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1 Introduction

Axiomatic set theory [14, 5, 7] has been developed based on first-order logic. We

study the possibilities opening up when axiomatic set theory is developed in type

theory with excluded middle. We arrive at the conclusion that type theory is much

better suited for the development of set theory than first-order logic:

• Many notions of set theory, for instance, well-orderings and transfinite recursion,

can be developed more generally and more naturally in type theory. They can

then be applied to sets (i.e., the elements of an axiomatized type of sets).

• Zermelo-Fraenkel set theory cannot be formalized in pure first-order logic. An

extension providing for axiom schemes is needed to express and apply the re-

placement axiom. In type theory, finite axiomatizations of set theories are obvi-

ous since one can quantify over relations. Another difficulty is transfinite recur-

sion, where one often wants functions at the class level (e.g., ordinal arithmetic).

• Type theory provides an expressive logic for the class level of set theory. The set-

theoretic classes comprised of well-founded sets, ordinals, and cumulative sets

have elegant inductive definitions in type theory. General results about inductive

constructions in type theory can be applied to obtain more specific set-theoretic

results.

• The development of an axiomatic set theory profits much from the use of a proof

assistant. Powerful proof assistants are available for type theory. We are using

the proof assistant Coq.

We are working in a constructive type theory with an impredicative universe of

propositions (calculus of constructions [8]). We make free use of excluded middle

for propositions. We frequently use inductive predicates and profit from Coq’s sup-

port for inductive proofs. Our inductive definitions could be replaced with plain

impredicative definitions. We do not use inductive types and do not assume exten-

sionality for predicates or functions.
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We are confident that the logical system we are considering (calculus of con-

structions plus excluded middle plus an axiomatized type of sets) is consistent.

Our confidence rests on work of Aczel [3], Werner [15], and others who interpret set

theory in type theory and vice versa.

Developing axiomatic set theory in type theory is not a new idea. Barras [4]

presents a substantial development of axiomatic intuitionistic set theory in type

theory and Coq.

We are interested in a high-level development of classical set theory in type the-

ory. We do not follow a conventional text on set theory (e.g. [14, 5, 7]) but are driven

by questions of the following kind:

• Which parts of set theory can be developed more generally in pure type theory?

• How should we organize set theory given the expressive means of type theory?

• How should we teach set theory to students familiar with type theory?

We think that doing classical set theory in type theory is very helpful in understand-

ing the foundations of mathematics. We found much mathematical beauty in this

project.

The main contribution of the paper is a presentation of the theory of ordinals

and the cumulative hierarchy making full use of the expressive power of type the-

ory. A distinctive feature of our presentation is the systematic use of inductive

predicate definitions. We show that the theory of well-orderings can be developed

more generally and more naturally in pure type theory before it is applied to an

axiomatized type of sets.

The Coq development accompanying this paper has been carried out by Dominik

Kirst and can be found at https://www.ps.uni-saarland.de/extras/types15. Do-

minik contributed Theorem 46 presented in the paper.

2 Classes and Relations

Let X and Y be types. A class on X is a unary predicate X → Prop, a relation on X is

a binary predicate X → X → Prop, and a relation from X to Y is a binary predicate

X → Y → Prop. An identity on X is a relation R on X such that x = y whenever

Rxy . Classes and relations play an important role in the type-theoretic study of

sets. We are not interested in the set-theoretic representation of relations.

A class p is inhabited if px for some x. A class is empty if it is not inhabited.

A class p is unique if x = x′ whenever px and px′. We write CX := X → Prop for
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the type of classes over X and use notations familiar from sets:

x ∈ p := px {x | s } := λx.s
p ⊆ q := ∀x ∈ p. x ∈ q p ≡ q := p ⊆ q ∧ q ⊆ p
p ⊂ q := p ⊆ q ∧ ∃x ∈ q. x ∉ p

Let R and R′ be relations from X to Y . We define:

R−1 := λxy. Ryx inverse of R

DR := λx. ∃y.Rxy domain of R

R ⊆ R′ := ∀x. Rx ⊆ R′x inclusion

R ≡ R′ := R ⊆ R′ ∧ R′ ⊆ R equivalence

Note that DR ⊆ DR′ if R ⊆ R′. We call R functional if Rx is unique for every x. We

call R a bijection if R and R−1 are functional.

3 Sets

We assume a type S and call the members of S sets. We also assume a predicate

∈ : S → S → Prop for set membership. The letters x, y , and z will range overs sets.

Notationally, we identify a set x with the class λz.z ∈ x. This way notations like

x ⊆ y , x ⊆ p, and p ≡ x are available. We assume extensionality of sets:

• x = y whenever x ≡ y .

We assume constants �, {x,y},
⋃
x, R@x, and Px to account for the description

of the empty set, unordered pairs, unions, replacements, and power sets (R ranges

over relations on S). The meaning of the constants is given by the following univer-

sally quantified axioms:

• z ∉ �.

• z ∈ {x,y} iff z = x or z = y .

• z ∈
⋃
x iff z ∈ y ∈ x for some y .

• z ∈ R@x iff Ryz, y ∈ x, and Ry is unique for some y .

• z ∈Px iff z ⊆ x.

The axioms are well-known from the set theory ZF. The axiom for replacement R@x
deviates from the standard formulation in that it does not require R to be func-

tional; instead only uniquely determined images of elements of x are collected.

Singletons and binary unions of sets are expressed as one would expect:

{x} := {x,x}
x ∪y :=

⋃
{x,y}
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The most interesting set constructor is replacement, which differs from the other

constructors in that it is higher-order. Replacement can express separation and

description. Let f : S→ S and p : C S. We define:

f@x := (λyz. z=fy)@x functional replacement

x ∩ p := (λyz. z=y ∧ pz)@x separation

[p\ :=
⋃
((λy.p)@{�}) description

We will take the freedom to write {z ∈ x | pz } for x ∩ p.

Fact 1 Let f : S→ S and p : C S.

• z ∈ f@x iff z = fy for some y ∈ x.

• z ∈ x ∩ p iff z ∈ x and pz.

• p[p\ if p is inhabited and unique.

For the results of this paper, we do not need axioms for regularity, infinity, and

choice. Since we do not impose regularity, our results apply to both well-founded

and non-well-founded set theory [2].

We can construct in type theory a model for our axiomatized type of sets using

Ackermann’s encoding [1] of hereditarily finite sets, provided we assume strong

excluded middle (type-level decidability of type inhabitation).

For the results of this paper, we can omit the constant and the axiom for the

empty set (see the Coq development). The empty set is only used in the above

definition of description, which is not used in the rest of the paper. Without the

empty set, the empty type yields a trivial model of our axioms for sets.

We define the class of transitive sets as T := λx.∀y ∈ x.y ⊆ x

Fact 2 x ∈ T iff
⋃
x ⊆ x iff x ⊆Px.

Let p be a class of sets. We call p realizable if p ≡ x for some set x. We call p
transitive if x ⊆ p if x ∈ p. We call p cumulative if it satisfies the following

properties:

1. If x ∈ y ∈ p, then x ⊂ y .

2. If x,y ∈ p and x ⊂ y , then x ∈ y .

Fact 3 Every superclass of an unrealizable class is unrealizable.

Fact 4 Every cumulative class is a subclass of T .
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4 Well-Founded Sets

We define the class W of well-founded sets inductively with a single rule:

x ⊆ W

x ∈ W

This kind of inductive definition is familiar in type theory but unknown in first-

order set theory. In Zermelo Fraenkel set theory, the class of well-founded sets is

usually written V and is obtained as the union of all stages Vα of the cumulative

hierarchy obtained with transfinite recursion from the von Neumann ordinals.

The induction principle for W is known as epsilon induction in set theory. In

fact, we have defined W as the class of all sets allowing for epsilon induction.

The regularity axiom says that every set is well-founded. Given the definition

of W , we can state the regularity axiom of ZF as ∀x.x ∈ W . Note that epsilon

induction can be used for well-founded sets independently of whether or not regu-

larity is assumed.

While it is easy to express the regularity axiom as a first-order formula, express-

ing well-foundedness of a single set is difficult; it seems that the infinity axiom

is needed so that transitive closure of sets can be expressed. Difficulties with the

first-order approach may have been the reason that ZF adopts the regularity axiom

disallowing non-well-founded sets. There is agreement that the regularity axiom is

not needed mathematically. There is also Aczel’s non-well-founded set theory [2]

that has as an axiom postulating the existence of non-well-founded sets.

Fact 5 W is transitive and unrealizable.

A set x is regular if either x is empty or x contains an element disjoint from x
(i.e., ∃y ∈ x∀z ∈ x. z ∉ y).

Fact 6 A transitive set x is well-founded if and only if every subset of x is regular.

5 Overview: Ordinals and Cumulative Sets

We define two classes O and Z of sets inductively:

x ⊆ O⋃
x ∈ O

x ∈ O

x ∪ {x} ∈ O

x ⊆ Z⋃
x ∈ Z

x ∈ Z

x ∪Px ∈ Z

The members of O and Z are called ordinals and cumulative sets, respectively.

The classes are well-known in set theory, with different but equivalent definitions.

Ordinals are usually obtained as transitive sets that are strictly well-ordered by
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membership. Cumulative sets are usually obtained from ordinals by transfinite

recursion. Our inductive definition of cumulative sets is independent of ordinals.1

Note that the definitions of O and Z differ only in the successor operation used in

the second rule. One can show that the functions λx. x∪{x} and λx. x∪Px agree

with the order-theoretic successor functions for O and Z . The class Z is known as

cumulative hierarchy or as Zermelo hierarchy or as von Neumann hierarchy in the

literature.

We will show the following results:

1. O and Z are unrealizable and cumulative subclasses of both W and T .

2. O and Z are well-ordered by set inclusion and are order-isomorphic.

3. A set is well-founded if and only if it is an element of some cumulative set.

4. Every ordinal is the set of all strictly smaller ordinals.

5. Every well-ordered set is order-isomorphic with a unique ordinal.

The results are well-known for the usual development of ordinals and cumulative

sets in set theory.

An advantage of the inductive definitions of the classes O and Z over the usual

definitions is that they come with useful induction principles. With the standard

definitions, the induction principles have to be established by lemmas.

6 Well-Orderings

Our proofs of the above results are based on purely type-theoretic results for well-

orderings. The fact that we need well-ordering of classes indicates that the notion

of well-ordering is more general than the notion of set. The type of sets is not

needed for this section.

A well-ordering is a linear ordering such that every inhabited class has a least

element. The most important result we need about well-orderings is that given two

well-orderings, one of them is order-isomorphic to a section of the other.

For the following definitions we assume that X is a type, R is a relation on X,

and p is a class on X. We refer to the elements of X as points. We say that

• R is reflexive if Rxx and Ryy whenever Rxy .

• R is antisymmetric if x = y whenever Rxy and Ryx.

• R is transitive if Rxz whenever Rxy and Ryz.

• R is linear if for all x,y ∈ DR either Rxy or Ryx.

• R is a partial ordering if R is reflexive, transitive, and antisymmetric.

1Our inductive definition of the class of ordinals is similar to an inductive definition given by
Forster [6]. Forster’s inductive definition is carried out in an informal setting. He speaks of rectypes
and restricts the union rule to chain-ordered subsets.
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• R is a linear ordering if R is a linear partial ordering.

We define the following predicates:

LRp := {x ∈ p | ∀y ∈ p. Rxy } least points

ΣR := {p | p ⊆ DR ∧∀xy. Rxy → py → px } segments

ΣRx := {z | Rzx ∧ z ≠ x } segment for x

R|p := λxy. Rxy ∧ px ∧ py restriction

We say that a partial ordering R is a well-ordering if LRp is inhabited for every

inhabited class p ⊆ DR. We say that R|p is a section of R if p ∈ ΣR. A section R|p
of R is called proper if p ⊂ DR. Analogously, a segment p of R is called proper if

p ⊂ DR.

Fact 7 Let R be a linear ordering and p,q ∈ ΣR. Then either p ⊆ q or q ⊆ p.

Fact 8 Let R be a well-ordering. Then:

1. R is a linear ordering.

2. R|p is a well-ordering for every p.

3. If p ∈ ΣR, then either p ≡ DR or p ≡ ΣRx for some x ∈ DR.

Well-orderings come with an induction principle known as well-founded induc-

tion. Given a relation R on X, we obtain an induction principle for R with the

inductively defined class WR:

ΣRx ⊆ WR

x ∈ WR

The class WR identifies the points of X to which the induction principle for R ap-

plies. Since there is only one defining rule for WR, we have x ∈ WR iff ΣRx ⊆ WR.

We say that R is well-founded if DR ⊆ WR. A well-founded relation provides well-

founded induction for every point of its domain.

Fact 9 (Well-Founded Induction) Every well-ordering is well-founded.

Fact 10 A linear ordering is a well-ordering if and only if it is well-founded.

Fact 11 (Acyclicity) Let R be a well-founded relation and Rx0x1, . . . , Rxnxn+1.

Then x0, . . . , xn+1 are pairwise distinct.

Fact 12 Membership on well-founded sets is well-founded.

That is, λxy. x ∈ y ∈ W is a well-founded relation.
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7 Similarities

For our results we need isomorphisms between well-orderings. In their general form

isomorphisms between well-orderings are known as similarities.

Let R be a relation on X, S be a relation on Y , and U be a relation from X to Y .

We say that U is a simulation if DU ⊆ DR and

Uxy → Rx′x → ∃y ′. Ux′y ′ ∧ Sy ′y

for all x, y , x′. We say that U is a similarity from R to S if U and U−1 are functional

simulations. Note that the domain of a simulation is a segment of R. Also note that

similarities are bijections and that U is a similarity if and only if U−1 is a similarity.

We say that a similarity U from R to S is an isomorphism from R to S if DU ≡
DR and D(U−1) ≡ DS. We say that R and S are isomorphic if there exists an

isomorphism from R to S.

We say that a similarity U from R to S is maximal if either DU ≡ DR or

D(U−1) ≡ DS. Note that every isomorphism is maximal.

Fact 13 Let R and S be well-orderings and U be a similarity from R to S. Then:

1. DU is a segment of R and D(U−1) is a segment of S.

2. U is an isomorphism from R|DU to S |D(U−1).

Fact 14 (Agreement) Let R and S be well-orderings and U and V be similarities

from R to S. Then:

1. If Uxy and Vxy ′, then y = y ′.
2. Either U ⊆ V or V ⊆ U .

3. If V is maximal, then U ⊆ V .

4. If U and V are maximal, then U ≡ V .

Proof Claim 1 follows by induction on x ∈ WR. For Claim 2, note that either

DR ⊆ DS or DS ⊆ DR by Facts 7 and 13. Thus either U ⊆ V or V ⊆ U by Claim 1.

Claim 3 follows from Claim 2. �

Fact 15 Let R and S be well-orderings. Then:

1. There exists a maximal similarity from R to S (unique up to equivalence).

2. If U is a similarity from R to S such that DU ≡ DR, then U is an isomorphism

from R to a section of S.

3. Either R is isomorphic to a section of S or S is isomorphic to a section of R.

Fact 16 Let R be a well-ordering and S and S′ be sections of R. Then S and S′ are

isomorphic if and only if S ≡ S′.
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8 Well-Orderings on Sets

Let R be a relation on S. We call R realizable if DR is realizable. We call R complete

if R is unrealizable and every proper section of R is realizable. We say that R is a

well-ordering of x if DR ≡ x.

Fact 17 Let R and S be well-orderings on S.

1. If R and S are isomorphic, then R is realizable iff S is realizable.

2. If R and S are complete, then a similarity from R to S is an isomorphism from R
to S if DU ≡ DR.

3. If R and S are complete, then R and S are isomorphic.

4. If R is realizable and S is unrealizable, then there exists a unique x ∈ DS such

that R is isomorphic with S |ΣSx (a proper section of S).

Proof Claim 1. Suppose U is an isomorphism from R to S and R is realizable. Then

DR ≡ x for some set x. Thus DS ≡ U@x. Hence S is realizable.

Claim 2. Let R and S be complete and U be a similarity from R to a S such that

DU ≡ DR. By Fact 15 we know that U is an isomorphism from R to a section of S.

Since R and S are complete, we know by Claim 1 that U is an isomorphism from R
to S.

Claim 3. By Fact 15 we have a maximal similarity U from R to S. Without loss of

generality, we have DU ≡ DR. Thus U is an isomorphism from R to S by Claim 2.

Claim 4. Follows from Claim 1 and Facts 15 and 16. �

Let p be a class on S. We define the inclusion ordering of p as

Ip := λxy. x ⊆ y ∧ px ∧ py

We will write Σp and Σpx for ΣIp and ΣIpx . We call p well-ordered if Ip is a well-

ordering. We call p linear if for all x,y ∈ p either x ⊆ y or y ⊆ x.

Fact 18 Let p be a class on S. Then:

1. Ip is a partial ordering.

2. Σpx = {y ∈Px | px ∧ py ∧y ≠ x }.
3. Σpx is realizable.

4. Ip is complete iff p is unrealizable.

Fact 19 Let p be a well-ordered class on S. Then every proper segment and every

proper section of Ip is realizable. Moreover, Ip is complete iff p is unrealizable.

Proof Follows with Facts 18 and 8. �
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Fact 20 Let p be a linear and cumulative subclass of W . Then p is well-ordered.

Proof Since p is linear, Ip is a linear ordering. By Fact 10 it suffices to show that Ip is

well-founded. This follows from Fact 12 and the assumption that p is a cumulative

subclass of W . �

Fact 21 (Segment Property) Let p be a cumulative class on S. Then:

1. Σpx ⊆ x.

2. Σpx ≡ x = {y ∈ p | y ⊂ x } if x ∈ p and p is transitive.

9 Towers

We now say more about the inductive construction used for the definition of the

classes O and Z . A recent paper [13] studying the construction in generalized

form in pure type theory calls it tower construction. We borrow two results from

this paper. We consider the tower construction for the special case where it yields

a class of sets.

Assumption 22 Let f be a function S→ S.

We call f increasing if x ⊆ fx for all x. We call f cumulative if x ∈ fx for

all x. Given f , we define a class T over S inductively as follows:

x ⊆ T⋃
x ∈ T

x ∈ T
fx ∈ T

We say that T is the tower obtained with the step function f . We begin with two

results for towers we borrow from the paper studying the general tower construc-

tion [13].

Fact 23 (Successor) Let f be increasing and x,y ∈ T . Then fx ⊆ y if x ⊂ y .

Fact 24 (Linearity) T is linear if f is increasing.

The remaining results we need for towers are easy to prove.

Fact 25 (Transitivity) If f preserves transitivity, then T ⊆ T .

Fact 26 (Well-Foundedness) If f preserves well-foundedness, then T ⊆ W .

Fact 27 (Cumulativity) Let f be increasing and cumulative, and let f preserve tran-

sitivity and well-foundedness. Then T is a cumulative subclass of W .

10



Proof By Fact 26 we know T ⊆ W . We show that T is cumulative.

Let x ∈ y ∈ T . Then x ⊂ y since y is transitive and well-founded.

Let x,y ∈ T and x ⊂ y . Then x ∈ fx ⊆ y by Fact 23 since f is increasing and

cumulative. �

Fact 28 (Unrealizability) Let f be increasing and cumulative, and let f preserve

well-foundedness. Then T is unrealizable.

Proof By contradiction. Suppose T ≡ x. Then
⋃
x ∈ x and f(

⋃
x) ∈ x. Thus

f(
⋃
x) ⊆

⋃
x. Since f is increasing we have

⋃
x ⊆ f(

⋃
x). Thus

⋃
x = f(

⋃
x).

Hence
⋃
x ∈

⋃
x since f is cumulative. Contradiction by Fact 11 since

⋃
x ∈ T is

well-founded by Fact 26. �

Fact 28 may be seen as an abstract version of the Burali-Forti paradox.

Theorem 29 (Tower) Let f be increasing and cumulative, and let f preserve transi-

tivity and well-foundedness. Then T is a well-ordered, cumulative, and unrealizable

subclass of W .

Proof By Facts 27 and 28 we know that T is a cumulative, and unrealizable subclass

of W . That T is well-ordered now follows with Facts 20 and 24. �

10 Ordinals

We now prove the results stated in Section 5 for the inductively defined class O of

ordinals. Given that O is defined as a tower, we can use the results we have obtained

for towers. The remaining proofs are straightforward.

Fact 30 O ≡ T(λx. x ∪ {x}). The step function λx. x ∪ {x} preserves transitivity

and well-foundedness and is increasing and cumulative.

Theorem 31 O is a well-ordered, cumulative, and unrealizable subclass of W .

Proof Follows with Theorem 29 and Fact 30. �

Fact 32 (Successor) Let x,y ∈ O and x ⊂ y . Then x ∪ {x} ⊆ y .

Proof Follows with Facts 23 and 30. �

Fact 33 (Transitivity) O is transitive.

Proof Let x ∈ O . We prove x ⊆ O by induction of x ∈ O .

Let x ∈ O such that x ⊆ O (inductive hypothesis). Then x ∪ {x} ⊆ O .

Let x ⊆ O such that y ⊆ O for all y ∈ x (inductive hypothesis). Then
⋃
x ⊆ O .�
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Fact 34 (Segment Property) Every ordinal is the set of all smaller ordinals. That is,

x = {y ∈ O | y ⊂ x } ≡ ΣO
x if x ∈ O .

Proof Follows with Fact 21 from Theorem 31 and Fact 33. �

Theorem 35 (Completeness) Let R be a realizable well-ordering on sets. Then there

exists a unique ordinal x such that R and Ix are isomorphic.

Proof Follows with Theorem 31 and Facts 17 and 34. �

Fact 36 (Epsilon Images) Let R be a well-ordering of a set A and let U be a similarity

from R to IO . Then U x (U@{y ∈ A | Ryx ∧y ≠ x }) for every x ∈ DU .

Proof Let Uxu and v := U@{y ∈ A | Ryx ∧ y ≠ x }. We show u = v by exten-

sionality.

Let z ∈ u. Then z ⊂ u since u ∈ O and O is cumulative. Since U is a similarity,

we have some y ∈ A such that Ryx, y ≠ x, and Uyz. Thus z ∈ v .

Let z ∈ v . Then we have some y ∈ A such that Ryx, y ≠ x, and Uyz. Then

z ∈ O and z ⊂ u since U is a similarity. Thus z ∈ u since O is cumulative. �

We conclude with some historical remarks about ordinals. Cantor conceived

ordinals as abstract objects representing isomorphism classes of well-ordered sets.

He did not think of ordinals as sets. It took until 1923 that von Neumann [9] devised

the now standard representation of ordinals as sets. In his 1923 paper, von Neu-

mann obtains ordinals by means of transfinite recursion from well-orderings with

the scheme expressed by Fact 36. In 1928, von Neumann [10] gave a more explicit

definition of ordinals as the domains of well-orderings satisfying the segment prop-

erty expressed by Fact 34. An explicit definition of ordinals as plain sets avoiding

the notion of well-ordering was first given in 1937 by Robinson [11] (see Section 12).

Enderton’s textbook [5] introduces the ordinals based on von Neumann’s 1923 def-

inition (Enderton speaks of the epsilon image of a well-ordering).

11 Cumulative Hierarchy

We now consider the class Z defined in Section 5. Again we exploit the results we

have obtained for towers.

Fact 37 Z ≡ T(λx. x ∪Px). The step function λx. x ∪Px preserves transitivity

and well-foundedness and is increasing and cumulative.

Theorem 38 Z is a well-ordered, cumulative, and unrealizable subclass of W .

Proof Follows with Theorem 29 and Fact 37. �
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Fact 39 Let x ∈ Z . Then x is transitive and Px = x ∪Px.

Proof Follows with Facts 37, 25, and 2. �

Fact 40 (Successor) Let x,y ∈ Z and x ⊂ y . Then Px ⊆ y .

Proof Follows with Facts 23, 37 and 39. �

Theorem 41 (Completeness)

For every well-founded set x there exists a cumulative set y such that x ∈ y .

Proof Let x ∈ W . We prove by induction on x ∈ W that there exists y ∈ Z such

that x ∈ y . Let

u :=
⋃
((λy. LZ {z ∈ Z | y ∈ z })@x)

It is easy to see that u ∈ Z . Since u∪Pu ∈ Z , it suffices to show that x ⊆ u. Let

y ∈ x. It suffices to show that there is some v ∈ LZ {z ∈ Z | y ∈ z } such that

y ∈ v . By the inductive hypothesis we know that {z ∈ Z | y ∈ z } is inhabited.

The claim follows since IZ is a well-ordering. �

Fact 42 IO and IZ are isomorphic.

Proof By Theorems 31 and 38 and Fact 19 we know that IO and IZ are complete

well-orderings. Thus IO and IZ are isomorphic by Fact 17. �

Fact 43 (Completeness) Let R be a realizable well-ordering on sets. Then there

exists a unique x ∈ Z such that R and IZ |ΣZ
x are isomorphic.

Proof Follows with Theorem 38 and Fact 17. �

Fact 44 The class Z ′ of sets inductively defined by the following rules contains

exactly the cumulative sets.

x ⊆ Z ′⋃
x ∈ Z ′

x ∈ Z ′

Px ∈ Z ′

Proof Follows from the fact that x ⊆Px for every transitive set x. �

The next fact asserts that our definition of the cumulative hierarchy agrees with

the standard definition, which obtains the cumulative sets by transfinite recursion

on ordinals [5, 7].

Fact 45 (Recursive Characterization) Let V be an isomorphism from O to Z .

Then:
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1. If Vxz, then V(x ∪ {x})(Pz).

2. If x ⊆ O , then V(
⋃
x)(

⋃
(V@x)).

Proof Claim 1 follows with Facts 32 and 40. For Claim 2, assume x ⊆ O . Then⋃
x ∈ O . Let V(

⋃
x)u. It suffices to show

⋃
(V@x) ⊆ u and

⋃
(V@x) 6⊂ u.

We show
⋃
(V@x) ⊆ u. Let y ∈ x. Then y ⊆

⋃
x. Moreover, y ∈ O since O is

transitive. Let Vyz. We have z ⊆ u. The claim follows.

Suppose
⋃
(V@x) ⊂ u. Since

⋃
(V@x) ∈ Z , we have y ∈ O such that

Vy(
⋃
(V@x)) and y ⊂

⋃
x. Since O is cumulative, we have y ∈

⋃
x. Hence

y ∈ a ∈ x for some a. Since a ∈ O , we have Vab for some b ∈ Z . We have⋃
(V@x) ⊂ b since y ⊂ a since O is cumulative. Contradiction since b ∈ V@x. �

Theorem 46 (Explicit Characterization) Let V be an isomorphism from O to Z .

Then Vxz if and only if x ∈ O and z is the least z ∈ Z such that x ⊆ z.

Proof Let V := λxz. x ∈ O ∧ z ∈ LZ {z ∈ Z | x ⊆ z }. By Fact 14 it suffices to

show that V is a maximal similarity from O to Z . A proof of this fact can be found

in the Coq development accompanying the paper. �

12 Further Characterizations of Ordinals

We show that our definition of ordinals is equivalent with Robinson’s [11] definition

and the characterization of ordinals as well-founded hereditarily transitive sets.

We define a class O ′ of sets inductively with a single rule.

x ⊆ O ′ x transitive

x ∈ O ′

We see O ′ as the class of well-founded hereditarily transitive sets. We will show

that O ≡ O ′.

Lemma 47 O ′ ⊆ W .

Lemma 48 Let x ∈ O ′. Then
⋃
x ∈ O ′ and x ∪ {x} ∈ O ′.

Lemma 49 Let x,y ∈ O ′. Then either x ∈ y or y = x or y ∈ x.

Proof By nested induction on x ∈ O ′ and y ∈ O ′. Let x ∉ y and y ∉ x. We show

x = y using extensionality.

Let z ∈ x. We show z ∈ y . By the inductive hypothesis for x we have either

z ∈ y or z = y or y ∈ z. The first case is trivial. The second case is contradictory.

The third case is also contradictory since x is transitive.

The other direction y ⊆ x follows analogously. �
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Lemma 50 Let x ∈ O ′. Then either x =
⋃
x or x =

⋃
x ∪ {

⋃
x}.

Proof We have x ⊆ O ′ and x transitive by inversion. We also have
⋃
x ∈ O ′ by

Lemma 48. We apply Lemma 49 to x and
⋃
x and have either x ∈

⋃
x or x =

⋃
x

or
⋃
x ∈ x. The first case is contradictory since

⋃
x ⊆ x since x is transitive and

x ∉ x since x is well-founded by Lemma 47. The second case is trivial. For the third

case, let
⋃
x ∈ x. It suffices to show that x ⊆

⋃
x ∪ {

⋃
x}. Let y ∈ x. We have

y ∈ O ′ since x ⊆ O ′. We apply Lemma 49 to y and
⋃
x and have either y ∈

⋃
x

or y =
⋃
x or

⋃
x ∈ y . The first and the second case are trivial. The third case is

contradictory since y ⊆
⋃
x since y ∈ x and

⋃
x is well-founded by Lemma 47. �

Lemma 51 O ′ ⊆ O .

Proof Let x ∈ O ′. We prove x ∈ O by induction on x ∈ O ′. By the inductive

hypothesis we have x ⊆ O . By Lemma 50 we have either x =
⋃
x or x =

⋃
x∪{

⋃
x}.

In both cases the claim follows with Lemma 48. �

Theorem 52 (Characterizations) The following statements are equivalent.

1. x ∈ O .

2. x ∈ O ′.

3. x ∈ W and x ∈ T and x ⊆ T .

4. x ∈ W and x ∈ T and for all y,z ∈ x either y ∈ z or y = z or z ∈ y .

5. x ∈ T and (λyz. y ∈ z ∨y = z)|x is a well-ordering.

Proof We show (1) → (4) → (3) → (2) → (1). Verification of the equivalence of (4)

and (5) is not difficult.

(1) → (4). Let x ∈ O. By Theorem 31 we know that x is well-founded and

transitive. Let y,z ∈ x. Then y,z ∈ O by Fact 33. Hence y ∈ z or y = z or z ∈ y
by Theorem 31.

(4)→ (3). Straightforward.

(3)→ (2). By induction on x ∈ W .

(2)→ (1). By Lemma 51. �

Statement 4 of Theorem 52 expresses Robinson’s definition [11] of ordinals.

Since Robinson [11] assumes ZF with regularity, he can drop the well-foundedness

requirement. Statement 3 characterizes ordinals as well-founded hereditarily tran-

sitive sets. Shoenfield [12] defines ordinals as hereditarily transitive sets; he does

not require well-foundedness since he assumes regularity. Hrbacek and Jech [7]

and others define ordinals using Statement 5 of Theorem 52. This characterization

has the advantage that it does not require regularity and is easily expressed in a

first-order setting.
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