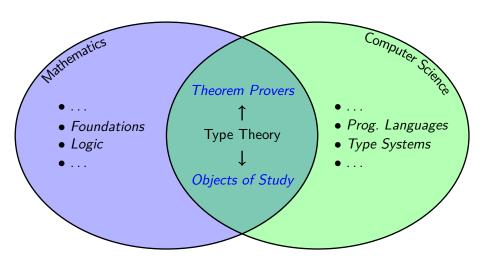
Formal Verification of the Equivalence of System F and the Pure Type System L2

Jonas Kaiser

July 11, 2019

Where are we? - Some Context



Type Theories as Objects of Study

- 1 Syntax (things we can express)
 - atomic/basic expressions
 - compound expressions
 - possibly grouped into multiple classes
 - may involve variable binding
- 2 Semantics (assigning meaning to expressions)
 - assertions / judgements
 - ▶ inference systems
 - may involve contextual assumptions
- 3 Theory
 - properties of the Semantics

relate

preserve

transfer

Two Typed λ -Calculi

PLC

- proof theory [Girard '72]
 - ▶ 2nd ord. intuitionistic logic
- polymorphism [Reynolds '74]
 - prototypical prog. language
- syntactic separation of terms and types ⇒ two-sorted
 - two judgements: type formation & typing
- 2 variable scopes, 3 binders

$\lambda 2$

- a pure type system (PTS)
 - ► [Terlouw '89, Berardi '90]
- corner of λ -cube / study of CC
 - ► [Barendregt '91]
- only one syntactic class of expressions ⇒ single-sorted
 - uniform typing judgement
 - type/term distinction implicit
- 1 variable scope, 2 binders

Goal: Bidirectional Reduction of Type Formation and Typing

 $J_{\rm P}$ derivable in PLC

 J_{λ} derivable in $\lambda 2$

A (Trivial?) Problem

The system $\lambda 2$ is the polymorphic or second order typed lambda calculus.

[H. Barendregt, λ -cube JFP article, 1991]

To show that the two representations of these systems are in fact the same requires some technical but not difficult work.

[H. Geuvers, Proefschrift, 1993]

VS

We may think of the proof as an iceberg. In the top of it, we find what we usually consider the real proof; underwater, the most of the matter, consisting of all the mathematical preliminaries a reader must know in order to understand what is going on.

[S. Berardi, 1st LF Workshop 1990, Antibes]

Binders should have been a solved problem 10 years ago ...

[A. Ahmed, paraphrased at FSCD 2016, Porto].

Syntactic Comparison

PLC a la [Harper '13]:

$$\mathsf{Ty}_{\mathsf{P}} \qquad \qquad A,B \, ::= \, X \, \mid \, A \to B \, \mid \, \forall X.A \qquad \qquad X \in \mathcal{V}_{\mathsf{ty}}$$

Tmp
$$s, t ::= x \mid s t \mid \lambda x : A.s \mid s A \mid \Lambda X.s \quad x \in \mathcal{V}_{tm}$$

Type Form.
$$\Delta \vdash_{\mathbb{P}} A$$

Typing
$$\Delta$$
; $\Gamma \vdash_{\mathbb{P}} s : A$

$$\vdash_{\mathsf{P}} \mathsf{\Lambda} X.\lambda x : X.x : \forall X.X \to X$$

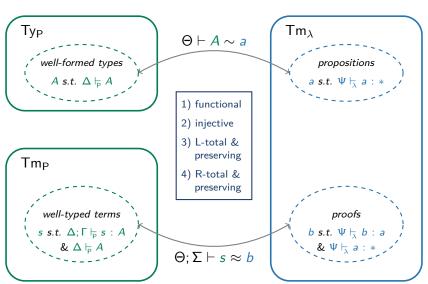
$$\vdash_{\lambda} \lambda y : *.\lambda x : y.x : \Pi y : *.\Pi x : y.y$$

 $\lambda 2$:

$$\mathsf{Tm}_{\lambda}$$
 $\mathsf{a}, \mathsf{b} ::= \mathsf{x} \mid \mathsf{s} \mid \mathsf{a} \mathsf{b} \mid \lambda \mathsf{x} : \mathsf{a}.\mathsf{b} \mid \Pi \mathsf{x} : \mathsf{a}.\mathsf{b} \quad \mathsf{x} \in \mathcal{V}$

Typing
$$\Psi \vdash_{\lambda} a : b$$
 $s \in \{*, \square\}$

Proof Structure



Let \sim and \approx both be:

- 1 functional
- 2 injective
- 3 left-total and judgement preserving on suitable fragment
- 4 right-total and judgement preserving on suitable fragment

Theorem (Reduction PLC to $\lambda 2$)

Theorem (Reduction $\lambda 2$ to PLC)

$$\vdash_{\overline{\lambda}} a : * \iff \exists A. \vdash A \sim a \land \vdash_{\overline{P}} A$$
$$\vdash_{\overline{\lambda}} b : a \land \vdash_{\overline{\lambda}} a : * \iff \exists sA. \vdash s \approx b \land \vdash A \sim a \land \vdash_{\overline{P}} s : A$$

- Cog -

1st-order de Bruijn Syntax, generalised CMLs

finding the right inductive invariants

Coq – de Bruijn Syntax

■ The α -Equivalence Problem

$$\lambda x : A \cdot \lambda y : B \cdot (x z) y \equiv_{\alpha} \lambda w : A \cdot \lambda x : B \cdot (w z) x$$

lacktriangle Nameless Representation \Rightarrow canonical

$$\lambda A.\lambda B.(1\ 2)\ 0$$

■ Contexts: plain lists, positional indexing

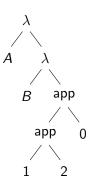
$$\Gamma = \dots, z : C \quad \leadsto \quad \Gamma = \dots, C$$

Instantiation: Parallel Substitutions

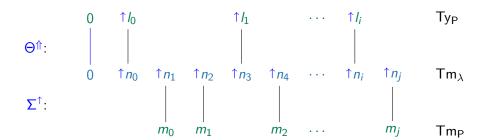
$$\sigma: \mathbb{N} \to \mathsf{Tm}_{\mathsf{P}}$$

$$(\lambda A.s)[\sigma] := \lambda A.s[\Uparrow \sigma]$$

$$\Uparrow \sigma := 0 \cdot (\sigma \circ \uparrow)$$



Coq - Relating Indices



$$\begin{array}{ll} \Theta^{\uparrow} & := & (0,0) :: \; \mathsf{map} \, (\uparrow \times \uparrow) \, \Theta \\ \\ \Theta^{\uparrow} & := & \; \mathsf{map} \, (\mathsf{id} \times \uparrow) \, \Theta \end{array}$$

$$\frac{\Theta^{\uparrow\uparrow}; \Sigma^{\uparrow} \vdash s \approx b}{\Theta; \Sigma \vdash \Lambda.s \approx \lambda *.b}$$

$$\frac{\Theta \vdash A \sim a \qquad \Theta^{\uparrow}; \Sigma^{\uparrow\uparrow} \vdash s \approx b}{\Theta; \Sigma \vdash \lambda A.s \approx \lambda a.b}$$

Cog - Context Morphism Lemmas, basic

Define invariant:

2 Prove extension law:

$$\sigma \Vdash_{\lambda} \Psi \to \Xi \implies \Uparrow \sigma \Vdash_{\lambda} \Psi, a \to \Xi, a[\sigma]$$
 – new variable

3 Prove by induction on $\Psi \vdash_{\lambda} a : b$:

$$\Psi \vdash_{\lambda} a : b \implies \sigma \Vdash_{\lambda} \Psi \rightarrow \Xi \implies \Xi \vdash_{\lambda} a[\sigma] : b[\sigma]$$

4 Special case for β -substitutivity:

$$\frac{\Psi \downarrow_{\lambda} c : d}{c \cdot id \mid_{\lambda} \Psi, d \rightarrow \Psi}$$

$$\Psi \downarrow_{\lambda} a[c \cdot id] : b[c \cdot id]$$

Coq - Context Morphism Lemmas, generalised

Define invariant:

$$\Theta \Vdash N \mapsto \Psi := \forall n. \ n < N \implies \exists m. \ \Theta \vdash n \simeq m \ \land \ \Psi \vdash_{\nabla} m : *$$

Prove extension laws:

$$\begin{array}{lll} \Theta \Vdash \textit{N} \mapsto \Psi \implies \Theta^{\uparrow} \Vdash \textit{N} \mapsto \Psi, a & \textit{-new term variable} \\ \Theta \Vdash \textit{N} \mapsto \Psi \implies \Theta^{\Uparrow} \Vdash \textit{N} + 1 \mapsto \Psi, * & \textit{-new type variable} \end{array}$$

3 Prove by induction on $N \vdash_{P} A$:

$$N \vdash_{P} A \implies \Theta \Vdash N \mapsto \Psi \implies \exists a. \ \Theta \vdash A \sim a \ \land \ \Psi \vdash_{\lambda} a : *$$

4 Special case for N=0:

$$\vdash_{\mathbb{P}} A \implies \exists a. \vdash A \sim a \land \vdash_{\backslash} a : *$$

- Key Observation:
 - ▶ host theory has abstraction, application, instantiation ⇒ reuse!
- Binders are higher-order expression constructors, e.g.

$$\lambda_{--}: \operatorname{\mathsf{Ty}}_{\mathsf{P}} o (\operatorname{\mathsf{Tm}}_{\mathsf{P}} o \operatorname{\mathsf{Tm}}_{\mathsf{P}}) o \operatorname{\mathsf{Tm}}_{\mathsf{P}}$$
 $\Pi_{--}: \operatorname{\mathsf{Tm}}_{\lambda} o (\operatorname{\mathsf{Tm}}_{\lambda} o \operatorname{\mathsf{Tm}}_{\lambda}) o \operatorname{\mathsf{Tm}}_{\lambda}$

in $\lambda A.s$ the $s: \mathsf{Tm}_\mathsf{P} \to \mathsf{Tm}_\mathsf{P}$ is a (host-level) abstraction

- β -contraction as (host-level) application: $(\lambda A.s) t \rightsquigarrow s\langle t \rangle$
- Problems:
 - expression types are not inductive
 - ▶ function spaces must be weak/definable/intensional ⇒ no case analysis, no recursion
 - adequacy of representation

- Abella -

HOAS, nominals, ∇ , context management

finding the right context predicates

Abella – Two-Level Logic

- Specification Level: λ Prolog
 - ► HOAS definitions of Ty_P, Tm_P & Tm_λ
 - judgements (typing, correspondence) as logic predicates, e.g.

$$_:_: Tm_P \rightarrow Ty_P \rightarrow \mathbf{o}$$
 $_\approx_: Tm_P \rightarrow Tm_\lambda \rightarrow \mathbf{o}$

- inference rules as extended Horn clauses
- ambient context tracked implicitly
- Reasoning Level: G
 - intuitionistic, predicative fragment of Church's Simple Type Theory
 - inductive predicates
 - ▶ nominal constants n₁, n₂, . . . in every type
 - generic quantification ensures freshness:

$$\nabla x$$
. ∇y . $x \neq y$

• implicit specification contexts exposed as lists $L : [\mathbf{o}]$

Abella - Layer Connection

■ Logical Embedding:

$$\{ _\vdash _ \} \ : \ [\mathbf{o}] \to \mathbf{o} \to \mathbf{Prop}$$

$$\{ L\vdash J \} \text{ holds in } \mathcal{G} \iff J \text{ has a } \lambda \mathsf{Prolog-derivation from } L$$

■ Mobility of Binders:

$$\frac{\prod x \, y. \, x \sim y \implies s \langle x \rangle \approx b \langle y \rangle}{\land .s \approx \lambda *.b}$$

$$\{L \vdash \Pi x \ y. \ x \sim y \implies s\langle x \rangle \approx b\langle y \rangle\} \leadsto \nabla x, y. \{L, x \sim y \vdash s\langle x \rangle \approx b\langle y \rangle\}$$
$$\leadsto \{L, n_1 \sim n_2 \vdash s\langle n_1 \rangle \approx b\langle n_2 \rangle\}$$

Abella - Context Management

- A priori, L : [o] may contain arbitrary propositions
- Backchaining rule:

$$J \in L \Rightarrow \{L \vdash J\}$$

■ Restrict *L* to facts about free variables (i.e. *nominal constants*)

Define
$$C_{\approx}: [\mathbf{o}] \to \mathbf{Prop}$$
 by $C_{\approx}(\bullet);$ $\nabla x \, y, \ C_{\approx}(L, x \sim y) := C_{\approx}(L);$ $\nabla x \, y, \ C_{\approx}(L, x \approx y) := C_{\approx}(L).$

- avoids spurious instances of backchaining
- constrains L to exactly track related variables
- ▶ forces *L* to be injective & functional

Abella - Connecting Contexts

1 Define a combined context predicate $C_R(-|-|-)$:

$$\frac{C_{R}(L_{P} \mid L_{\approx} \mid L_{\lambda}) \qquad x, y \text{ fresh for } L_{P}, L_{\approx}, L_{\lambda}}{C_{R}(L_{P}, x \text{ ty} \mid L_{\approx}, x \sim y \mid L_{\lambda}, y : *)}$$

$$\frac{\{L_{P} \vdash A \text{ ty}\} \qquad \{L_{\approx} \vdash A \sim a\} \qquad \{L_{\lambda} \vdash a : *\}}{C_{R}(L_{P} \mid L_{\approx} \mid L_{\lambda}) \qquad x, y \text{ fresh for } L_{P}, L_{\approx}, L_{\lambda}, A, a}$$

$$\frac{C_{R}(L_{P}, x : A \mid L_{\approx}, x \approx y \mid L_{\lambda}, y : a)}{C_{R}(L_{P}, x : A \mid L_{\approx}, x \approx y \mid L_{\lambda}, y : a)}$$

2 Prove extraction laws that yield connected assumptions:

$$\times \mathbf{ty} \in L_{\mathsf{P}} \ \Rightarrow \ C_{\mathsf{R}}(L_{\mathsf{P}} \mid L_{\approx} \mid L_{\lambda}) \ \Rightarrow \ \dots$$

3 Prove by induction on $\{L_P \vdash A \mathbf{ty}\}$:

$$\{L_{\mathsf{P}} \vdash A \, \mathsf{ty}\} \ \Rightarrow \ \forall L_{\approx} \, L_{\lambda}. \ C_{R}(L_{\mathsf{P}} \mid L_{\approx} \mid L_{\lambda}) \ \Rightarrow$$

$$\exists a. \ \{L_{\approx} \vdash A \sim a\} \ \land \ \{L_{\lambda} \vdash a : *\}$$

- Beluga -

HOAS, dependently typed programming with 1st-class contexts

finding the right context schemas

Beluga - Two-Level Logic

- Specification Level: LF
 - ► HOAS LF types Ty_P, Tm_P & Tm_λ, similar to Abella
 - judgements as LF type families
- Reasoning Level: Contextual Modal Type Theory (CMTT)
 - ▶ 1^{st} -class contexts: γ : S
 - ▶ LF terms/types/derivations K as contextual objects: $[\gamma \vdash K]$
 - ▶ Proofs: total programs using pattern matching & HO unification

Beluga - Contextual Objects

lacksquare Open LF entities K paired with a context γ that gives them meaning

$$[\gamma \vdash K]$$

- Object variables cannot escape into reasoning context
- In fact: no concept of free object variable
 - ▶ Coq
 $0 \vdash_{\mathbb{P}} 0 \to 0 \Longrightarrow \bot$ provable

 ▶ Abella
 $\{ \bullet \vdash n_0 \to n_0 \ \mathbf{ty} \} \Longrightarrow \bot$ provable

 ▶ Beluga
 $[\bullet \vdash x \to x]$ ill-formed since $x \notin \bullet$
- No PLC type formation judgement Aty
 - ► affects representation and proofs
- Supports inductive reasoning on contextual objects

Beluga – Context Schemas, γ : S

- Rich contexts: heterogeneous dependent lists of dependent records
- Schemas S constraint shape

$$\overline{\mathsf{S}_{\lambda}} := [x : \mathsf{Tm}_{\lambda}, h : x : *] + [x : \mathsf{Tm}_{\lambda}, h : x : a, j : a : *]$$

- Schema ascription checked as part of type checking
- Canonical vs non-canonical, derivability

$$S_{\lambda} := [x : Tm_{\lambda}, h : x : a, j : a : b, k : b \in \{*, \square\}]$$

Non-canonical schemas turn contexts into conduits which carry semantic information from binding sites to usage sites.

Beluga – Complex Schemas

1 Define schema $\overline{S_{\sim,P}}$ with specific typing information:

$$\overline{\mathsf{S}_{\sim,\mathsf{P}}} \;:=\; [x:\mathsf{Ty}_\mathsf{P},y:\mathsf{Tm}_\lambda,x\sim y,y:*] + [y:\mathsf{Tm}_\lambda,y:a]$$

2 Implement a function $p_{\sim,P}$ by recursion on $A: [\gamma \vdash \mathsf{Ty}_P]$

$$p_{\sim,P}$$
: $\forall \gamma : \overline{S_{\sim,P}}$. $\forall A : [\gamma \vdash Ty_P]$. $[\gamma \vdash \exists a.A \sim a \land a : *]$

Conclusion – Main Contribution

- A formal equivalence proof for two System F variants
- 2 A continuation of benchmarking efforts
 - POPLMARK [Aydemir et al. '05]
 metatheory focused on single type theory
 - ► ORBI [Felty et al. '15] multiple systems, basic contextual reasoning
 - ► Here:

```
cross-theory
multiple systems
complex contextual reasoning
```

Conclusion – Technical Remarks

■ Formalisation effort:

	mode	approx. LOC
Coq	tactics	2140
Abella	tactics	450
Beluga	proof terms	340

- Regarding syntax with binding: there is no silver bullet!
- However, certain techniques go well together:
 - de Bruijn: parallel substitutions, generalised CMLs
 - ► HOAS: careful context control (predicates / schemas)
 - syntactic inductive correspondence relations

Conclusion – Future Directions

- 1 Co-reducibility
 - ▶ likely requires \sim , \approx as bisimulations
 - restriction to well-typed fragments essential
- 2 Include other variants of System F
 - ▶ PTS with weakening built in and/or well-scoped syntax, see [Adams '04]
 - PLC with different levels of type ascription (Church vs Curry)
- 3 Consider other representations / frameworks / proof assistants
 - ► LN [Aydemir et al. '08], nominal [Pitts '03]
 - Autosubst 2, HYBRID [Capretta/Felty '06] (both Isabelle and Coq)
 - Twelf, Lean, Agda, . . .
- 4 Consider other type theories
 - ightharpoonup F_{ω} , $F_{<:}$, ...

Thank you for your attention.

http://www.ps.uni-saarland.de/static/kaiser-diss/index.php