or w.l.o.g.
P ≈ Q↓q for some q with Qq. But then from P ∼ Q we have Q � P and hence Q � Q↓q
with Fact 10.4, in contradiction to Fact 10.8.

We can now introduce the notion of (small) ordinals internal to X as equivalence classes
of well-orders and prove that they are indeed well-ordered by embeddability.

Definition 10.12. We call sets of orders α : P3(X) ordinals if α = [P ] := (λQ. P ∼ Q)
for some well-founded P . We further define the canonical ordering on ordinals by

α ≤ β := ∃P,Q. αP ∧ β Q ∧ P � Q

and denote by H(X) the refinement type of P3(X) containing all ordinals.

Theorem 10.13 (LEM). H(X) is well-ordered by the canonical ordering α ≤ β.

Proof. We prove the necessary properties separately.

• Reflexivity and transitivity follow directly from the corresponding facts about order
embeddings.

• For antisymmetry, suppose α and β are the equivalence classes of P and Q, respec-
tively. Then from α ≤ β and β ≤ α we obtain P ∼ Q and thus α = β.
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10.2. Sierpiński’s Theorem in CIC

• Let A : P4(X) be an inhabited set of ordinals, i.e. there is α = [P ] with Aα. Now
using LEM, either α is already least or there is Q such that Aβ for β = [Q] with
P 6� Q. Then by the embedding theorem (Theorem 10.10), we obtain p with P p
such that Q ≈ P↓ p. Since P is well-founded, we can further assume that p is the
least element with A [P↓p].
We now claim that [P↓p] is the least element of A, so for any γ = [R] with Aγ we
need to show that P↓ p � R. Suppose otherwise, then again using Theorem 10.10
we obtain that R ≈ (P ↓ p)↓ r = P ↓ r for some r with (P ↓ p) r, contradicting the
leastness of p.

We conclude this section by proving the desired properties for the cardinality of H(X).

Theorem 10.14 (LEM). H(X) 6≤ X but H(X) ≤ P3(X).

Proof. The latter follows directly from Fact 9.70. For the former, suppose there were an
injection F : H(X) → X. Intuitively, we can derive a contradiction since F induces a
(partial) well-order in X that is too big to be accommodated.
Formally, consider PF := λp.∃α. p = α↓ where α↓ := λx. ∀β. F β = x→ β ≤ α. Clearly

PF inherits the well-foundedness from H(X), so αF := [PF ] is an ordinal. Moreover, it
is easy to verify that α ≤ β ↔ α↓ ⊆ β↓, so αF is isomorphic to the full order on H(X).
But then we can show that PF � PF ↓ αF↓ witnessed by the function λp. [P ↓ p]↓ in
contradiction to Fact 10.8.

10.2. Sierpiński’s Theorem in CIC
In this section, we show that for GCHT and ACT as defined in the chapter introduction,
the former implies the latter. Like in the set-theoretic version, we now factor through
the well-ordering theorem WOT , stating that all types can be well-ordered, by showing
that every type X embeds into H(Y ) for suitable Y . For the sake of easy definitions of
the necessary injections and bijections, we assume UC as defined in Section 2.3. As done
with LEM, we will make explicit which statements rely on UC but also show in the next
section how to proceed without this assumption.
We begin with some elementary bijections concerning the type B of Booleans and the

unit type 1 needed later.

Fact 10.15. One can construct witnessing the following equipotency statements:

|X +X| = |B×X| |N| = |1 + N|
|X| = |1→ X| |P(X + Y )| = |P(X)× P(Y )|

Proof. All are straightforward, the lower two facts relying on extensionality principles.

Crucial for the proof of Sierpiński’s theorem is a criterion for types X satisfying |X| =
|X + X|. In the presence of the axiom of choice, this holds for all infinite X. Without
the axiom of choice, we can still obtain this bijection for the power P(X) of infinite X.
To prepare this result, we state some further bijections relying on UC.

Fact 10.16 (LEM,UC). For every predicate p : X → P and an injection f : X → Y :

|B| = |P| |X| = |Σx. p x+ Σx.¬p x| |X| = |Σy.∃x. y = fx|

Proof. We introduce the three bijections separately:
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10. Synthetic Set Theory

• The trivial injection defined by g tt := > and g ff := ⊥ can be inverted with IEM.

• The easy injection is (Σx.p x+ Σx.¬p x)→ X just projecting out the witness. For
the inverse we need IEM to decide p x+ ¬p x for a given x.

• The injection X → Σy.∃x. y = f x just supplements f x with the trivial proof of
∃x′. f x = f x′. We need UC to computationally extract the (unique) preimage from
an element y with ∃x. y = f x.

The first key lemma |P(X)| = |P(X) + P(X)| for infinite X is now provable by
composing the bijections established.

Lemma 10.17 (LEM,UC). If |X| ≤ N, then |X| = |1+X| and |P(X)| = |P(X)+P(X)|.

Proof. Let f : N→ X be injective and let r x := ∃n. x = f n denote its range. Then:

|X| = |Σx. r x+ Σx.¬r x| = |N + Σx.¬r x|
= |1 + N + Σx.¬r x| = |1 + Σx. r x+ Σx.¬r x| = |1 +X|

Employing this fact, we further deduce:

|P(X)| = |P(1 +X)| = |P(1)× P(X)| = |(1→ B)× P(X)|
= |B× P(X)| = |P(X) + P(X)|

Note the LEM and UC were needed only due to Fact 10.16 used for first claim.

The second key lemma states that for large enough X an injection of P(X) into X+Y
already induces an injection of P(X) into Y . This holds intuitively since, given Cantor’s
theorem, X alone cannot contribute enough to the size of X +Y to accommodate P(X).

Fact 10.18. For every functional relation R : X → P(X) one can construct a predicate
p : P(X) with ¬Rxp for all x.

Proof. By the diagonalisation p := λx. ∀q. R x q → ¬q x.

Lemma 10.19. If |P(X)| ≤ |X + Y | and |X +X| ≤ |X|, then already |P(X)| ≤ |Y |.

Proof. We first deduce |P(X)×P(X)| = |P(X+X)| ≤ |P(X)| ≤ |X+Y | using Fact 9.69
for the second step. Let this be witnessed by an injection f : P(X) × P(X) → X + Y .
Then we can define a relation R : X → P(X)→ P by Rxp := ∃q. f (p, q) = i1 x. Using
Cantor’s theorem (Fact 10.18) there is pc such that ∀x.¬Rxpc.
We can now define an injection g′ : P(X) → X + Y by g′ q := f (pc, p) and observe

that for every q it must be g′ q = i2 y for some y since if it were g′ q = i1 x for some x we
would obtain Rxpc. Thus g′ can easily be refined to an injection g : P(X)→ Y .

With this second key lemma in place, we are now prepared to establish the implication
from GCHT to WOT .

Theorem 10.20 (LEM,UC). GCHT yields |X| ≤ |H(P(N + X))|, therefore X can be
well-ordered. Thus GCHT implies WOT .

Proof. First note that N +X is infinite by injectivity of i1 : N→ N +X and hence so is
X ′ := P(N+X) by Fact 9.73. Moreover, due to Lemma 10.17, X ′ satisfies the following:

(∗) : ∀n. |Pn(X ′) + Pn(X ′)| ≤ |Pn(X ′)|
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10.3. Eliminating Unique Choice

We now show that every infinite Y satisfying (∗) in place of X ′ with |H(Y )| ≤ |Pk(Y )|
satisfies |Y | ≤ |H(Y )| by induction on k. The original claim follows since then |X| ≤
|X ′| ≤ |H(X ′)| given that |H(X ′)| ≤ |P3(X ′)| by Theorem 10.14.
So first considering k = 0 we would have |H(Y )| ≤ |Y | in direct conflict with Theo-

rem 10.14. Next considering k = k′ + 1 with |H(Y )| ≤ |Pk(Y )| we observe

|Pk′(Y )| ≤ |Pk′(Y ) +H(Y )| ≤ |Pk(Y )|

given that |Pk′(Y ) + H(Y )| ≤ |Pk(Y ) + Pk(Y )| ≤ |Pk(Y )| using (∗) for k in the last
step. We can now apply GCHT to this situation and obtain two cases:

• If |Pk′(Y )+H(Y )| ≤ |Pk′(Y )| we can derive |H(Y )| ≤ |Pk′(Y )+H(Y )| ≤ |Pk′(Y )|
and thus conclude |Y | ≤ |H(Y )| with the inductive hypothesis for k′.

• If |Pk(Y )| ≤ |Pk′(Y )+H(Y )| we obtain |Pk(Y )| ≤ |H(Y )| from Lemma 10.19 using
(∗) for k′ and thus conclude |Y | ≤ |H(Y )|.

Finally, we complete the proof of Sierpiński’s theorem with the type-theoretic variant
of the fact that the well-ordering theorem implies the axiom of choice.

Fact 10.21 (UC). WOT implies ACT .

Proof. Analogous to Fact 9.93 using UC in place of δ.

Theorem 10.22 (LEM,UC). GCHT implies ACT .

10.3. Eliminating Unique Choice
We now outline how to reformulate the development in the previous section to avoid UC
and refer to the Coq mechanisation for full detail. Recall that the necessity for UC stems
from the notion of injections and bijections based on type-theoretic functions, which
already renders the bijections in Fact 10.16 undefinable. As a remedy, we now weaken
these notions to total functional relations.

Definition 10.23. We write |X| ≤r |Y | if there is a total functional and injective relation
R : X → Y → P and |X| =r |Y | if R is surjective in addition.

It is clear that |X| ≤ |Y | and |X| = |Y | imply |X| ≤r |Y | and |X| =r |Y |, respectively,
and that the converse directions hold in the presence of UC. Also, it is easy to verify
that the relational variants are still respected by sums, products, and powers. Moreover,
now the crucial bijections in Fact 10.16 only rely on LEM while injections still transport
well-orders:

Fact 10.24 (LEM). Assume a predicate p : X → P and an injection f : X → Y . There
are bijective relations |B| =r |P|, |X| =r |Σx. p x+Σx.¬p x|, and |X| =r |Σy.∃x. y = f x|.

Proof. It is straightforward to define the bijective functions given in Fact 10.16 as rela-
tions without appealing to any axiom. We then employ LEM to verify that those relations
indeed have the desired properties.

Fact 10.25. If X is a (strict) well-order and |Y | ≤r |X|, then Y is a (strict) well-order.

Proof. If RX is a (strict) well-order on X and S : Y → X → P shows |Y | ≤r |X|, then
RY y y

′ := ∀x, x′. S y x→ S y′ x′ → RX x x
′ is a (strict) well-order on Y .

151

https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Sierpinski.html#WO_ACS
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Sierpinski.html#GCH_ACS
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Variant.html#biject_rel
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Variant.html#biject_rel_bool_subsingleton
https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.Variant.html#WO_transport_rel


10. Synthetic Set Theory

To proceed, we now also need to reformulate the generalised continuum hypothesis since
it contributes both with the premise and the conclusion to the proof of Theorem 10.20:

GCHr := ∀XY. |N| ≤ |X| ≤r |Y | ≤r |X → P| → |Y | ≤r |X| ∨ |X → P| ≤r |Y |

Finally, since the step from WOT to ACT needed for Theorem 10.22 relies on UC as
well, we also need to weaken ACT

ACr := ∀XY. ∀R : X → Y → P. (∀x. ∃y.R x y) → ∃R′ ⊆ R. ∀x. ∃!y.R′ x y

where we write R′ ⊆ R to denote ∀xy.R′ x y → Rxy. We can then reformulate the
main statements as follows:

Theorem 10.26 (LEM). GCHr yields |X| ≤r |H(P(N +X))|, so X can be well-ordered.
Therefore GCHr implies WOT .

Proof. The proof follows exactly the same outline as Theorem 10.20 with all state-
ments recast for functional total relations in the fashion of Fact 10.24. Crucially, it
is easy to strengthen Theorem 10.14 to yield |H(X)| 6≤r |X|. We then conclude WOT

with Fact 10.25.

Fact 10.27. WOT implies ACr.

Proof. As in Fact 10.21 but without the need to use UC to turn the constructed total
functional relation into a function.

Theorem 10.28 (LEM). GCHr implies ACr.

10.4. Necessity of the Excluded Middle
We conclude the analysis of Sierpiński’s theorem in CIC with three facts illustrating the
inherent classicality of the result and its proof. First, although the derivation of ACr in
Theorem 10.28 may seem like a rather weak choice axiom as it does not yield actual choice
functions like ACT , it still implies LEM by an adaptation of Diaconescu’s theorem [49].

Fact 10.29. ACr implies LEM, crucially relying on FE and PE.

Proof. A proof adapting Diaconescu’s theorem that the axiom of choice implies excluded
middle can be found in the Coq standard library.1 For an outline, consider the relation
R : (Σp : B → P. ∃b. p b) → B → P from inhabited predicates over B to B defined by
Rx b := π1 x b. Since R is easily proven total, ACr yields a total functional subrelation
R′ ⊆ R. Now given an arbitrary proposition P : P, consider the two predicates U b :=
b = tt ∨ P and V b := b = ff ∨ P . Since both are inhabited, we obtain unique b and b′
with R′ U b and R′ V b′. Case analysis on b and b′ directly yields P in three cases, in the
remaining case where b = ff and b′ = tt we show ¬P . Indeed, assuming P yields U = V
but then it would be ff = b = b′ = tt given that R′ is functional.

Secondly, essentially by a refinement of Cantor’s theorem, it follows that already a
weak formulation of the non-generalised continuum hypothesis without disjunction im-
plies LEM, which is a slight strengthening of the connection observed by Bridges [27]:

Fact 10.30. (∀X. |N| ≤ |X| ≤ |P(N)| → |X| 6≤ |N| → |P(N) ≤ X|) → LEM
1https://coq.github.io/doc/master/stdlib/Coq.Logic.Diaconescu.html
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10.5. Sierpiński’s Theorem in HoTT

Proof. Given P : P, the type X := Σ p : P(N). sing p∨ (P ∨¬P ) satisfies the premises of
the assumed continuum hypothesis, where sing p denotes that p is a singleton predicate.
Hence we obtain an injection i : P(N) → X and by a variant of Cantor’s theorem we
obtain some p : P(N) such that π1(i p) is not a singleton, thus P ∨ ¬P must hold.

Corollary 10.31. GCHT implies LEM.

Since this argument applies to all settings discussed, this means that the overall as-
sumption of LEM in Theorems 9.99, 10.22, and 10.28 is actually unnecessary. In fact, the
upcoming variant of Sierpiński’s theorem in HoTT will be stated without appeal to LEM.
Thirdly, one might wonder whether instead of AC a more constructive principle can be

derived from GCH (or better, in light of Corollary 10.31, from a not inherently classical
formulation of GCH itself). One candidate could be a well-ordering theorem relying on
a constructive notion of well-orderings based on accessibility and extensionality instead
of well-foundedness and linearity (cf. Section 10.3 of the HoTT book [249]). However,
quite surprisingly, already the assumption that every type can be equipped with a relation
with very mild ordering properties not even requiring any form of well-foundedness implies
LEM, as observed by Swan2 for the case of HoTT and adapted here to the setting of CIC
with propositional extensionality:

Fact 10.32. If every type X can be equipped with an irreflexive relation R : X → X → P
with at most one minimum, i.e. x = y if ¬Rz x and ¬Rz y for all z, then LEM holds.

Proof. Given a proposition P , consider the type X := ΣQ.¬¬(P = Q) of propositions Q
potentially equal to P . First, notice that all members Q,Q′ of X are potentially equal,
since assuming Q 6= Q′ to derive a contradiction allows to turn the specification of Q,Q′
as members of X into P = Q and P = Q′, yielding the contradiction Q = Q′. Now,
suppose R is an irreflexive relation on X with unique minima. Then ¬RQQ′ holds for
all Q,Q′ by irreflexivity, so all Q,Q′ are minima and therefore actually equal by the
uniqueness assumption.
Now to derive LEM in the form of double negation elimination, we assume ¬¬P and

derive P . To this end, we consider the two elements P and > of X, where for the
latter we use the assumption ¬¬P to meet the specification of X. Then by the above
considerations, we obtain that P = > and thus that P holds.

Note that Fact 10.32 may be seen as a strengthening of Diaconescu’s theorem.

10.5. Sierpiński’s Theorem in HoTT

As illustrated in the previous sections, Coq’s underlying type theory CIC is not immedi-
ately suited to represent set-theoretic results, especially due to the lack of unique choice
and extensionality principles. Since these are all derivable in homotopy type theory
(HoTT) [249], we now supplement the previous development using ad-hoc assumptions
with a further proof variant just assuming the univalence axiom. The mechanisation is
available as part of the HoTT Library [13].
For the purpose of this rather complementary section, it suffices to give a brief outline

of the features in which HoTT differs from CIC, for a more comprehensive exposition we
refer to standard resources [249, 208, 54, 4]. In summary, HoTT extends CIC with:

2https://ncatlab.org/nlab/show/well-ordering+theorem#in_constructive_mathematics

153

https://www.ps.uni-saarland.de/extras/sierpinski/types/html/Sierpinski.CH_LEM.html#GCH_LEM
https://github.com/dominik-kirst/sierpinski-hott/blob/master/coq/orders_lem.v
https://ncatlab.org/nlab/show/well-ordering+theorem#in_constructive_mathematics
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• A semantic notion of propositions: instead of postulating a syntactic universe P of
propositions, HoTT takes the idea of proof irrelevance as the definition of proposi-
tions. Concretely, a (homotopy) proposition is a type X with at most one inhabi-
tant, i.e. with x = y for all x, y : X. The type of propositions is denoted by hProp,
or, more precisely, for every syntactic type universe Ti one can consider the type
hPropi of propositions in Ti.

• A semantic notion of sets: types with proof irrelevant equality, i.e. typesX for which
x = y is a proposition for all x, y : X, are considered (homotopy) sets. The type of
sets is denoted by hSet, again occurring at all type universes. By the independence
of the uniqueness of equality proofs, CIC alone leaves it unspecified whether types
of higher homotopy structure exist, i.e. types that are no sets.

• The univalence axiom: on types with possibly higher equality structure one can de-
fine a notion of equivalence X ' Y expressing that the types are indistinguishable,
including their equality structure. On propositions, equivalence is logical equiva-
lence (i.e. the existence of mutual implications), and on sets, equivalence is equipo-
tency (i.e. the existence of mutually inverse functions). Univalence states that the
canonical function turning an equality X = Y into an equivalence X ' Y is itself an
equivalence, thus is in particular invertible. This entails an extremely strong sense of
extensionality, among others inducing function extensionality, propositional exten-
sionality, and equality of equipotent sets, but also extends to structured types by, for
instance, identifying isomorphic orderings or groups. With this consequences, uni-
valence gives rise to non-trivial equality proofs, for instance by establishing B = B
by using negation instead of the identity as bijection, therefore hSet itself is no set.

• Propositional resizing: the logical layer induced by semantic propositions is pred-
icative, in the sense that e.g. the type ∀P : hPropi. P + ¬P expressing excluded
middle for hPropi itself is placed in hPropi+1. Impredicativity, necessary for some
set-theoretic constructions, can be attained by assuming propositional resizing, stat-
ing that for every P : hPropi there is an equivalent P ′ : hProp0. By this assumption,
hProp0 (then simply denoted hProp since the levels become irrelevant) behaves sim-
ilarly to CIC’s P, with the difference that impredicativity is obtained by a semantic
proof that a given type is a proposition rather than using a syntactic typing rule.
In fact, assuming excluded middle for every universe gives rise to propositional re-
sizing since then every P : hPropi is either equivalent to > : hProp0 or ⊥ : hProp0.
Therefore we do not need to assume propositional resizing explicitly but tacitly
employ it in every classical context.

• Propositional truncation: as a consequence of propositional resizing, propositional
truncations ||X|| : hProp of types X : T can be defined impredicatively:

||X|| := ∀P : hProp. (X → P )→ P

By this characterisation there is a canonical introduction principle X → ||X|| and
an elimination principle in particular yielding ||X|| → ¬¬X (cf. Section 7.3). Im-
portant propositional truncations are ||P + Q|| yielding propositional disjunction
P ∨ Q and ||Σx. p x|| yielding propositional existence ∃x. p x. In contrast to the
existential quantifier definable in CIC’s P, ||Σx. p x|| satisfies unique choice by con-
struction as a propositional truncation.
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Using the type N : hSet of natural numbers, cardinality comparisons |X| ≤ |Y | referring
to propositional existence of injections f : X → Y , and the power set operation P(X)
defined as X → hProp, we formulate the generalised continuum hypothesis in HoTT as:

GCHH := ∀XY : hSet. |N| ≤ |X| ≤ |Y | ≤ |P(X)| → |Y | ≤ |X| + |P(X)| ≤ |Y |

By Cantor’s theorem in the form refuting injections |P(X)| ≤ |X|, the concluding dis-
junction is exclusive and therefore GCHH can be seen to be a proposition. As already
observed analogously for CIC (Corollary 10.31), GCHH implies LEM (∀P : hProp. P+¬P ):

Fact 10.33. GCHH implies LEM.

Proof. Essentially by the same argument as Corollary 10.31.

For our main result assuming GCHH as a premise we are therefore able to argue clas-
sically where needed. Moreover, it would make no difference if we were to formulate
the conclusion of GCHH with a modest-looking implication instead of the constructively
(seemingly) stronger disjunction or, employing the classical Cantor-Bernstein theorem,
with bijections instead of only the missing injections.
It is enough to show that GCHH implies the well-ordering theorem (WOH) for hSet,

relying on the standard argument that WOH implies the axiom of choice (ACH) for hSet:

ACH := ∀XY : hSet.∀R : X → Y → hProp. (∀x. ∃y.R x y)→ ∃f : X → Y. ∀x.R x (f x)

For our purposes, we formulate WOH as the guarantee that for every set X there is an
ordinal α : O with X ≤ α, where O is defined as the type of sets equipped with transitive,
extensional, and accessible relations as in Section 10.3 of the HoTT book [249]. Following
this presentation, we establish the basic facts that isomorphic ordinals are equal, that
ordinals satisfy trichotomy (using LEM), that O itself is an ordinal, and that every ordinal
is isomorphic to the type of all smaller ordinals. As before, the central ingredient for the
main result is that for every set we can construct an ordinal of large but controlled
cardinality (cf. Theorem 9.98):

Lemma 10.34 (LEM). Assuming a set A : hSet, we can construct the Hartogs number
ℵ(A) : O on the same universe level as A, satisfying |ℵ(A)| ≤ |P3(A)| and |ℵ(A)| 6≤ |A|.

Proof. Preliminarily, we define ℵ′(A) as the type of ordinals admitting injections into A,
ordered by the natural ordering. This definition increases the universe level but embeds
into the resized triple power set P3(A) by mapping every ordinal to its induced partial
order of A (relying on trichotomy). We then obtain ℵ(A) as the image of this embedding,
retain the bound against P3(A) and conclude |ℵ(A)| 6≤ |A| since otherwise ℵ(A) would
be an initial segment of ℵ′(A), although they are isomorphic by construction.

The remainder of the proof consists of showing that GCHH ensures |A| ≤ |ℵ(A)|, at
least for large enough A. In preparation, we record the necessary amount of cardinal
arithmetic phrased for large sets:

Lemma 10.35 (LEM). The following two facts hold, the former assuming LEM.

1. Every set X with |N| ≤ |X| satisfies |P(X)|+ |P(X)| ' |P(X)|.

2. For sets X, Y with |X +X| ≤ |X| and |P(X)| ≤ |X + Y | we obtain |P(X)| ≤ |Y |.

Proof. (1) is established similarly like Lemma 10.17, involving non-constructive equiva-
lences like hProp ' B, and (2) is by diagonalisation exactly as in Lemma 10.19.
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We show a bit more abstractly than before that GCHH normalises every operation F
on sets behaving like the Hartogs number, crucially preserving the universe level:

Lemma 10.36 (LEM). Assume GCHH and a function F : hSet → hSet preserving the
universe level such that there is k : N with |F X| ≤ |Pk(X)| for and |F X| 6≤ |X| for all
X. Then for every set X we obtain |X| ≤ |F (P(N +X))|.

Proof. We show that already X ′ := P(N+X) embeds into F X ′ by induction on k. The
base case F X ≤ P0(X) conflicts with F X 6≤ X and in the successor case applying GCHH

on a suitable instance (cf. Theorem 10.20) either yields the claim directly or makes the
inductive hypothesis applicable, employing the previous lemma.

From this abstract result we can conclude Sierpiński’s theorem as follows:

Theorem 10.37. GCHH implies WOH and therefore ACH .

Proof. By Lemma 10.36, GCHH implies |X| ≤ |ℵ (P(N + X))| for all X, hence WOH by
the well-orderedness of Hartogs numbers, and thus ultimately ACH .

10.6. Discussion and Related Work

Comparison of the Proofs of Sierpiński’s Theorem
We briefly compare the presented versions of Sierpiński’s theorem (Sections 9.6, 10.2,
10.3, and 10.5) with respect to their overall strategy as well as the usage of additional
axioms.
In principle, the proof strategies are analogous and in particular the second half of

the argument following the construction of the Hartogs numbers as (h-)sets ℵ(A) respec-
tively types H(X) is identical up to formulation in the respective framework. The first
half differs in the usage of set-theoretic ordinals to directly define ℵ(A), postponing the
concrete representation witnessing |ℵ(A)| ≤ |P6(A)| based on the usual set-theoretic no-
tion of well-orderings as subsets of A × A. Given their natural ordering by membership
(Lemma 9.85), the relevant properties of set-theoretic ordinals are easy to mechanise,
particularly benefiting from the inductive characterisation available in second-order set
theory. In the type-theoretic version, one could of course approximate ordinals as equiv-
alence classes of abstract well-orders, but already their ordering based on embeddings
instead of primitive membership would not be as direct. Therefore we did not introduce
those abstract ordinals altogether but only considered the “small” ordinals representable
by elements of P3(X), hence obtaining the stricter bound |H(X)| ≤ |P3(X)|.
As expected, the set-theoretic development (Section 9.6) heavily relies on LEM, espe-

cially to handle ordinals. Worth mentioning is that, in contrast to the usual first-order
regularity axiom, the foundation axiom we assume for M does not imply LEM [180],
so our axiomatisation of second-order ZF, just like the second-order versions of CZF
discussed in [10], can in principle be used to mechanise set theory constructively.
Given the description operator assumed in the axiomatisation 2ZF, unique choice is

available on sets. Thus, as in first-order set-theory, there is no detectable difference
between a total functional relation and a function on sets. On the other hand, if we
were to assume UC on all types, the encodings eX : X → X defined in Definition 9.66
could be lifted to proper bijections |X| = |X| and especially eliminators like a recursor
on ordinals matching the transfinite induction principle (Lemma 9.91) could be given.
Since those properties were not necessary for our purpose, however, we refrained from
assuming general UC in the set-theoretic development.
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10.6. Discussion and Related Work

In the type-theoretic development (Section 10.2), there are two decisions necessitating
LEM early on that could be avoided. First, if we would treat ordinals abstractly as
mentioned above, then every ordinal would have a successor and the initial case distinction
in Theorem 10.13 to prove that ordinals are well-ordered could be side-stepped. Secondly,
instead of directly employing the classical notion of well-foundedness via least elements
one could follow the more constructive (but classically equivalent) approach based on
accessibility and extensionality as chosen in the HoTT Book [249]. In this setting, the
type of ordinals can be shown to be an ordinal constructively. However, as it still requires
LEM to embed every type into an accessible extensional preorder (Fact 10.32), classical
reasoning is anyways unavoidable and therefore we chose the setup as explained. In
particular regarding the first point, considering inclusion as the canonical ordering has its
advantages since then only requiring well-foundedness is enough to represent the internal
well-orders. Nevertheless, we do pay attention to constructivisation where easily possible,
most notably by incorporating the weak versions of equipotency and isomorphism so to
not depend on the non-constructive Cantor-Bernstein theorem [200].
Regarding UC as a means to better align the type-theoretic and set-theoretic version,

we have illustrated that one can avoid this assumption if one is willing to work with
total functional relations X → Y → P instead of functions X → Y (Section 10.3).
However, we are convinced that assuming UC is a good investment to develop a compact
and easy-to-explain proof, even if it can be eliminated afterwards. When translating
set-theoretic results to constructive type theory, it just seems more natural to let the
respective notions of functions coincide. As we did for LEM, we refrained from using UC
where easily possible, for instance in the construction of functions from relations into a
power type used in Lemma 10.5. Note that assuming UC only as a proposition in the
form of ACT would be enough for the existence of the bijections in Fact 10.16 but still
does not allow for their computational definitions.
In the HoTT version (Section 10.5), well-behaved ordinals are available and so we

could follow the less ad-hoc set-theoretic outline. Switching from CIC to HoTT caused
a few other notable differences. Due to univalence, the equational reasoning necessary
for Lemma 10.35 did not rely on setoid rewriting anymore and the assumptions of FE
and PE could be eliminated. Using hProp instead of CIC’s impredicative P universe
for logical expressions and the power set operation further eliminated the assumption of
unique choice but also introduced the overhead of proving some types to be propositions
and resizing some predicates by hand. Especially resizing the Hartogs number to make
Lemma 10.36 applicable was surprisingly intricate and the current solution employing an
additional injection P3(A)→ P3(A) to fix the universe levels is not fully satisfactory.

Related Work
Mechanised Synthetic Set Theory Chapter 10 of the HoTT book [249] contains a
body of set-theoretic results formulated for the hSet fragment of homotopy type theory,
including a type-theoretical proof of the well-ordering theorem. This result was also
mechanised in Agda by Ilik [106] and in Coq by Smolka et al. [226]. De Rauglaudre [48]
mechanises the Banach-Tarski Paradox in Coq, stating that the axiom of choice implies
that a ball is equidecomposable with two balls of the same size. The development assumes
the axiom of choice in the form TTCA formulated by Werner [263] and shows the claim
for an axiomatised type of real numbers. Jaber et al. [111] investigate a forcing translation
for intuitionistic type theory, applied to force the negation of the continuum hypothesis
referring to the types N and N→ P. Grimm [76] works on a mechanisation of Bourbaki’s
set theory directly phrased in Coq’s type theory CIC.
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A. First-Order Deduction Systems

Definition A.1. Intuitionistic natural deduction is defined by the following rules:

ϕ ∈ Γ
Γ ` ϕ C Γ ` ⊥̇

Γ ` ϕ E
Γ, ϕ ` ψ

Γ ` ϕ→̇ψ II
Γ ` ϕ→̇ψ Γ ` ϕ

Γ ` ϕ IE

Γ ` ϕ Γ ` ψ
Γ ` ϕ∧̇ψ CI

Γ ` ϕ∧̇ψ
Γ ` ϕ CE1

Γ ` ϕ∧̇ψ
Γ ` ψ CE2

Γ ` ϕ
Γ ` ϕ∨̇ψ DI1

Γ ` ψ
Γ ` ϕ∨̇ψ DI2

Γ ` ϕ∨̇ψ Γ, ϕ ` θ Γ, ψ ` θ
Γ ` θ DE

↑Γ ` ϕ
Γ ` ∀̇ϕ

AI
Γ ` ∀̇ϕ
Γ ` ϕ[t]

AE
Γ ` ϕ[t]
Γ ` ∃̇ϕ

EI
Γ ` ∃̇ϕ ↑Γ, ϕ `↑ψ

Γ ` ψ
EE

We write ` ϕ whenever ϕ is intuitionistically provable from the empty context.

Definition A.2. Classical natural deduction is defined by the following rules:

ϕ ∈ Γ
Γ `c ϕ

C
Γ `c ⊥̇
Γ `c ϕ

E
Γ, ϕ `c ψ

Γ `c ϕ→̇ψ
II

Γ `c ϕ→̇ψ Γ `c ϕ
Γ `c ϕ

IE

Γ `c ϕ Γ `c ψ
Γ `c ϕ∧̇ψ

CI
Γ `c ϕ∧̇ψ

Γ `c ϕ
CE1

Γ `c ϕ∧̇ψ
Γ `c ψ

CE2

Γ `c ϕ
Γ `c ϕ∨̇ψ

DI1
Γ `c ψ

Γ `c ϕ∨̇ψ
DI2

Γ `c ϕ∨̇ψ Γ, ϕ `c θ Γ, ψ `c θ
Γ `c θ

DE

↑Γ `c ϕ
Γ `c ∀̇ϕ

AI
Γ `c ∀̇ϕ
Γ `c ϕ[t]

AE
Γ `c ϕ[t]
Γ `c ∃̇ϕ

EI
Γ `c ∃̇ϕ ↑Γ, ϕ `c↑ψ

Γ `c ψ
EE

Γ `c ((ϕ→̇ψ)→̇ϕ)→̇ϕ P

We write `c ϕ whenever ϕ is classically provable from the empty context.

Definition A.3. The intuitionistic sequent calculus LJT is defined as follows:

Γ ;ϕ⇒ϕ
A

Γ ;ϕ⇒ψ ϕ ∈ Γ
Γ⇒ψ

C
Γ⇒ϕ Γ ;ψ⇒θ

Γ ;ϕ→̇ψ⇒θ
IL

Γ, ϕ⇒ψ

Γ⇒ϕ→̇ψ IR
Γ ;ϕ[t]⇒ψ

Γ ; ∀̇ϕ⇒ψ
AL

↑Γ⇒ϕ

Γ⇒∀̇ϕ
AR Γ⇒⊥̇

Γ⇒ϕ
E
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A. First-Order Deduction Systems

Definition A.4. The intuitionistic sequent calculus LJ is defined as follows:

Γ, ϕ⇒J ϕ
A

Γ, ϕ, ϕ⇒J ψ

Γ, ϕ⇒J ψ
C

Γ⇒J ψ

Γ, ϕ⇒J ψ
W

Γ, ψ, ϕ,Γ′ ⇒J θ

Γ, ϕ, ψ,Γ′ ⇒J θ
P Γ⇒J ⊥̇

Γ⇒J ϕ
E

Γ⇒J ϕ Γ, ψ ⇒J θ

Γ, ϕ→̇ψ ⇒J θ
IL

Γ, ϕ⇒J ψ

Γ⇒J ϕ→̇ψ
IR

Γ, ϕ, ψ ⇒J θ

Γ, ϕ∧̇ψ ⇒J θ
CL

Γ⇒J ϕ Γ⇒J ψ

Γ⇒J ϕ∧̇ψ
CR

Γ, ϕ⇒J θ Γ, ψ ⇒J θ

Γ, ϕ∨̇ψ ⇒J θ
DL

Γ⇒J ϕ

Γ⇒J ϕ∨̇ψ
DR1

Γ⇒J ψ

Γ⇒J ϕ∨̇ψ
DR2

Γ, ϕ[t]⇒J ψ

Γ, ∀̇ϕ⇒J ψ
AL

↑Γ⇒J ϕ

Γ⇒J ∀̇ϕ
AR

↑Γ, ϕ⇒J↑ψ
Γ, ∃̇ϕ⇒J ψ

EL
Γ⇒J ϕ[t]
Γ⇒J ∃̇ϕ

ER
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B. Notation Index

1 Unit type p.9
∗ Unit value p.9
0 Void type p.9
P Universe of propositions p.9
T Universe of types p.9
N Type of natural numbers p.10
B Type of Boolean values p.10
tt, ff Boolean values p.10
O(X) Type of option values p.11
pxq, ∅ Option values p.11
L(X) Type of lists p.11
AR Accessibility predicate over relation R p.11
LEM Law of excluded middle p.12
MP Markov’s principle p.13
FE Functional extensionality p.13
PE Propositional extensionality p.13
PI Proof irrelevance p.13
X ⇀ Y Partial function space from X to Y p.15
UC Unique choice p.16
IEM Informative excluded middle p.16
FΣ Type of function symbols p.19
PΣ Type of predicate symbols p.19
F Type of formulas p.19
F− Type of negative formulas p.19
F∗ Type of minimal formulas p.19
Q′, Q Robinson arithmetic p.24
PA Peano arithmetic p.24
HA Heyting arithmetic p.24
KTM Halting problem p.49
PCP Post correspondence problem p.49
VAL Validity problem p.50
SAT Satisfiability problem p.51
PRV Provability problem p.51
KVAL Kripke validity problem p.51
KSAT Kripke satisfiability problem p.51
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B. Notation Index

FSAT Finite satisfiability problem p.54
UDPC Uniform Diophantine pair constraints p.71
H10 Solvability of Diophantine equations p.61
S Abstract formal system p.70
S Abstract type of sentences p.70
EPF Enumeration of partial functions p.71
KΘ Synthetic halting problem p.71
K1

Θ, K0
Θ Special forms of the synthetic halting problem p.71

CTQ EPF for Robinson arithmetic p.74
EPFµ EPF for µ-recursive functions p.76
F2 Type of second-order formulas p.86
Pk Type of k-ary predicate symbols and variables p.86
MSL, SL Types of separation logic formulas p.90
F� Type of modal formulas p.94
IEL, IEL− Intuitionistic epistemic logic p.94
WLEM Weak law of excluded middle p.97
DNS Double-negation shift p.99
Z′, Z Zermelo set theory p.104
ZF Zermelo-Fraenkel set theory p.104
FZ′, PS Finitary set theories p.104
CE Class extensionality p.107
TD Tree description p.108
2Z Second-order Zermelo set theory p.121
2ZF Second-order Zermelo-Fraenkel set theory p.121
S Stages of the cumulative hierarchy p.125
O Type of ordinals in second-order set theory p.138
ℵ(X) Hartogs number of X p.141
GCHM GCH in second-order set theory p.140
ACM AC in second-order set theory p.140
WOM WO in second-order set theory p.140
GCHT GCH in constructive type theory p.145
ACT AC in constructive type theory p.145
WOT WO in constructive type theory p.149
GCHr Relational variant of GCHT p.152
ACr Relational variant of ACT p.152
GCHH GCH in HoTT p.155
ACH AC in HoTT p.155
WOH WO in HoTT p.155
O Type of ordinals in HoTT p.155
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