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How would you teach set theory to students who are

familiar with type theory and proof assistants?

◮ Classical set theory with Zermelo-Fraenkel axioms

◮ Type theory with XM and impredicative Prop

◮ Coq as proof assistant

◮ Perspective very different from mathematical textbooks

◮ Explore an axiomatization in an expressive, explicit, and
familiar logic
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Axioms

S : Type

∈ : S→ S→ Prop

x = y ↔ x ≡ y

z ∈ ∅ ↔ ⊥

z ∈ {x , y} ↔ z = x ∨ z = y

z ∈
⋃
x ↔ ∃ y ∈ x . z ∈ y

z ∈Px ↔ z ⊆ x

z ∈ R@x ↔ ∃ y ∈ x . Ryz ∧ unique (Ry)

◮ Replacement axiom is higher-order, R : S→ S→ Prop

◮ Infinity and choice are not needed for this talk
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Classes

◮ A class is a predicate p : S→ Prop

◮ Not every class can be represented as a set, e.g., λx . x /∈ x

◮ Type theory provides classes and relations on classes

◮ Classes are not formalized by Zermelo-Fraenkel set theory

◮ Von-Neumann-Gödel-Bernays set theory accommodates sets
and classes in first-order logic
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Separation and Description
can be expressed with replacement

z ∈ x ∩ p ↔ z ∈ x ∧ px separation

p ppq ← p unique and inhabited description

An operator that maps relations R on S to total functions
f : S→ S such that f agrees with R on unique images can be
expressed (i.e., Rx(fx))
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Numbers and Ordered Pairs
can be represented as sets

◮ Functions, numbers, and pairs already exist in type theory

◮ Can express functions · : N→ S, succ : S→ S, and
pred : S→ S such that:

m = m ↔ m = n

succ n = n + 1

pred n + 1 = n

◮ Can express functions pair : S→ S→ S, fst : S→ S, and
snd : S→ S such that:

pair x y = pair x ′ y ′ → x = x ′ ∧ y = y ′

fst (pair x y) = x

snd (pair x y) = y

◮ [Barras 2010] [von Neumann 1923] [Kuratowski 1921]
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Can Construct Models of Axioms

◮ Without infinity hereditarily finite sets suffice

◮ Use Ackermann encoding into numbers

◮ Need strong excluded middle for replacement (Prop ≃ bool)

◮ Aczel, Werner, Miquel construct models with infinite sets
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Cumulative Hierarchy

...

...

...

◮ Horizontal lines represent stages (successors and limits)
◮ Blue lines also represent slices
◮ Every well-founded set appears in some slice
◮ Stages are well-ordered
◮ Every well-ordered set is order-isomorphic to a unique segment
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Well-Founded Sets

◮ Define class W of well-founded sets inductively

x ⊆ W

x ∈ W

◮ Well-founded sets are defined as sets that admit ǫ-induction

◮ Inductive definition unknown in set theory

◮ Regularity axiom can be expressed as ∀x . x ∈ W

◮ First-order characterization of x ∈ W seems to require infinity
(to express transitive closure)

◮ First-order characterization of x ∈ W ∩T straightforward

◮ Aczel [1988] studies non-well-founded sets

◮ W cannot be represented as a set
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Stages of Cumulative Hierarchy

◮ Define class Z of cumulative sets inductively

x ⊆ Z
⋃
x ∈ Z

x ∈ Z

x ∪Px ∈ Z

◮ Z well-ordered by ⊆, unbounded, ∅ least element

◮ W ≡
⋃

Z

◮ x ⊂ y iff x ∈ y for all x , y ∈ Z

◮ x ∪Px = Px if x ∈ Z since Z ⊆ T

◮ Definition of Z is instance of tower construction

◮ Z usually defined with transfinite induction on ordinals
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Ordinals

◮ Define class O of ordinals inductively

x ⊆ O
⋃
x ∈ O

x ∈ O

x ∪ {x} ∈ O

◮ Every cumulative slice contains exactly one ordinal

◮ Every ordinal is the set of all smaller ordinals

◮ Every well-ordered set is order isomorphic to a unique ordinal

◮ O order isomorphic with Z

◮ Definition of O is instance of tower construction
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First-Order Characterization of Ordinals

◮ Ordinals are hereditarily transitive and well-founded sets
[Bernays 1931]

◮ x ∈ O iff x ∈ T and x ⊆ T and x ∈ W

◮ x ∈ O iff x ∈ T and x ⊆ T and Px ⊆ R

◮ T := { x | ∀y ∈ x . y ⊆ x } transtive sets

◮ R := { x | ∃y ∈ x ∀z ∈ x . z /∈ y } regular sets

◮ If x ∈ T , then x ∈ W iff Px ⊆ R

◮ Corresponding inductive characterization:

x ∈ T x ⊆ O

x ∈ O
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Tower Construction for Sets

◮ Assume f : S→ S

◮ Define class T of sets inductively:

x ⊆ T
⋃
x ∈ T

x ∈ T

x ∪ f x ∈ T

◮ T is well-ordered by ⊆, ∅ least element

◮ x ∪ f x successor of x if x ∈ T not maximal

◮ Every segment of T can be represented as a set

◮ If f preserves transitivity and well-foundedness,
and x ∈ f x for all x ,

◮ T unbounded
◮ T cannot be represented as a set
◮ Every well-ordered set is isomorphic to a proper segment of T
◮ x ∈ y iff x ⊂ y for all x , y ∈ T
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Tower Construction for Complete Partial Orders

◮ Assume type X and partial order ≤

◮ Assume x0 : X

◮ Assume increasing function f : X → X (i.e., x ≤ f x)

◮ Assume family S of classes on X , closed under subclasses

◮ Assume function
⊔

that yields supremum for every p ∈ S

◮ Define class T on X inductively:

x0 ∈ T

x ∈ T

f x ∈ T

p ⊆ T p ∈ S p inhabited
⊔
p ∈ T

◮ T well-ordered by ≤ (x0 least element, f yields successors)

◮ T unbounded iff f has no fixed point in T

◮ If T ∈ S , then
⊔
T is unique fixed point of f in T

(Bourbaki-Witt theorem)

◮ See forthcoming paper at ITP 2015
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Final Remarks

◮ Type theory provides expressive language for talking about
sets and classes

◮ more natural than first-order logic
◮ first-order encodings are low-level and tedious; e.g.,

◮ well-founded sets
◮ von-Neumann-Gödel-Bernays set theory

◮ Many aspects of set theory can be formulated more generally
at the level of type theory:

◮ Well-orderings
◮ Transfinite recursion
◮ Tower construction
◮ Well-ordering theorem

◮ Cumulative hierarchy can be considered before ordinals,
transfinite recursion is not needed
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