
Towards Extraction of Continuity Moduli in Coq

Yannick Forster1, Dominik Kirst1, and Florian Steinberg2

1 Saarland University
Saarland Informatics Campus, Saarbrücken, Germany

{forster,kirst}@ps.uni-saarland.de
2 INRIA Saclay
Paris, Framce

florian.steinberg@inria.fr

Abstract

We report on a work-in-progress extraction of continuity information for Coq function-
als on Baire space, i.e. of type (N → N) → N. The extraction is implemented as a MetaCoq
plugin and generates a certified modulus function, given a term in the System T fragment
of Coq. In fact, the extraction first reifies Coq definitions into a syntactic representation
of System T and subsequently employs a constructive and informative continuity theorem
for System T following Escardó.

It is a well-studied property of constructive mathematics that the functions definable in a
purely constructive setting à la Bishop are computable. As a consequence, definable functions
over Baire space into natural numbers are continuous.

The latter has been established explicitly for various phrasings of constructive mathematics,
for instance Gödel’s System T, expressing the primitive recursive functions of higher type. For
more profound constructive foundations, such as the dependent type theory underlying the
Coq proof assistant, it is clear that at least T-definable functions can be shown continuous in
the system itself. We provide a first step towards exploiting such continuity information by
implementing a plugin for automatically extracting the modulus of continuity of T-definable
Coq functionals of type (N → N) → N.

Such a functional f on Baire space is called continuous if it only accesses finitely many
positions of every input sequence α : N → N, i.e. if there is a function µf : (N → N) → L(N)
such that for every α it holds that f α = f β for every β agreeing with α on the positions
listed in µf α. The function µf is called the modulus of continuity of f and can be extracted
for all T-definable Coq functionals by first reifying into a syntactic representation of System T
(Section 2) using the MetaCoq framework [3] and then executing a constructive and informative
continuity proof for System T (Section 1) as implemented by Escardó in Agda [1]. The Coq
code is available at https://www.ps.uni-saarland.de/extras/modulus-extraction/.

1 Extracting Continuity Moduli from System T

We follow Escardó’s Agda development [1] to implement a Coq procedure that computes and
verifies the modulus of continuity for T-definable functionals, i.e. functionals that are the
denotation of a term of System T. Using standard techniques from programming language
semantics, Escardó gives a compact mechanisation that straightforwardly translates to Coq. As
intended for the calculus of constructions at the core of Coq’s type theory, most of the logical
statements from the Agda proof can be placed in the (impredicative) propositional universe
P while only the definition of continuity remains in the (predicative) computational hierarchy
T, so that the modulus function can be extracted. Moreover, as in (one version of) Escardó’s
proof, we rely on an intrinsically typed Church-style representation of System T, i.e. do not
model untyped syntax.

https://www.ps.uni-saarland.de/extras/modulus-extraction/


Towards Extraction of Continuity Moduli in Coq Forster, Kirst, Steinberg

2 A Modulus Extraction Plugin

We utilise MetaCoq to reify Coq’s System T fragment syntactically into an inductive type rep-
resenting untyped System T syntax, reminiscent of reification into the untyped λ-calculus [2].
MetaCoq provides an inductive type Ast.term mirroring the OCaml datatype used to imple-
ment Coq and a monad TemplateMonad which can be used to access effects like unfolding of
names, quoting a Coq term into its Ast.term representation or unquoting an Ast.term repre-
sentation back into a Coq term.

Our plugin thus consists of a monadic program Reify translating from Ast.term into a type
SystemT.term. Monadic programs can be executed using a vernacular command. To execute
our plugin, a user can type MetaCoq Run (Reify r f) to reify f into System T automati-
cally and add the result to the environment as definition named r. The reification function
is essentially the (partial) identity, just renaming constructors of Coq (e.g. Coq’s application
Ast.tApp) into constructors of System T (e.g. SystemT.app). The two datatypes are displayed
below, the alignment hints at how the translation works:

Module Ast.

Inductive term : Set :=

tRel : nat -> term

| tConstruct : inductive -> nat ->

universe_instance -> term

| tFix : mfixpoint term -> nat -> term.

| tLambda : name -> term -> term -> term

| tApp : term -> term -> term

(* ... *).

End Ast.

Module SystemT.

Inductive term : Type :=

| var : nat -> term

| zero : term

| succ : term

| rec : type -> term

| lambda : type -> term -> term

| app : term -> term -> term.

End SystemT.

As a second step, we translate the untyped System T representation to the intrinsically typed
representation for the continuity proof by a certified type inference procedure for T. In the
last step we utilise the continuity theorem for System T from above to implement a plugin
function called ExtractModulus. Given a functional, it reifies the functional into System T,
infers typing information, employs the continuity theorem, and checks that the denotation of the
System T representation is indeed the initial functional. The plugin can be called as MetaCoq

Run (ExtractModulus mod f) where the modulus of f is saved as the definition mod together
with a proof that it indeed is the modulus of continuity.

3 Future Directions

We see the current implementation as ground for further investigations in the extraction of
continuity information in Coq. In the current state, the plugin has hardly any for practical
applications. To make it useful in applications like computable real analysis [5] we want to
extend to more base types in System T like B, sums, pairs, lists, or rational numbers.

Furthermore, Coq functions are mostly defined using a match/fix representation of recursion
instead of a recursor, which our reification can not yet deal with.

MetaCoq allows users to verify plugins in principle. For our plugin, this would mainly be
a verification of the reification function, which would be eased by relying on the verified type
inference function for Coq [4].

Lastly, we would like to extend the continuity notion and proofs to functions not expressible
in System T to a larger fragment of Coq’s type theory [6].

2



Towards Extraction of Continuity Moduli in Coq Forster, Kirst, Steinberg

References

[1] M. Escardó. Continuity of Gödel’s System T definable functionals via effectful forcing. Electronic
Notes in Theoretical Computer Science, 298:119–141, 2013.

[2] Y. Forster and F. Kunze. A Certifying Extraction with Time Bounds from Coq to Call-By-Value
Lambda Calculus. In 10th International Conference on Interactive Theorem Proving (ITP 2019),
volume 141 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:19. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[3] M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze, G. Malecha, N. Tabareau, and
T. Winterhalter. The MetaCoq Project. June 2019.

[4] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, and T. Winterhalter. Coq Coq correct! verification
of type checking and erasure for Coq, in Coq. Proceedings of the ACM on Programming Languages,
4(POPL):8, 2019.

[5] F. Steinberg, L. Théry, and H. Thies. Quantitative Continuity and Computable Analysis in Coq.
In 10th International Conference on Interactive Theorem Proving (ITP 2019), volume 141 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 28:1–28:21. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019.

[6] C. Xu. A syntactic approach to continuity of T-definable functionals, 2019.

3


	Extracting Continuity Moduli from System T
	A Modulus Extraction Plugin
	Future Directions

