Formal Verification of the
Equivalence of System F
and the Pure Type System L2

Jonas Kaiser

July 11, 2019

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

http://www.cs.uni-saarland.de/

SAARLAND
UNIVERSITY

Where are we? — Some Context ey =

COMPUTER SCIENCE

e Prog. Languages

e Type Systems

Jonas Kaiser Equivalence of F and A\2

Type Theories as Objects of Study

Syntax (things we can express)
atomic/basic expressions

» compound expressions

» possibly grouped into multiple classes
» may involve variable binding

v

Semantics (assigning meaning to expressions)
> assertions / judgements
» inference systems
» may involve contextual assumptions

Theory
> properties of the Semantics

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY
— —

COMPU

relate

preserve

transfer

July 11, 2019

TER SCIENCE

3/28

SAARLAND

Two Typed A-Calculi e

COMPUTER SCIENCE

PLC A2
m proof theory [Girard '72] m a pure type system (PTS)
» 2" ord. intuitionistic logic > [Terlouw '89, Berardi '90]
m polymorphism [Reynolds '74] m corner of A-cube / study of CC
» prototypical prog. language > [Barendregt '91]
m syntactic separation of terms m only one syntactic class of
and types = two-sorted expressions = single-sorted
> two judgements: » uniform typing judgement
type formation & typing > type/term distinction implicit
m 2 variable scopes, 3 binders m 1 variable scope, 2 binders

Goal: Bidirectional Reduction of Type Formation and Typing

Jp PN)\
derivable in PLC derivable in A2

Jonas Kaiser Equivalence of F and A2 July 11, 2019 4/28

ivi SMBEANG i
A (Trivial?) Problem A

COMPUTER SCIENCE

The system A2 is the polymorphic or second order typed lambda calculus.
[H. Barendregt, A-cube JFP article, 1991]

To show that the two representations of these systems are in fact the same
requires some technical but not difficult work.

[H. Geuvers, Proefschrift, 1993]

VS

We may think of the proof as an iceberg. In the top of it, we find what we
usually consider the real proof; underwater, the most of the matter,
consisting of all the mathematical preliminaries a reader must know in
order to understand what is going on.

[S. Berardi, 1°* LF Workshop 1990, Antibes]

Binders should have been a solved problem 10 years ago . ..

[A. Ahmed, paraphrased at FSCD 2016, Porto].

Jonas Kaiser Equivalence of F and A2 July 11, 2019 5/28

SAARLAND
UNIVERSITY

Syntactic Comparison —_—

COMPUTER SCIENCE

PLC a la [Harper '13]:

Typ AB:= X | A—-B | VXA X € Vy

Tmp s,t = x| st | M:As | sA | AXs x €V

Type Form. A A

Typing AThks: A FAXAx: X x : VXX =X

K Ay« Ax:y.x t My:xTlx:y.y

A2:
Tmy a,b:= x|s | ab | Ax:ab | Mx:ab xeV
Typing Vka:b s e {1}

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Proof Structure —

COMPUTER SCIENCE

Typ /Tm)\ \
,* well-formed types AR \, propositions \
1
\ Ast. A A ’ voast Vhka:ix v
N 4
T - 1) functional Tt -
2) injective
3) L-total &
preservin
/Tmp \ &
4) R-total &
LT = ~. preserving PR ~.
,, \\\ /, \\\
/ well-typed terms J proofs \
1
\sst ATks: A ,’\\//"\ bst WKb:a ,
. &ABA LS N &VWka:ix o
S - - ©:XkFs~b ST -

Jonas Kaiser Equivalence of F and A2

SAARLAND

Establishing the Reductions e

COMPUTER SCIENCE
Let ~ and =~ both be:

functional

injective

left-total and judgement preserving on suitable fragment

right-total and judgement preserving on suitable fragment
Theorem (Reduction PLC to \2)

FA < daFA~a A Ka:x
fFs:A << dba.kFsx=b NFA~a A Kb:a A Ka:x

Theorem (Reduction A2 to PLC)

Ka:*x < dJAFA~a A KA
KEb:a ANKa:x < dsA.ksx=b ANFA~a AN Es: A

Jonas Kaiser Equivalence of F and A2 July 11, 2019 8 /28

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

15t-order de Bruijn Syntax, generalised CMLs

finding the right inductive invariants

Jonas Kaiser Equivalence of F and A2 July 11, 2019 9 /28

SAARLAND
UNIVERSITY

Coq — de Bruijn Syntax —_—
m The a-Equivalence Problem
ACAANYB(x z) y =q Aw:AXx:B.(w z) x A
. . /N
m Nameless Representation = canonical A A
MAB.(12) 0 /N
B app
m Contexts: plain lists, positional indexing / N\
app 0
[=...,z2C ~ TI'=...,C /' \
1 2

m Instantiation: Parallel Substitutions

c:N—=Tmp
(AA.s)[o] = MAs[fio]
ffo == 0-(c o)

Jonas Kaiser Equivalence of F and A2 July 11, 2019 10 / 28

SAARLAND

Coq — Relating Indices SN
0 Th h Y Typ
of:
0 T 1T™ny Tnp tng Tng -+ Tn; Tnj Tmy,
'
mo my moy S mj Tmp
oy s~ b
o = (0,0) = map(t x1)© O Y F As~ \r.b

@' = map(idx1)©
OFA~a O xTks~b

©: X F MA.s=~)\a.b

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Coq — Context Morphism Lemmas, basic e e

COMPUTER SCIENCE

Define invariant:
olkV == :=Vna VKn:a = =ZKon: alo]
Prove extension law:
clkV = = folkV,a— =, alo] — new variable
Prove by induction on WV I5 a : b:
Vhka:b = ok V= = =k alo] : b[o]
Special case for S-substitutivity:

Vic:d
V.dka:b c-idlyV,d -V
VI alc-id] : b[c-id]

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Coq — Context Morphism Lemmas, generalised e e

COMPUTER SCIENCE

Define invariant:
OIFN—V = Vn.n<N = dm. ©Fn~m AN VEm:x
Prove extension laws:

OFN—V = @' IFN— WV, 2 — new term variable
OIFN—»V = O IFN+1— V. % - new type variable

Prove by induction on N 5 A:
NEA = OIFN—»V = da. OFA~a AN VK a:x
Special case for N = 0:

FA = da.FA~a A Ka: x

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Higher-Order Abstract Syntax (prenning/Elliott ‘s8] e s

COMPUTER SCIENCE

m Key Observation:
» host theory has abstraction, application, instantiation = reuse!

m Binders are higher-order expression constructors, e.g.

A_._ Typ — (Tmp — Tmp) — Tmp

I R Tm,\—>(Tm,\—>Tm)\)—>Tm>\

in AM.s the s : Tmp — Tmp is a (host-level) abstraction

m [-contraction as (host-level) application: (AA.s) t ~» s(t)
m Problems:

> expression types are not inductive

» function spaces must be weak/definable/intensional
= no case analysis, no recursion

» adequacy of representation

Jonas Kaiser Equivalence of F and A2 July 11, 2019 14 / 28

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Abelfa

— Abella —

HOAS, nominals, V, context managment

finding the right context predicates

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Abella — Two-Level Logic —_—

COMPUTER SCIENCE
m Specification Level: AProlog

» HOAS definitions of Typ, Tmp & Tmj
» judgements (typing, correspondence) as logic predicates, e.g.

Tmp *>Typ — 0

~_ : ITmp—>Tmy—o

» inference rules as extended Horn clauses
» ambient context tracked implicitly

m Reasoning Level: G

> intuitionistic, predicative fragment of Church’s Simple Type Theory
» inductive predicates

» nominal constants ny,ny, ... in every type

» generic quantification ensures freshness:

Vx. Vy. x#y

» implicit specification contexts exposed as lists L : [o]

Jonas Kaiser Equivalence of F and A2 July 11, 2019 16 / 28

SAARLAND
UNIVERSITY

Abella — Layer Connection —_—

m Logical Embedding:
{_F_} : [0] = 0o— Prop

{LF J} holds in G <= J has a AProlog-derivation from L

m Mobility of Binders:

MNxy. x~y =» s(x)=~b(y)

AN.s = \x.b
{LFNxy. x~y = s(x)=b(y)} ~ Vx,y{L,x~yFs(x)=b{y)}
~ {L,ny ~ny Fs{ny) = b(ny)}

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Abella — Context Management —_—

m A priori, L : [o] may contain arbitrary propositions

m Backchaining rule:

Jel = {L+J}
m Restrict L to facts about free variables (i.e. nominal constants)
Define Cx, : [0] — Prop by
Cx(o);
Vxy, Co(Lix ~y) = Cx(L);
Vxy, Co(Lix=y) = Cx(L).

» avoids spurious instances of backchaining
» constrains L to exactly track related variables
» forces L to be injective & functional

Jonas Kaiser Equivalence of F and A2 July 11, 2019 18 / 28

SAARLAND

Abella — Connecting Contexts —_—
Define a combined context predicate Cgr(— | — | —):
CR(LP | L% | L)\) X,y fresh for LP, L%, L)\
Cr(e|e]|e) Cr(Lp,xty | Layx ~y | Ly,y : %)

{LpFAty} {laFA~a} {LyFa:«}
Cr(Lp | L | Ly) x,y fresh for Lp, L, Ly, A, 2

Cr(Lp,x : A| Layx =y | Ly,y @ a)

Prove extraction laws that yield connected assumptions:

xtyelp = CR(LP|L%|L)\) =

Prove by induction on {Lp - Aty}:
{Lp H Aty} = Vix L. CR(LP | L~ | L/\) =
Ja. {Lx FA~a} AN {LxFa:x*}

Jonas Kaiser Equivalence of F and A2 July 11, 2019 19 /28

SAARLAND
UNIVERSITY
I S —
COMPUTER SCIENCE

beluga
— Beluga —
HOAS, dependently typed programming with 15*-class contexts

finding the right context schemas

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Beluga — Two-Level Logic —_—

COMPUTER SCIENCE

m Specification Level: LF
» HOAS LF types Typ, Tmp & Tmy, similar to Abella
> judgements as LF type families
m Reasoning Level: Contextual Modal Type Theory (CMTT)

» 15t-class contexts: v : S
» LF terms/types/derivations K as contextual objects: [y F K]
» Proofs: total programs using pattern matching & HO unification

Jonas Kaiser Equivalence of F and A2 July 11, 2019 21 /28

SAARLAND
UNIVERSITY

Beluga — Contextual Objects —_—

m Open LF entities K paired with a context - that gives them meaning

[vF K]

Object variables cannot escape into reasoning context
m In fact: no concept of free object variable

» Coq 0k0—=0 = L provable

> Abella {eFny—noty} = L provable

> Beluga [o F x — x] ill-formed since x ¢ o
m No PLC type formation judgement Aty

» affects representation and proofs
m Supports inductive reasoning on contextual objects

Jonas Kaiser Equivalence of F and A2 July 11, 2019 22 /28

SAARLAND
UNIVERSITY

Beluga — Context Schemas, v : S —_—

COMPUTER SCIENCE

m Rich contexts: heterogeneous dependent lists of dependent records

m Schemas S constraint shape
Sy = [x:Tmy,h:ox]+ [x:Tmy,h:x:a,j:a:+]

m Schema ascription checked as part of type checking

m Canonical vs non-canonical, derivability

Sy = [x:Tmy,h:x:aj:a:bk:be{+0}

Non-canonical schemas turn contexts into conduits
which carry semantic information
from binding sites to usage sites.

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY

Beluga — Complex Schemas —_—

COMPUTER SCIENCE

Define schema S p with specific typing information:
Sep = [x:Typ,y : Tmy,x ~y,y tx]+ [y Tmy,y @ 2]
Implement a function p. p by recursion on A : [y F Typ]

pup @ Vy:Sop. VA [y Typl. [YyFJaA~ana: «]

Jonas Kaiser Equivalence of F and A2

: : N NIV ERSIIY
Conclusion — Main Contribution e

COMPUTER SCIENCE

A formal equivalence proof for two System F variants
A continuation of benchmarking efforts
» POPLMARK [Aydemir et al. '05]
metatheory focused on single type theory
» ORBI [Felty et al. '15]
multiple systems, basic contextual reasoning
> Here:
cross-theory
multiple systems
complex contextual reasoning

Jonas Kaiser Equivalence of F and A2 July 11, 2019 25 /28

SAARLAND

Conclusion — Technical Remarks e
COMPUTER SCIENCE
m Formalisation effort:
‘ mode approx. LOC
Coq tactics 2140
Abella | tactics 450
Beluga | proof terms 340
m Regarding syntax with binding: there is no silver bullet!
m However, certain techniques go well together:
» de Bruijn: parallel substitutions, generalised CMLs
» HOAS: careful context control (predicates / schemas)
» syntactic inductive correspondence relations
July 11,2019 26/ 28

SAARLAND
UNIVERSITY

Conclusion — Future Directions e

COMPUTER SCIENCE

Co-reducibility
> likely requires ~, = as bisimulations
> restriction to well-typed fragments essential
Include other variants of System F
» PTS with weakening built in and/or well-scoped syntax, see [Adams '04]
» PLC with different levels of type ascription (Church vs Curry)
Consider other representations / frameworks / proof assistants

> LN [Aydemir et al. '08], nominal [Pitts '03]
» Autosubst 2, HYBRID [Capretta/Felty '06] (both Isabelle and Coq)
» Twelf, Lean, Agda, ...

Consider other type theories
» Fo, Fo., ...

Jonas Kaiser Equivalence of F and A2

SAARLAND
UNIVERSITY
— —
COMPUTER SCIENCE

Thank you for your attention.

http://www.ps.uni-saarland.de/static/kaiser-diss/index.php

Jonas Kaiser Equivalence of F and A2

http://www.ps.uni-saarland.de/static/kaiser-diss/index.php

	Introduction
	The Proof
	The Formal Proofs: Coq, Abella & Beluga
	Conclusion

