
Equivalence of System F and λ2 in Abella

Jonas Kaiser Gert Smolka
Saarland University,

Saarbrücken, Germany
{jkaiser,smolka}@ps.uni-saarland.de

Abstract
We give a machine-checked proof of the equivalence of the usual,
two-sorted presentation of System F and its single-sorted pure type
system variant λ2. This is established by reducing the typability
problem of F to λ2 and vice versa. The systems are formulated
using higher-order abstract syntax and the proof is executed in the
Abella proof system. We compare and contrast this proof to our
earlier Coq formalisation based on de Bruijn indices and context
morphism lemmas.

Keywords Pure Type Systems, System F, HOAS, Relational Rea-
soning

1. The Problem
There are different presentations of “System F” in the literature,
and we often found that properties that have been proven for one
presentation are assumed for another, without verifying that the
presentations are in fact equivalent.

In this paper we consider two presentations of System F we
call F and λ2. F is two-sorted and models Harper’s [5] presentation
of System F. λ2 is a pure type system (PTS) and appears as a
corner of Barendregt’s λ-cube [2]. Our notion of equivalence is the
reduction of the typing problem from one system to the other. As it
turns out, proving this is surprisingly intricate.

2. Solution with de Bruijn in Coq
We recently [6] developed a machine-checked proof of this equiv-
alence in Coq. In this prior work, we use de Bruijn syntax to han-
dle the various variable binding mechanisms of the two systems.
All essential lemmas of the proof development are phrased as con-
text morphism lemmas (CML). We demonstrate that CMLs are not
only a useful proof device to reason about structural properties of
a single type system, but that they also scale to relating judge-
ments of different type systems. We exploit this to precisely and
systematically align F and λ2. This Coq development, together
with a preprint version of the associated paper, can be found at
https://www.ps.uni-saarland.de/extras/cpp17-sysf/.

Our reduction theorem has the following form:

F̀ s :A ⇐⇒ 2̀ bsc : bAc
2̀ a : b ⇐⇒ F̀ dae : dbe

where b·c and d·e are suitable syntactic translation functions. These
are necessary since the two systems use different syntactic lan-
guages.

The main difficulty of the proof is the correct handling of
binders, which involves contexts, substitutions and their interaction
with the translations. Doing this with a de Bruijn representation is
technically involved but works well in Coq. The use of the Auto-
subst library [9] providing support for de Bruijn syntax turned out
to be essential.

3. Solution with HOAS in Abella
An alternative to de Bruijn syntax is higher-order abstract syntax
(HOAS). HOAS delegates the handling of binders to the underlying
logic and thus avoids the need to model contexts and substitutions
explicitly. The key idea is to model binders with a restricted class
of functions and to inspect binders by applying them to fresh
nominal constants. It is unclear whether the HOAS approach can
be fully realised in a system like Coq (examples of approximate
solutions are [3, 4]). There are, however, specialised systems whose
underlying logic provides restricted function spaces and nominals
as required by HOAS, like Twelf [7], Beluga [8] and Abella [1].

We undertook the project to redo the proof with a HOAS repre-
sentation using the Abella system. Our interest was to find out how
much HOAS simplifies the proof and how well the engineering of
such a proof is supported by Abella. Our finding is that the over-
all proof structure carries over to Abella and that the technicalities
of a de Bruijn representation are in fact eliminated. However, there
are also severe drawbacks: The recursive translation functions must
be represented as relations (obfuscating their computational status)
and an induction principle for terms with binders is not available.
Moreover, Abella has poor support for proof construction, com-
pared to Coq. As is, the Abella proof is roughly as long as the
Coq proof (we do not count the Autosubst library providing de
Bruijn syntax for Coq) but more tedious to construct and fragile
as it comes to refactoring.

There is one point where the Abella development clearly wins:
The specification of the two underlying type systems is simpler
since binders and contexts are provided by the underlying logic.

4. The Proof
Figures 1 and 2 show our HOAS specifications of F and λ2. Abella
is designed around a two-level logic approach and these definitions
sit at the lower specification level, which is verbatim λProlog. We
then reason about these structures at the meta level, where the logic
is G, the intuitionistic predicative fragment of Church’s simple type
theory, extended with natural induction, (co)inductive predicates
and nominal quantification (∇x.s).

In [6] we use four syntactic translation functions to map the
types and terms of F and λ2. Abella is a relational system, so
instead of functions we define, again at the specification level, two
relations, A ∼ a for the types and s ≈ b for the terms. We then
formulate the relational version of our reduction theorem as

{s :F A} ⇐⇒ ∃ab. {s ≈ a} ∧ {A ∼ b} ∧ {a :2 b}
{a :2 b} ⇐⇒ ∃sA. {s ≈ a} ∧ {A ∼ b} ∧ {s :F A}

Here {J} is a meta level proposition that holds exactly when J
is a derivable predicate at the specification level. This makes the
inductive structure of λProlog derivations accessible at the meta
level.

https://www.ps.uni-saarland.de/extras/cpp17-sysf/


TyF ,TmF type

→ TyF → TyF → TyF

∀. (TyF → TyF )→ TyF

@ TmF → TmF → TmF

λ . TyF → (TmF → TmF )→ TmF

@ TmF → TyF → TmF

Λ. (TyF → TmF )→ TmF

ty TyF → o

:F TmF → TyF → o

A ty B ty

(A→ B) ty

Πx. x ty ⇒ (Ax) ty

(∀.A) ty

s :F A→ B t :F A

s@ t :F B

Πx. x ty ⇒ s x :F Ax

Λ.s :F ∀.A

s :F ∀.B A ty

s@A :F BA

A ty Πx. x :F A ⇒ s x :F B

λA.s :F A→ B

Figure 1. HOAS specification of F in Abella.

The basic proof design is to first establish that A ∼ a and
s ≈ b are both injective and functional. We then proceed to show
conditional left- and right totality, each coupled with judgement
preservation. For the left-totality of the type relation this means
given {A ty} holds, there exists an a, such thatA ∼ a and {a :2 ∗}
hold. The conditional right-totality for the type relation and the
corresponding results for the term relation are analogue.

Throughout the proof we mostly deal with the more general
propositions of the form {L ` J}, where L is a list of predi-
cates that explicitly represents the implicit specification level rea-
soning context. Since such context lists can a priori contain arbi-
trary predicates, it is often necessary to restrict them to sensible
hypotheses. Take for example a typing derivation in λ2. The L2 in
{L2 ` a :2 b} should be of the form (n1 :2 c1), . . . , (nk :2 ck),
where the ni are nominals that play the role of variables. This is
achieved with a meta level inductive predicate C2(L2), together
with a suitable inversion principle for context extraction. We of
course also have a predicate CF for F context lists.

Notably, we also need a similar predicate CR for statements
of the form {LR ` s ≈ b}, and here we observe that a sensible
context only contains premises of the form na ∼ nb or nc ≈ nd.
In other words, a suitable context for a relation-derivation is a
relation on type and term variables. These variable relations play
the same role in the HOAS proof context morphisms play in the de
Bruijn proof. In order to prove our preservation results, we have to
connect the various context lists with a predicate C(LF , LR, L2).
This predicate has to satisfy certain crucial properties, and these
connect C closely to the context morphism lemmas we use in [6].

We observe that one of the most challenging cases of the proof
appears to be independent from the choice of syntax encoding: The
splitting of the single application mechanism of λ2 into its two
corresponding cases in F requires a certain degree of ingenuity in
both of our proofs, as the required information is not immediately
apparent in the associated typing derivations.

As a concluding remark we would like to point out a striking
similarity with respect to how the final equivalences are obtained.
We first show each of the forward implications and then use the
respective other implication to complete the equivalences. Since

Tm2 type

� Tm2

∗ Tm2

Π . Tm2 → (Tm2 → Tm2)→ Tm2

@ Tm2 → Tm2 → Tm2

λ . Tm2 → (Tm2 → Tm2)→ Tm2

U Tm2 → o

:2 Tm2 → Tm2 → o

U � U ∗ ∗ :2 �

a :2 Πc.d b :2 c

a@ b :2 d b

a :2 u U u Πx. x :2 a ⇒ b x :2 ∗
Πa.b :2 ∗

a :2 u U u
Πx. x :2 a ⇒ c x :2 ∗ Πx. x :2 a ⇒ b x :2 c x

λa.b :2 Πa.c

Figure 2. HOAS specification of λ2 in Abella.

in Abella we align the systems with relations rather than pairs of
functions, the intricate cancellation laws of the Coq proof are not
needed to complete this final step.

The accompanying Abella formalisation can be obtained from
https://www.ps.uni-saarland.de/extras/ttt17-sysf/.

References
[1] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller,

Gopalan Nadathur, Alwen Tiu, and Yuting Wang. Abella: A system for
reasoning about relational specifications. Journal of Formalized Rea-
soning, 7(2):1–89, 2014.

[2] Henk Barendregt. Introduction to generalized type systems. Journal of
Functional Programming, 1(2):125–154, 1991.

[3] Venanzio Capretta and Amy P. Felty. Combining de Bruijn indices and
higher-order abstract syntax in coq. In Types for Proofs and Programs:
International Workshop, TYPES 2006, Nottingham, UK, April 18-21,
2006, Revised Selected Papers, pages 63–77. Springer, 2007.

[4] Adam Chlipala. Parametric higher-order abstract syntax for mecha-
nized semantics. In ACM Sigplan Notices, volume 43, pages 143–156.
ACM, 2008.

[5] Robert Harper. Practical foundations for programming languages.
Cambridge University Press, 2013.

[6] Jonas Kaiser, Tobias Tebbi, and Gert Smolka. Equivalence of System
F and λ2 in Coq based on context morphism lemmas (to appear). In
Proceedings of CPP 2017. ACM, 2017.

[7] Frank Pfenning and Carsten Schürmann. System description: Twelf
- A meta-logical framework for deductive systems. In Automated
Deduction - CADE-16, 16th International Conference on Automated
Deduction, Trento, Italy, July 7-10, 1999, Proceedings, pages 202–206.
Springer, 1999.

[8] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for pro-
gramming and reasoning with deductive systems (system description).
In Automated Reasoning, 5th International Joint Conference, IJCAR
2010, Edinburgh, UK, July 16-19, 2010. Proceedings, pages 15–21.
Springer, 2010.

[9] Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning
with de Bruijn terms and parallel substitutions. In Interactive Theorem
Proving, Proceedings, volume 9236 of Lecture Notes in Computer
Science, pages 359–374. Springer, 2015.

https://www.ps.uni-saarland.de/extras/ttt17-sysf/

	The Problem
	Solution with de Bruijn in Coq
	Solution with HOAS in Abella
	The Proof

