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Abstract

In an open programming system dynamic type checking is needed to safely link stati-
cally typed components. Since type case destroys the parametricity of type abstraction,
dynamically generated type names are needed to hide the implementation of abstract
types. Rossberg [8] was the first to analyse the problem and to propose a calculus that
solves it. We will greatly simplify Rossberg’s calculus by developing a calculus, λN

F
, an

extension of System F that provides constructs for type case and a binder for new type
names. We will also develop a calculus, λL

s , that extends the simply typed λ-calculus with
call-by-need evaluation as this can be used to express lazy linking of components [9]. We
will prove the safety properties for both calculi.
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1 Introduction

In open programming systems in general we do not have access to all components of a program
at compile time. These components are dynamically linked to the program during run time.
Because we cannot type check them at compile time, we need a mechanism to do that at run
time. This can be achieved by adding a construct to the language that allows for branching
dependent on the type of its argument. Unfortunately such a type case destroys the para-
metricity of type abstraction, as it provides a way to exhibit the implementation of abstract
types. A solution to this problem is to add a further construct that generates new type names
dynamically to hide the implementation of abstract types.

Rossberg [8] was the first to analyse the problem and to propose a calculus that solves
it that way. We will develop a calculus that greatly simplifies Rossberg’s calculus. This is
possible since his coercions are not needed. Instead we will use a global state that stores
the dynamically generated type names and, as a further simplification, we will use evaluation
contexts to formulate the reduction rules. Smolka [12] has proposed this design in personal
communication with the author.

Additionally we will develop an extension of the simply typed λ-calculus which provides
call-by-need evaluation and indicate how this can be used to express lazy linking. Lazy
linking is a key mechanism in programming systems such as Java and Alice, because it allows
for loading a module at the latest possible time. This can mean that a module is never
loaded if it is not needed. Again Rossberg [9] formulated lazy linking in a calculus using scope
extrusion. We will use a different approach and realize laziness using a global state containing
the expressions that evaluate lazily.

For most of our notations we will use the style found in the textbook [7].

1.1 Type Case

To express dynamic type analysis we introduce a type case construct providing branching
dependent on the type of a subterm. There have already been different formulations for
dynamic type analysis that also use some kind of type case. Examples are dynamics [1],
intentional type analysis [4] and extensional polymorphism [3]. We will use the construct
Rossberg [8] used in his calculus:

case t1 : T1 of x : T2 ⇒ t2 else t3

Here t1, t2 and t3 are terms, T1 and T2 are types and T1 must be the type of t1. The
annotation of t1 with its type T1 is not necessary, as the type T1 could be inferred during
reduction. But we want to design a calculus with independent typing and reduction rules.
The evaluation semantics of this type case is to evaluate t2[x := t1] iff T1 = T2 dynamically
or t3 otherwise. An example explaining how to use a type case is the following polymorphic
function that if given a type and a term of this type returns a string representation of the
type:

rep = λX.λx : X.case x : X of x′ : bool ⇒ ”bool”
else case x : X of x′ : int ⇒ ”int”
else ”unknown”
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1.2 Abstract Types

Information hiding is an important technique for handling larger programs. Hiding implemen-
tation details permits dividing the whole programming task into smaller modules by preventing
strong dependencies between them. Examples of programming languages providing some kind
of information hiding are SML and object oriented languages like Java or C++.

Information hiding can be achieved by using abstract types. An abstract type consists of
a type name, a concrete representation type, a signature and some operations to construct,
deconstruct or manipulate instances of the abstract type. The signature defines the types of
the operations that are visible outside, where the representation type is substituted with the
type name. The representation type itself is only visible for the operations and inaccessible
outside, which has the effect that the only way of handling instances of the abstract type is
by using the operations defined in its interface. Therefore changes of the implementation of
an abstract type have no effect on programs using this abstract type (apart from efficiency)
as long as the signature and the semantics of the operations remain unchanged.

As an illustration we will declare an abstract type in pseudo language which realises a
number that provides three operations: zero for creating a new number, get for deconstructing
a number and inspecting its value and succ for computing the successor of a number. The
type name introduced is Number and has the representation type int :

abstype Number = int

signature :
zero : Number

get : Number → int

succ : Number → Number

operations :
zero = 0
get = λn : int .n
succ = λn : int .n + 1

Instances of this number will be of type Number and outside the implementation the type
checking forbids expressions like n+1, if n is a number. The internal representation of Number

is int , but this is hidden and therefore the only means for manipulating n is by using one of
the operations of number.

As we are aiming at a calculus that extends system F with some constructs, we do not need
to include constructs to express abstract types in this calculus. System F is powerful enough
to encode type abstraction [7]. We will now explain shortly how this encoding works. Let us
again consider the example from above in a simplified version that only supports successor
calculation:

abstype Number = int

signature :
succ : Number → Number

operations :
succ = λn : int .n + 1

Of course this number is not usable because it is impossible to construct new instances
of the type Number , but this aspect is no object of consideration here. The type we encode
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number with is ∀X.(∀Number .(Number → Number) → X) → X. This is the standard
encoding of existential types [7] (which are the standard interpretation of abstract types). All
abstract types have this form. They are given a result type X and and some client of the type
∀X ′.T → X. During evaluation the abstract type gives the client the representation type and
the implementation of the operations as arguments. An encoding of the number looks like
this:

λX.λclient : (∀Number .(Number → Number) → X). client int (λn : int .n + 1)

Now we can see how information hiding works. For the client all instances of the abstract
type are of type Number . The representation type int is inaccessible and therefore the client
must use the provided operations to manipulate numbers.

1.3 Dynamically Generated Type Names

When we use type case and abstract types in combination the following problem arises: In-
formation hiding by abstract types is no longer guaranteed. If our previously defined function
rep gets the type Number and something of type Number as argument the desired result is
”unknown”. Unfortunately this is not what really happens. The dynamic type of a number
is its representation type int which results in rep returning ”int”. This small example shows
that introducing a type case destroys the parametricity of type abstraction because it makes
it possible to expose implementation details of abstract types.

Rossberg [8] solved this problem by generating new type names dynamically. He used
coercions to convert the type of terms from representation type to type name and vice versa.
Our approach will also generate new type names, but we will not use coercions. We will
use a global state that stores the type names and their representation instead. This greatly
simplifies the reduction and typing rules of our calculus compared to Rossberg’s.

The idea is to use a construct that dynamically introduces a type name for some type that
can be used instead of that type. We will use the following syntax:

new X = T in t

Here X is the type name standing for type T and can be used in the term t. To explain
how this restores parametricity of type abstraction we rewrite our previous example as follows:

new X = int in

abstype Number = X
signature :

zero : Number

get : Number → int

succ : Number → Number

operations :
zero = 0
get = λn : X.n
succ = λn : X.n + 1

The dynamic type of a number is still its representation type, but this has changed to
X, resulting in our small example above returning ”unknown”. The desired property of

3



x ∈ Var Variables
X ∈ TVar Type Variables
T ∈ Typ ::= X | T → T | ∀X.T Types
v ∈ Val ::= λx : T.t | λX.t | x Values
t ∈ Ter ::= x | λx : T.t | t t | λX.t| t T Terms

| case v : T of x : T ⇒ t else t | new X = T in t
κ ∈ Kind ::= ∗ Kinds
Γ ∈ Env ::= ∅ | Γ, x : T | Γ, X : κ Environments

N ∈ State ::= φ | N,X = T States

Figure 1: λN
F -Syntax

dynamic opacity is difficult to formalise, so we will rely on our intuitive understanding that
this construction solves the problem arising from using type case together with abstract types.

Communication with Rossberg [11] showed that the approach with the global state does
not restore parametricity in systems with dependent types. The calculus we will develop will
be based on system F, which does not provide dependent types.

2 The λ
N
F -Calculus

We will now develop a calculus based on system F that has extensions for type case and
dynamic type name generation. The calculus will be referred to as λN

F . It is not necessary to
include constructs for handling type abstraction in this calculus because system F is powerful
enough to encode abstract types as explained in section 1.2.

2.1 Syntax

Figure 1 shows the syntax of λN
F . The constructs for type case and type name generation are

the ones introduced in the previous section. As you can see case only allows values in its
first component. This will simplify our reduction rules, since we will not need to reduce these
values. It is no loss of generality as we can rewrite case terms as follows:

case t : T of x′ : T ′ in t1 else t2 ≡ (λx : T.case x : T of x′ : T ′ in t1 else t2) t

This is also the reason why we include variables in the definition of values. State will
be used as global state storing the dynamically generated type names and their respective
representation. Env is the environment containing the free type variables and the types of
free term variables. State and Env are modelled as lists. It is also possible to model them as
partial functions, but the list constructions preserves the order of the entries and will simplify
some of our proofs. Kind has been included to unify the representation of environments.
Sometimes we will use State more like a queue; if we write X = T,N this means X = T is
the leftmost element and if we write N,X = T it is the rightmost element of the list and N
is this list without the entry X = T .

In order to avoid variable capturing, we consider terms and types modulo alpha conversion
and assume the convention that binders always introduce fresh variable names. This is also
known as the Barendregt Convention.
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E ::= ◦ | E t | v E | E T

(1) E((λx : T.t) v) | N −→ E(t[x := v]) | N
(2) E((λX.t) T ) | N −→ E(t[X := T ]) | N
(3) E(case v : T of x : T ′ ⇒ t else t′) | N −→ E(t[x := v]) | N (if T = T ′)
(4) E(case v : T of x : T ′ ⇒ t else t′) | N −→ E(t′) | N (if T 6= T ′)
(5) E(new X = T in t) | N −→ E(t) | N,X = T (X fresh)

Figure 2: λN
F -Reduction

2.2 Reduction

As mentioned above we use a global state to store the dynamically generated type names and
their respective representation. Therefore we define our reduction rules over pairs of terms and
states, written t|N . We will call such pairs configurations. We define the reduction rules using
evaluation contexts. Figure 2 contains the rules realizing a small-step call-by-value strategy.
The first two rules are known from system F. Rules 3 and 4 realize the type dependent
branching of the type case construct. Rule 5 defines the reduction of the new construct. The
abstracted type and its name are just appended to the global state. It is easy to verify that
these reduction rules are deterministic. Note that the global state N is not touched in rules
1-4 and only extended in rule 5. This indicates that a type that has been abstracted with
new cannot be inspected during reduction.

2.3 Typing

Figure 3 defines five different relations:

` Γ well-formedness of environments
` N well-formedness of states

Γ ` T : κ well-formedness of types
Γ ` t : T well-typedness of terms

Γ ` t|N : T well-typedness of configurations

Environments and states are lists of pairs. The relations ` Γ and ` N contain only
environments or states where each variable occurs as left component in a pair once at the
most. Therefore we can use well-formed environments and states like partial functions. Using
a state as a function means to substitute all type names with their respective representation
types:

φ(t) = t
(N,X = T )(t) = N(t[X := T ])

The application of a state to a type is defined analogically. If we have Γ = ∅, we will omit
Γ as abbreviation and write ` t : T to express that t is a well-typed closed term.

Note that in reduction the state grows to the right whereas the well-formedness rules for
states always deal with the leftmost entry. Because states grow to the right all dependencies
in a state are from right to left, meaning that for an entry X = T no free variable in T is
bound in any entry to the right of its position. Therefore we check states from left to right as
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Environments

` ∅

Γ ` T : ∗ x /∈ dom(Γ)

` Γ, x : T

` Γ X /∈ dom(Γ)

` Γ, X : κ

States

` Γ

Γ ` φ

Γ ` T : κ Γ, X : κ ` N

Γ ` X = T,N

Types

` Γ X ∈ dom(Γ)

Γ ` X : ΓX

Γ ` T1 : ∗ Γ ` T2 : ∗

Γ ` T1 → T2 : ∗

Γ, X : ∗ ` T : ∗

Γ ` ∀X.T : ∗

Terms

` Γ x ∈ dom(Γ)

Γ ` x : Γ x

Γ ` t : ∀X.T ′ Γ ` T : ∗

Γ ` t T : T ′[X := T ]

Γ, x : T ` t : T ′

Γ ` λx : T.t : T → T ′

Γ ` v : T Γ, x : T ′ ` t : T ′′ Γ ` t′ : T ′′

Γ ` case v : T of x : T ′ ⇒ t else t′ : T ′′

Γ ` t : T ′ → T Γ ` t′ : T ′

Γ ` t t′ : T

Γ ` T : κ Γ ` t[X := T ] : T ′

Γ ` new X = T in t : T ′

Γ, X : ∗ ` t : T

Γ ` λX.t : ∀X.T

Configurations

Γ ` N Γ ` Nt : T

Γ ` t|N : T

Figure 3: λN
F -Typing
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this allows that Γ binds exactly those variables the currently checked entry in the state can
depend on.

The typing rules for the two λ-abstractions require the introduced variable not to be bound
by Γ, because otherwise appending this variable to Γ would result in a malformed environment.
So the typing rules assure that these binders must always introduce new variable names. This
is conform with the previously mentioned Barendregt Convention.

It is possible to formulate the typing rules with a different approach that combines the
rules for typing terms and configurations. The resulting relation Γ ` t|N : T would have rules
for each syntactic form of terms. Here we use the approach to have a simpler relation Γ ` t : T
that is used by the rule for typing configurations by applying state N to t.

A nice property of our typing rules is that given Γ ` t : T it follows that all free variables
of t and T must be bound by Γ and that Γ is well-formed. This is quite obvious if we look at
the rule for term variables. Here x must be bound by Γ and Γ must be well-formed, implying
that type Γx is well-formed, which means that all its free variables are bound by Γ.

From this property and the rule for configurations it follows directly that Γ ` t|N : T
implies that the free variables of T contain no type name that is bound by N .

3 Properties of λ
N
F

In this section we will prove the safety properties for our calculus, which are the unique type,
the progress, and the preservation property. Additionally we will show that in contrast to
system F the calculus λN

F is not normalising any more.

3.1 Uniqueness of Types

To be able to use the inference rules in our typing relations not only as implication from
premises to conclusion, but also vice versa, we formulate the following inversion lemma:

Lemma 3.1 (Inversion):

Environments:
` Γ, x : T =⇒ Γ ` T : ∗ ∧ x /∈ dom(Γ)
` Γ, X : κ =⇒ ` Γ ∧ X /∈ dom(Γ)

States:
Γ ` φ =⇒ ` Γ
Γ ` X = T,N =⇒ Γ ` T : κ ∧ Γ, X : κ ` N

Types:
Γ ` X : κ =⇒ ` Γ ∧ X ∈ dom(Γ) ∧ ΓX = κ
Γ ` T1 → T2 : ∗ =⇒ Γ ` T1 : ∗ ∧ Γ ` T2 : ∗
Γ ` ∀X.T : ∗ =⇒ Γ, X : ∗ ` T : ∗

Terms:
Γ ` x : T =⇒ ` Γ ∧ x ∈ dom(Γ) ∧ Γx = T
Γ ` λx : T.t : T → T ′ =⇒ Γ, x : T ` t : T ′

Γ ` t t′ : T =⇒ ∃T ′ : Γ ` t : T ′ → T ∧ Γ ` t′ : T ′

Γ ` λX.t : ∀X.T =⇒ Γ, X : ∗ ` t : T
Γ ` t T : T ′ =⇒ ∃X,T ′′ : Γ ` t : ∀X.T ′′ ∧ Γ ` T : ∗ ∧ T ′ = T ′′[X := T ]
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Γ ` case v : T of x : T ′ ⇒ t else t′ : T ′′ =⇒
Γ ` v : T ∧ Γ, x : T ′ ` t : T ′′ ∧ Γ ` t′ : T ′′

Γ ` new X = T in t : T ′ =⇒ Γ ` T : κ ∧ Γ ` t[X := T ] : T ′ ∧ X /∈ dom(Γ)
Configurations:

Γ ` t|N : T =⇒ Γ ` N ∧ Γ ` Nt : T

Proof : Because we have exactly one rule per syntactic form, the lemma follows immediately
from the definition of our relations.

�

Our proofs will often use induction on terms. Unfortunately the typing rule of the
new construct does not allow structural induction on terms because in its premise we need
to type the term t[X := T ] and this substitution prohibits a pure structural argumentation.
Hence we define a size of terms that does not depend on the types contained in a term:

size(x) = 1
size(λx : T.t) = size(t)+1
size(t1 t2) = size(t1)+size(t2)+1
size(λX.t) = size(t)+1
size(t T ) = size(t)+1
size(case v : T1 of x : T2 ⇒ t1 else t2) = size(v)+size(t1)+size(t2)+1
size(new X = T in t) = size(t)+1

Theorem 3.2 (Uniqueness for terms):

Γ ` t : T ∧ Γ ` t : T ′ =⇒ T = T ′

Proof : Induction on the size of t
Case size(t) = 1:

=⇒ t = x for some variable x.
Let Γ ` x : T ∧ Γ ` x : T ′

It follows that T = Γ x = T ′.

Case size(t) > 1:
Case t = λx : T1.t2:

Let Γ ` t : T ∧ Γ ` t : T ′

It follows that T = T1 → T2 ∧ T ′ = T1 → T ′

2
for some types T2 and T ′

2
.

Furthermore we have Γ, x : T1 ` t2 : T2 ∧ Γ, x : T1 ` t2 : T ′

2
(Inversion).

The induction hypothesis gives us T2 = T ′

2
and therefore T = T ′.

Case t = t1 t2:
Let Γ ` t1 t2 : T ∧ Γ ` t1 t2 : T ′

It follows that Γ ` t1 : T1 → T ∧ Γ ` t1 : T2 → T ′ for some types T1 and T2 (Inversion).
The induction hypothesis gives us T1 → T = T2 → T ′ which implies T = T ′.

Case t = λX.t1:
Let Γ ` λX.t1 : T ∧ Γ ` λX.t1 : T ′

It follows that T = ∀X.T1 ∧ T ′ = ∀X.T ′
1

for some types T1 and T ′
1
.
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Furthermore we have Γ, X : ∗ ` t1 : T1 ∧ Γ, X : ∗ ` t1 : T ′
1

(Inversion).
The induction hypothesis gives us T1 = T ′

1
and therefore T = T ′.

Case t = t1 T1:
Let Γ ` t1 T1 : T ∧ Γ ` t1 T1 : T ′

It follows that Γ ` t1 : ∀X.T2 ∧ Γ ` t1 : ∀X.T ′

2
for some types T2 and T ′

2
.

Furthermore we have T = T2[X := T1] and T ′ = T ′

2
[X := T1].

The induction hypothesis gives us ∀X.T2 = ∀X.T ′

2
.

It follows that T2 = T ′
2

and therefore T = T ′.

Case t = case v : T1 of x : T2 ⇒ t2 else t3:
Let Γ ` t : T ∧ Γ ` t : T ′

By inversion it follows that Γ ` t3 : T ∧ Γ ` t3 : T ′.
The induction hypothesis gives us T = T ′.

Case t = new X = T1 in t1:
Let Γ ` t : T ∧ Γ ` t : T ′

By inversion it follows that Γ ` t1[X := T1] : T ∧ Γ ` t1[X := T1] : T ′.
Because size(t1[X := T1]) < size(t), the induction hypothesis gives us T = T ′

�

Corollary 3.3 (Uniqueness):

Γ ` t|N : T ∧ Γ ` t|N : T ′ =⇒ T = T ′

Proof : Immediately from theorem 3.2 with use of the inversion lemma.
�

3.2 Progress

The progress property states that a closed, well-typed configuration contains either a value or
it can be reduced.

Theorem 3.4 (Progress):

` t|N : T =⇒ t ∈ Val ∨ ∃t′, N ′ : t|N −→ t′|N ′

Proof : Structural induction on t
Case t = x:

trivial. x is not a closed term.

Case t = λx : T.t′:
trivial. λx : T.t′ is a value.

Case t = t1t2:
Let ` t1t2|N : T . By inversion it follows that ` N ∧ ` N(t1t2) : T .
=⇒ ` (Nt1)(Nt2) : T
=⇒ ` Nt2 : T2 and ` Nt1 : T2 → T for some type T2 (inversion).
=⇒ ` t2|N : T2 and ` t1|N : T2 → T

9



By induction hypothesis we may assume:
t1 ∈ Val ∨ ∃t′

1
, N ′ : t1|N −→ t′

1
|N ′ and

t2 ∈ Val ∨ ∃t′
2
, N ′ : t2|N −→ t′

2
|N ′

Case t1 /∈ Val :
=⇒ t1|N −→ t′

1
|N ′ for some term t′

1
and some state N ′.

So there exists a context E and terms s, s′ such that t1 = E(s) and E(s)|N −→ E(s′)|N ′.
With context E ′ = E t2 we have t|N = E ′(s)|N ∧ E′(s)|N −→ E ′(s′)|N ′.

Case t1 ∈ Val and t2 /∈ Val :
=⇒ t2|N −→ t′

2
|N ′ for some term t′

2
and some state N ′.

So there exists a context E and terms s, s′ such that t2 = E(s) and E(s)|N −→ E(s′)|N ′.
With context E ′ = t1 E we have t|N = E ′(s)|N ∧ E′(s)|N −→ E ′(s′)|N ′.

Case t1 ∈ Val and t2 ∈ Val :
So t1 = λx : T2.s for some term s (t1 = λX.t′ or t1 = x would not type correctly).
With E = ◦ we have:
t|N = E((λx : T2.s) t2)|N ∧ E((λx : T2.s) t2)|N −→ E(s[x := t2])|N

Case t = λX.t1:
trivial. λX.t1 is a value.

Case t = t1 T1:
Let ` t1 T1 |N : T . By inversion it follows that ` N ∧ ` N(t1T1) : T
=⇒ ` (Nt1)(NT1) : T
=⇒ ` t1|N : ∀X.T ′ with T = T ′[X := NT1]
By induction hypothesis we may assume:
t1 ∈ Val ∨ ∃t′

1
, N ′ : t1|N −→ t′

1
|N ′

Case t1 ∈ Val :
=⇒ t1 = λX.t2 for some term t2 (t1 = λx : T ′.t′ or t1 = x would not type correctly).
With E = ◦ we have t|N = E((λX.t2)T1)|N ∧ E((λX.t2)T1)|N −→ E(t2[X := T1])|N

Case t1 /∈ Val :
=⇒ t1|N −→ t′

1
|N ′ for some term t′

1
and some state N ′

So there exists a context E and terms s, s′ such that t1 = E(s) and E(s)|N −→ E(s′)|N ′.
With context E ′ = E T we have t|N = E ′(s)|N ∧ E′(s)|N −→ E ′(s′)|N ′.

Case t = case v : T1 of x : T2 ⇒ t2 else t3:
Case T1 = T2: with E = ◦ we have t|N = E(t)|N ∧ E(t)|N −→ E(t2[x := v])|N
Case T1 6= T2: with E = ◦ we have t|N = E(t)|N ∧ E(t)|N −→ E(t3)|N

Case t = new X = T1 in t1:
With E = ◦ we have t|N = E(t)|N ∧ E(t)|N −→ E(t1)|N,X = T1 (X fresh)

�

3.3 Preservation

The goal of this section is to prove that well-typed configurations do not alter their type during
further reduction. This is a bit harder to prove than the previous properties, because we need
some lemmas first. Lemma 3.5 allows us to state the well-typedness of some term t in some
context E:
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Lemma 3.5 :

Γ ` E(t)|N : T =⇒ ∃T ′ : Γ ` Nt : T ′

Proof : Structural induction on E:
Case E = ◦:

Follows trivially by inversion, as E(t) = t

Case E = E′ t′:
Let Γ ` E(t)|N : T . This is equivalent to Γ ` E ′(t) t′|N : T
By inversion it follows that Γ ` E ′(t)|N : T ′′ → T for some type T ′′

The induction hypothesis gives us ∃T ′ : Γ ` Nt : T ′

Case E = v E ′:
Let Γ ` E(t)|N : T . This is equivalent to Γ ` v E ′(t)|N : T
By inversion it follows that Γ ` E ′(t)|N : T ′′ for some type T ′′

The induction hypothesis gives us ∃T ′ : Γ ` Nt : T ′

Case E = E′ T :
Let Γ ` E(t)|N : T . This is equivalent to Γ ` E ′(t)T |N : T
By inversion it follows that Γ ` E ′(t)|N : ∀X.T ′′ for some type T ′′

The induction hypothesis gives us ∃T ′ : Γ ` Nt : T ′

�

The weakening lemma 3.6 will be needed in the proof of lemma 3.7.

Lemma 3.6 (Weakening):

Γ ` t : T ∧ X /∈ dom(Γ) =⇒ Γ, X : ∗ ` t : T

Proof : Straightforward induction on t.
�

Lemma 3.7 is the well-known substitution lemma that allows us to argue about type
preservation during β-reduction.

Lemma 3.7 (Substitution):

Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′ =⇒ Γ ` t[x := t′] : T

Proof : Induction on the size of t:
Case size(t) = 1:

Case t = x′ ∧ x′ = x:
Let Γ, x : T ′ ` x′ : T ∧ Γ ` t′ : T ′. So it follows that T ′ = (Γ, x : T ′)(x′) = T .
As t[x := t′] = t′ we have Γ ` t[x := t′] : T .

Case t = x′ ∧ x′ 6= x:
Let Γ, x : T ′ ` x′ : T . As x′ 6= x it follows that x′[x := t′] = x′ ∧ Γ ` x′ : T .

Case size(t) > 1:
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Case t = λx′ : T1.t2:
Let Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′.
From our typing rules it follows x 6= x′.
Type T must have the form T1 → T2 and Γ, x : T ′, x′ : T1 ` t2 : T2 for some type T2.
We can exchange the order of the environment to Γ, x′ : T1, x : T ′ because
neither x nor x′ introduce new type variables: Γ, x′ : T1, x : T ′ ` t2 : T2

By induction hypothesis it follows Γ, x′ : T1 ` t2[x := t′] : T2.
That implies Γ ` λx′ : T1.(t2[x := t′]) : T1 → T2

which is equivalent to Γ ` (λx′ : T1.t2)[x := t′] : T1 → T2.

Case t = t1 t2:
Let Γ, x : T ′ ` t1 t2 : T ∧ Γ ` t′ : T ′.
Inversion leads to Γ, x : T ′ ` t1 : T2 → T ∧ Γ, x : T ′ ` t2 : T2 for some type T2.
By induction hypothesis it follows Γ ` t1[x := t′] : T2 → T ∧ Γ ` t2[x := t′] : T2.
So we obtain Γ ` (t1t2)[x := t′] : T .

Case t = λX.t2:
Let Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′.
Type T must have the form ∀X.T2 and Γ, x : T ′, X : ∗ ` t2 : T2 for some type T2.
We may assume that X is not free in T ′.
=⇒ We can exchange the order of the environment to Γ, X : ∗, x : T ′ (X /∈ FV (T ′)):
Γ, X : ∗, x : T ′ ` t2 : T2

The weakening lemma 3.6 gives us Γ, X : ∗ ` t′ : T ′.
By induction hypothesis it follows Γ, X : ∗ ` t2[x := t′] : T2.
=⇒ Γ ` λX.(t2[x := t′]) : ∀X.T2

=⇒ Γ ` (λX.t2)[x := t′] : ∀X.T2

Case t = t1 T1:
Let Γ, x : T ′ ` t1 T1 : T ∧ Γ ` t′ : T ′.
=⇒ Γ, x : T ′ ` t1 : ∀X.T2 with T2[X := T1] = T and Γ ` T1 : ∗ (by inversion)
By induction hypothesis it follows Γ ` t1[x := t′] : ∀X.T2.
=⇒ Γ ` (t1[x := t′])T1 : T
=⇒ Γ ` (t1T1)[x := t′] : T

Case t = case v : T1 of x′ : T2 ⇒ t2 else t3:
Let Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′ (From the typing rules follows x 6= x′).
=⇒ Γ, x : T ′ ` v : T1 ∧ Γ, x : T ′, x′ : T2 ` t2 : T ∧ Γ, x : T ′ ` t3 : T (by inversion)
=⇒ Γ, x : T ′ ` v : T1 ∧ Γ, x′ : T2, x : T ′ ` t2 : T ∧ Γ, x : T ′ ` t3 : T
By induction hypothesis it follows:
Γ ` v[x := t′] : T1 ∧ Γ, x′ : T2 ` t2[x := t′] : T ∧ Γ ` t3[x := t′] : T
=⇒ Γ ` case v[x := t′] : T1 of x′ : T2 ⇒ t2[x := t′] else t3[x := t′] : T
=⇒ Γ ` (case v : T1 of x′ : T2 ⇒ t2 else t3)[x := t′] : T

Case t = new X = T1 in t1:
Let Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′.
=⇒ Γ, x : T ′ ` t1[X := T1] : T ∧ Γ ` T1 : κ (by inversion)
Because size(t1[X := T1]) < size(t), the induction hypothesis gives us:
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Γ ` t1[X := T1][x := t′] : T
We may assume that X is not free in t′.
=⇒ Γ ` t1[x := t′][X := T1] : T
=⇒ Γ ` new X = T1 in t1[x := t′] : T
=⇒ Γ ` (new X = T1 in t1)[x := t′] : T

�

Lemma 3.8 states that in some context E the substitution of some term t with some term s
of the same type does not change the type of the whole term.

Lemma 3.8 :

Γ ` E(t)|N : T ∧ Γ ` Nt : T ′ ∧ Γ ` Ns : T ′ =⇒ Γ ` E(s)|N : T

Proof : Structural induction on E
Case E = ◦

Let Γ ` E(t)|N : T ∧ Γ ` Nt : T ′ ∧ Γ ` Ns : T ′.
=⇒ Γ ` Nt : T ∧ Γ ` Nt : T ′ (by inversion)
The uniqueness property gives us T = T ′. E(s) = s leads to Γ ` E(s)|N : T .

Case E = E′ t′:
Let Γ ` E(t)|N : T ∧ Γ ` Nt : T ′ ∧ Γ ` Ns : T ′.
It follows that Γ ` E ′(t)|N : T ′′ → T ∧ Γ ` Nt′ : T ′′ for some type T ′′.
The induction hypothesis leads us to Γ ` E ′(s)|N : T ′′ → T ∧ Γ ` Nt′ : T ′′.
This implies Γ ` E(s)|N : T .

Case E = v E ′:
Let Γ ` E(t)|N : T ∧ Γ ` Nt : T ′ ∧ Γ ` Ns : T ′.
It follows that Γ ` Nv : T ′′ → T ∧ Γ ` E′(t)|N : T ′′ for some type T ′′.
The induction hypothesis leads us to Γ ` Nv : T ′′ → T ∧ Γ ` E′(s)|N : T ′′.
This implies Γ ` E(s)|N : T .

Case E = E′ T ′′:
Let Γ ` E(t)|N : T ∧ Γ ` Nt : T ′ ∧ Γ ` Ns : T ′.
It follows that Γ ` E ′(t)|N : ∀X.T1 ∧ Γ ` NT ′′ : ∗ with T = T1[X := NT ′′].
The induction hypothesis leads us to Γ ` E ′(s)|N : ∀X.T1.
This implies Γ ` E(s)|N : T .

�

The last two lemmas we need for proving preservation state that we can instantiate type
variables with well-formed types. Here we take advantage of our design decision to model
environments as lists and not as partial functions, since we can use the order of the entries to
argue about dependencies.

Lemma 3.9 (Type Substitution for Types):

Γ, X : ∗,Γ′ ` T : κ ∧ Γ ` T ′ : ∗ =⇒ Γ,Γ′[X := T ′] ` T [X := T ′] : κ
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Proof : Straightforward structural induction on T
�

Lemma 3.10 (Type Substitution):

Γ, X : ∗,Γ′ ` t : T ∧ Γ ` T ′ : ∗ =⇒ Γ,Γ′[X := T ′] ` t[X := T ′] : T [X := T ′]

Proof : Induction on the size of t:
Let Γ, X : ∗,Γ′ ` t : T ∧ Γ ` T ′ : ∗.
From the typing rules it follows that X does not occur in Γ.

Case size(t) = 1:
=⇒ t = x for some variable x.
From the typing rules it follows ` Γ,Γ′[X := T ′].
Case x ∈ dom(Γ):

=⇒ X is not free in T and therefore Γ,Γ′[X := T ′] ` t[X := T ′] : T [X := T ′].
Case x ∈ dom(Γ′):

=⇒ Γ,Γ′[X := T ′] ` t[X := T ′] : T [X := T ′], since t[X := T ′] = x

Case size(t) > 1:
Case t = λx1 : T1.t2:

=⇒ Γ, X : ∗,Γ′, x1 : T1 ` t2 : T2 with T = T1 → T2 for some type T2 (inversion)
By induction hypothesis it follows:
Γ,Γ′[X := T ′], x1 : T1[X := T ′] ` t2[X := T ′] : T2[X := T ′]
=⇒ Γ,Γ′[X := T ′] ` λx1 : T1[X := T ′].t2[X := T ′] : T1[X := T ′] → T2[X := T ′]
=⇒ Γ,Γ′[X := T ′] ` (λx1 : T1.t2)[X := T ′] : (T1 → T2)[X := T ′]

Case t = t1 t2:
=⇒ Γ, X : ∗,Γ′ ` t1 : T2 → T ∧ Γ, X : ∗,Γ′ ` t2 : T2 for some type T2.
By induction hypothesis it follows:
Γ,Γ′[X := T ′] ` t1[X := T ′] : (T2 → T )[X := T ′] and
Γ,Γ′[X := T ′] ` t2[X := T ′] : T2[X := T ′]
=⇒ Γ,Γ′[X := T ′] ` t1[X := T ′]t2[X := T ′] : T [X := T ′]
=⇒ Γ ` (t1 t2)[X := T ′] : T [X := T ′]

Case t = λX1.t1:
=⇒ Γ, X : ∗,Γ′, X1 : ∗ ` t1 : T1 with T = ∀X1.T1 for some type T1.
From the typing rules it follows X 6= X1.
By induction hypothesis it follows Γ,Γ′[X := T ′], X1 : ∗ ` t1[X := T ′] : T1[X := T ′].
=⇒ Γ,Γ′[X := T ′] ` λX1.t1[X := T ′] : ∀X1.T1[X := T ′]
=⇒ Γ,Γ′[X := T ′] ` (λX1.t1)[X := T ′] : (∀X1.T1)[X := T ′], since X 6= X1.

Case t = t1 T2:
=⇒ Γ, X : ∗,Γ′ ` t1 : ∀X1.T1 with T = T1[X1 := T2] and Γ, X : ∗,Γ′ ` T2 : ∗.
By induction hypothesis it follows Γ,Γ′[X := T ′] ` t1[X := T ′] : (∀X1.T1)[X := T ′].
From the typing rules and the Barendregt Convention it follows:
X 6= X1 ∧ X1 /∈ FV (T ′) ∧ Γ,Γ′[X := T ′] ` T2[X := T ′] : ∗.
=⇒ Γ,Γ′[X := T ′] ` t1[X := T ′]T2[X := T ′] : T1[X := T ′][X1 := T2[X := T ′]]
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The substitution [X := T ′][X1 := T2[X := T ′]] is equivalent to [X1 := T2][X := T ′]
=⇒ Γ ` t1[X := T ′]T2[X := T ′] : T1[X1 := T2][X := T ′]
=⇒ Γ ` (t1 T2)[X := T ′] : T [X := T ′]

Case t = case v : T1 of x : T2 ⇒ t2 else t3:
=⇒ Γ, X : ∗,Γ′ ` v : T1 ∧ Γ, X : ∗,Γ′, x : T2 ` t2 : T ∧ Γ, X : ∗,Γ′ ` t3 : T (inversion)
By induction hypothesis it follows:
Γ,Γ′[X := T ′] ` v[X := T ′] : T1[X := T ′] ∧
Γ,Γ′[X := T ′], x : T2[X := T ′] ` t2[X := T ′] : T [X := T ′] ∧
Γ,Γ′[X := T ′] ` t3[X := T ′] : T [X := T ′]
=⇒ Γ,Γ′[X := T ′] ` case v[X := T ′] : T1[X := T ′]

of x : T2[X := T ′] ⇒ t2[X := T ′]
else t3[X := T ′]

: T [X := T ′]
=⇒ Γ,Γ′[X := T ′] ` (case v : T1 of x : T2 ⇒ t2 else t3)[X := T ′] : T [X := T ′]

Case t = new X1 = T1 in t1:
=⇒ Γ, X : ∗,Γ′ ` T1 : κ ∧ Γ, X : ∗,Γ′ ` t1[X1 := T1] : T
Without loss of generality we may assume X1 /∈ FV (T1).
Because size(t1[X1 := T1]) < size(t), the induction hypothesis gives us:
Γ,Γ′[X := T ′] ` t1[X1 := T1][X := T ′] : T [X := T ′].
We want to show Γ,Γ′[X := T ′] ` (new X1 = T1 in t1)[X := T ′] : T [X := T ′]
Without loss of generality we may assume X1 /∈ FV (T ′) and X 6= X1.
It suffices to show Γ,Γ′[X := T ′] ` t1[X := T ′][X1 := T1[X := T ′]] : T [X := T ′]
and Γ,Γ′[X := T ′] ` T1[X := T ′] : κ.
Γ,Γ′[X := T ′] ` T1[X := T ′] : κ follows from lemma 3.9, since Γ, X : ∗,Γ′ ` T1 : κ.
The substitution [X := T ′][X1 := T1[X := T ′]] is equivalent to [X1 := T1][X := T ′].
Γ,Γ′[X := T ′] ` t1[X1 := T1][X := T ′] : T [X := T ′] follows by induction hypothesis.

�

We are now equipped to prove the preservation property:

Theorem 3.11 (Preservation):

Γ ` t|N : T ∧ t|N −→ t′|N ′ =⇒ Γ ` t′|N ′ : T

Proof :
Let Γ ` t|N : T ∧ t|N −→ t′|N ′. Then there exist a context E and terms t0, t′

0
such that

t = E(t0) and t′ = E(t′
0
) and there are five possibilities:

t0 = (λx : T1.t2)v ∧ t′
0

= t2[x := v] ∧ N ′ = N
or t0 = (λX.t2)T1 ∧ t′

0
= t2[X := T1] ∧ N ′ = N

or t0 = case v : T1 of x : T2 ⇒ t2 else t3 ∧ t′
0

= t2[x := v] ∧ N ′ = N ∧ T1 = T2

or t0 = case v : T1 of x : T2 ⇒ t2 else t3 ∧ t′
0

= t3 ∧ N ′ = N ∧ T1 6= T2

or t0 = new X = T1 in t1 ∧ t′
0

= t1 ∧ N ′ = (N,X = T1)

Case t0 = (λx : T1.t2)v ∧ t′
0

= t2[x := v] ∧ N ′ = N :
=⇒ Γ ` N((λx : T1.t2)v) : T2 for some type T2 by lemma 3.5, since Γ ` E(t0)|N : T .
=⇒ Γ ` λx : NT1.Nt2 : NT1 → T2 ∧ Γ ` Nv : NT1
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=⇒ Γ, x : NT1 ` Nt2 : T2 ∧ Γ ` Nv : NT1 (by inversion)
=⇒ Γ ` Nt2[x := Nv] : T2 by lemma 3.7
=⇒ Γ ` N(t2[x := v]) : T2.
=⇒ Γ ` E(t2[x := v])|N : T by lemma 3.8, since Γ ` E(t0)|N : T and Γ ` Nt0 : T2.
=⇒ Γ ` E(t′

0
)|N ′ : T , since t′

0
= t2[x := v]

Case t0 = (λX.t2)T1 ∧ t′
0

= t2[X := T1] ∧ N ′ = N :
=⇒ Γ ` N((λX.t2)T1) : T2 for some type T2 by lemma 3.5, since Γ ` E(t0)|N : T .
=⇒ Γ ` N(λX.t2) : ∀X.T ′

2
with T2 = T ′

2
[X := NT1] and Γ ` NT1 : ∗ (by inversion)

Without loss of generality we may assume X /∈ dom(N) and X does not occur in Γ.
=⇒ Γ, X : ∗ ` Nt2 : T ′

2
(by inversion)

=⇒ Γ ` (Nt2)[X := NT1] : T ′
2
[X := NT1] by lemma 3.10

=⇒ Γ ` N(t2[X := T1]) : T2

=⇒ Γ ` E(t2[X := T1])|N : T by lemma 3.8, since Γ ` E(t0)|N : T and Γ ` Nt0 : T2.
=⇒ Γ ` E(t′

0
)|N ′ : T , since t′

0
= t2[X := T1]

Case t0 = case v : T1 of x : T2 ⇒ t2 else t3 ∧ t′
0

= t2[x := v] ∧ N ′ = N ∧ T1 = T2:
=⇒ Γ ` Nt0 : T3 for some type T3 by lemma 3.5, since Γ ` E(t0)|N : T .
=⇒ Γ, x : NT2 ` Nt2 : T3 ∧ Γ ` Nv : NT1 (by inversion)
=⇒ Γ ` (Nt2)[x := Nv] : T3 by lemma 3.10, since T1 = T2.
=⇒ Γ ` N(t2[x := v]) : T3

=⇒ Γ ` E(t2[x := v])|N : T by lemma 3.8, since Γ ` E(t0)|N : T and Γ ` Nt0 : T3.
=⇒ Γ ` E(t′

0
)|N ′ : T , since t′

0
= t2[x := v]

Case t0 = case v : T1 of x : T2 ⇒ t2 else t3 ∧ t′
0

= t3 ∧ N ′ = N ∧ T1 6= T2:
=⇒ Γ ` Nt0 : T3 for some type T3 by lemma 3.5, since Γ ` E(t0)|N : T .
=⇒ Γ ` Nt3 : T3 (by inversion)
=⇒ Γ ` E(t3)|N : T by lemma 3.8, since Γ ` E(t0)|N : T and Γ ` Nt0 : T3.
=⇒ Γ ` E(t′

0
)|N ′ : T , since t′

0
= t3

Case t0 = new X = T1 in t1 ∧ t′
0

= t1 ∧ N ′ = (N,X = T1):
=⇒ Γ ` N(new X = T1 in t1) : T2 for some type T2 by lemma 3.5, since Γ ` E(t0)|N : T .
Without loss of generality we may assume X /∈ dom(N).
=⇒ Γ ` new X = NT1 in Nt1 : T2

=⇒ Γ ` Nt1[X := NT1] : T2 ∧ Γ ` NT1 : ∗ (by inversion)
=⇒ Γ ` N(t1[X := T1]) : T2

=⇒ Γ ` E(t1[X := T1])|N : T by lemma 3.8, since Γ ` E(t0)|N : T and Γ ` Nt0 : T2.
=⇒ Γ ` E(t1)[X := T1]|N : T (X fresh)
=⇒ Γ ` E(t1)|(N,X = T1) : T
=⇒ Γ ` E(t′

0
)|N ′ : T , since t′

0
= t1 and N ′ = (N,X = T1).

�

During reduction the state is only extended and never inspected, therefore the reduction
rules are independent of the contents of the state. It is possible to remove the states from the
reduction rules and to forget the information what type some variable X stands for. Thereby
we would lose the ability to check the type of the intermediate configurations, but as we have
proven the preservation property we know that reduction cannot go wrong. We know that
there always exists some state that allows us to give a configuration the type we started with.
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3.4 Normalisation

System F is a normalising calculus. It is interesting that this property does not hold for λN
F

[10]. We will show this by constructing a diverging term. In the untyped λ-calculus a simple
diverging term is (λx.xx)(λx.xx). When this term is reduced by β-reduction the result is the
term itself. In the simply typed λ-calculus, a term like λx : T1.xx is not typable, because the
typing rules require T1 to be an arrow type containing itself as left component (T1 = T1 → T ).
This would result in an infinite type. But in system F we can write a typable version of this
term by using type application:

λx : ∀X.X → T.x(∀X.X → T )x

This term has the type (∀X.X → T ) → T and it is still impossible to apply this term to
itself. By using our type case we can write a similar term that allows self-application:

D = λX.λx : X.case x : X of x′ : ∀X.X → T ⇒ x′(∀X.X → T )x′ else tT

If tT is a term of type T (and X is not free in T ), then D is of type ∀X.X → T and therefore
the term Ω = D(∀X.X → T )D is well-typed. Ω has the following reduction sequence:

D(∀X.X → T )D
−→ (λx : ∀X.X → T.case x : ∀X.X → T of x′ : ∀X.X → T ⇒ x′(∀X.X → T )x′ else tT )D
−→ case D : ∀X.X → T of x′ : ∀X.X → T ⇒ x′(∀X.X → T )x′ else tT
−→ D(∀X.X → T )D
−→ ...

In a similar way it is possible to construct a fixed point operator . This shows that λN
F

can not only express diverging terms, is it even powerful enough to express recursion.

F = λX1.λX2.λx⊥ : X1 → X2.λxf : (X1 → X2) → X1 → X2.λX.λx : X.λx1 : X1.
xf (case x : X of xg : ∀X.X → X1 → X2 ⇒ xg(∀X.X → X1 → X2)xg else x⊥)x1

fix = λX1.λX2.λx⊥ : X1 → X2.λxf : (X1 → X2) → X1 → X2.
(F X1 X2 x⊥ xf )(∀X.X → X1 → X2)(F X1 X2 x⊥ xf )

As the case construct in F expects in its else part something of type X1 → X2 we give
fix the argument x⊥. Therefore this fixed point operator is only usable for inhabited types
X1 → X2.

4 Laziness

In this section we will develop some constructs that allow us to change the evaluation strategy
of our calculus from call-by-value to call-by-need which is also called lazy evaluation. This
means evaluating a term at the latest possible time which can even mean that this term is
never evaluated. A term has to be evaluated if it occurs as left-hand side of an application.
The effect of this evaluation strategy is that we only evaluate terms we really need to evaluate.
When working with modules a useful application is lazy linking, meaning that a module is
only loaded if it is really used and not only contained in a branch of the program that will
not be executed.
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x ∈ Var Variables
X ∈ TVar Type Variables
T ∈ Typ ::= X | T → T Types
t ∈ Ter ::= x | λx : T.t | t t | lazy x = t in t Terms
v ∈ Val ::= λx : T.t | x Values

S ∈ Stack ::= φ | S, x Stacks

µ ∈ State = Var
fin
⇀ Ter States

Γ ∈ Env = Var
fin
⇀ Typ Environments

Figure 4: λL
s -Syntax

4.1 Simply Typed Laziness

To understand lazy evaluation we will first formalise it for an extension of the simply typed λ-
calculus we will call λL

s . An example of a concurrent calculus that provides a form of laziness
is [6]. Some of its concepts will be used in our calculus, but it will be deterministic. For
enabling laziness we will use a construct that corresponds to the lazy expressions found in
Alice [2]:

lazy x = t in t′

Like in a let construct the variable x can be used in t′ as a name for the term t. But the
semantics consists in evaluating t′ and delaying the evaluation of t until we reach a term of the
form x v. Here x occurs as left hand side of an application, which means that we cannot proceed
without evaluating t. When the evaluation of t is finished, we substitute all occurrences of x
with its result and proceed with evaluating t′. The substitution of all occurrences of x prevents
that t is evaluated several times as it would happen, if during further reduction we reached
another term of the form x v′.

During the evaluation of t it may happen that a further lazy term needs to be evaluated
and this term can trigger the evaluation of even more lazy terms. Therefore we must organise
the evaluations of these terms somehow. The natural way to do this is to use a stack storing
the information which terms we need to evaluate. To indicate that some term t needs to be
evaluated next we will push its corresponding variable x on top of the stack.

Additionally we also need to memorise the information that a variable x is a lazy name

for a term t. For this purpose we introduce a finite partial function µ ∈ Var
fin
⇀ Ter with

elements of the form x = t. We will call such functions states. If we write µ, x = t we mean the
state µ ∪ {x = t} where x /∈ dom(µ). For simplicity we also model environments as functions
mapping variables to their type. The list construction as in the development of λN

F is not
necessary since we do not need an order of the variables. We will write Γ, x : T analogically
to the notation for states.

Figure 4 contains the complete syntax of λL
s . Since we want to use evaluation contexts like

in figure 2 the values need to include variables. This prevents the attempt to evaluate lazy
variables if they occur as right-hand side of an application.

The reduction rules in figure 5 are defined over pairs of states µ and stacks S, written
µ|S. We call such pairs configurations. If we want to evaluate some term t, we start with the
configuration {x = t}|φ, x where x is an arbitrary variable. We always reduce the term whose
variable is on top of the stack. If we reduce a lazy term, a new entry is added to the state

18



E ::= ◦ | E t | v E

(1) µ, x = E((λx′ : T.t) v) | S, x −→ µ, x = E(t[x′ := v]) | S, x
(2) µ, x = E(lazy x1 = t1 in t2) | S, x −→ µ, x1 = t1, x = E(t2) | S, x (x1 fresh)
(3) µ, x = E(x1 v) | S, x −→ µ, x = E(x1 v) | S, x, x1 (if x1 ∈ dom(µ))
(4) µ, x = v | S, x −→ µ[x := v] | S (if S 6= φ)

Figure 5: λL
s -Reduction

and if we attempt to reduce an application with a lazy variable as left-hand side, we push this
variable onto the stack, which results in the evaluation of its corresponding term.

The last reduction rule treats the situation that the term to be reduced is already a value.
If the stack contains more than one variable, we can pop the topmost variable from the stack
and substitute all its occurrences with this value. If the stack contains only one variable, this
means that the whole evaluation is done.

We will now explore what it means for a configuration to be well-typed. Let us suppose
the state of a configuration contains the elements x1 = E(x2) and x2 = E(x1). Here x2 is
free in the term of x1 and x1 is free in the term of x2. It is obvious that the types of x1 and
x2 depend on each other, which means that in general we cannot give a unique type to x1 if
we do not know the type of x2 and vice versa. Therefore we must forbid such situations in
our typing rules. Let us regard the inner dependencies of a state. A lazy variable x1 is called
directly dependent on a lazy variable x2 iff x2 is free in the lazy term of x1. The following
relation defines the direct dependencies in some state µ:

depµ = {(x1, x2) | {x1, x2} ⊆ dom(µ) ∧ x2 ∈ FV (µx1)}

We will write <µ for the transitive closure of depµ. In general x1 <µ x2 implies that we
cannot give a type to x1, if we do not know the type of x2. We require <µ to be acyclic as this
implies the existence of variables without dependencies. Such variables are called maximal.
Analogically a variable is called minimal iff there exists no variable that depends on it. In
section 4.2.1 we will prove that acyclic states allow for unique typing.

As you can see in the third reduction rule a growing stack respects the order defined by
the state, i.e. the pushed variable is greater than the variable on top of the stack. We will
include this property in our typing rules as we need it to argue about type preservation in the
fourth reduction rule.

Figure 6 contains the typing rules of λL
s . The typing rule for configurations requires the

existence of an environment that gives every lazy term the type of its respective variable. The
type of a configuration is the type this environment maps the minimal stack variable x0 to.
The rule for typing a lazy term is like for let constructs.

4.2 Properties of λ
L
s

For the proofs we need an inversion lemma like it is formulated in section 3.1. We will not
write it down explicitly, since such a lemma is trivial to formulate and to prove.

4.2.1 Uniqueness of Types

Lemma 4.1 (Uniqueness for terms):
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Terms

x ∈ dom(Γ)

Γ ` x : Γ x

Γ ` t : T ′ → T Γ ` t′ : T ′

Γ ` t t′ : T

Γ, x : T ` t : T ′

Γ ` λx : T.t : T → T ′

Γ ` t : T Γ, x : T ` t′ : T ′

Γ ` lazy x = t in t′ : T ′

Stacks

x ∈ dom(µ)

µ ` φ, x : x

x1 <µ x2 µ ` S, x1 : x

µ ` S, x1, x2 : x

Configurations

dom(Γ) ∩ dom(µ) = ∅ µ ` S : x0 <µ acyclic

∃Γ′ ⊇ Γ : dom(Γ′) = dom(Γ) ∪ dom(µ) ∧ Γ′x0 = T ∧ ∀x = t ∈ µ : Γ′ ` t : Γ′x

Γ ` µ|S : T

Figure 6: λL
s -Typing

Γ ` t : T ∧ Γ ` t : T ′ =⇒ T = T ′

Proof : Structural induction on t
The cases t = x, t = λx : T1.t2 and t = t1 t2 are like in the proof of theorem 3.2. The only
new case is the one for the lazy construct:

Case t = lazy x = t1 in t2:
Let Γ ` t : T ∧ Γ ` t : T ′

By inversion it follows that Γ ` t1 : T1 ∧ Γ, x : T1 ` t2 : T and
Γ ` t1 : T ′

1
∧ Γ, x : T ′

1
` t2 : T ′ for some types T1 and T ′

1

The induction hypothesis gives us T1 = T ′
1

and T = T ′.
�

To prove the uniqueness for configurations we need to prove that for well-typed config-
urations the existence of the environment Γ′ is unique. This follows immediately from this
lemma:

Lemma 4.2 (Unique environments):

<µ acyclic ∧ dom(Γ) ∩ dom(µ) = ∅ ∧ dom(Γ′) = dom(Γ′′) = dom(Γ) ∪ dom(µ) ∧
Γ′ ⊇ Γ ∧ Γ′′ ⊇ Γ ∧ ∀x = t ∈ µ : Γ′ ` t : Γ′x ∧ Γ′′ ` t : Γ′′x
=⇒ Γ′ = Γ′′

Proof : Induction on |µ|
Case |µ| = 0:

trivial.

Case |µ| > 0:
As <µ is acyclic it must hold: ∃µ1, x1, t1 : µ = (µ1, x1 = t1) ∧ x1 is maximal.
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=⇒ ∀x ∈ FV (t1) : x ∈ dom(Γ)
=⇒ Γ ` t1 : Γ′x1 ∧ Γ ` t1 : Γ′′x1

From lemma 4.1 it follows Γ′x1 = Γ′′x1

Let T1 = Γ′x1. It follows:
<µ1

acyclic ∧ dom(Γ, x1 : T1) ∩ dom(µ1) = ∅ ∧
dom(Γ′) = dom(Γ′′) = dom(Γ, x1 : T1) ∪ dom(µ1) ∧
Γ′ ⊇ Γ, x1 : T1 ∧ Γ′′ ⊇ Γ, x1 : T1 ∧ ∀x = t ∈ µ1 : Γ′ ` t : Γ′x ∧ Γ′′ ` t : Γ′′x
By induction hypothesis it follows Γ′ = Γ′′

�

Corollary 4.3 (Uniqueness):

Γ ` µ|S : T ∧ Γ ` µ|S : T ′ =⇒ T = T ′

Proof : Immediately from lemma 4.2 with use of the inversion lemma.
�

4.2.2 Progress

At first we prove that every term matches a pattern of the reduction rules:

Lemma 4.4 (Context structure):

∀t : t ∈ Val ∨ ∃E, v1, v2, x, t′, t′′ : t = E(v1 v2) ∨ t = E(lazy x = t′ in t′′)

Proof : Structural induction on t
Case t = x1 ∨ t = λx1.t1 ∨ t = lazy x1 = t1 in t2:

trivial.

Case t = t1 t2:
Case t1 /∈ Val :

By induction hypothesis it follows:
There exist E, v1, v2, x, t′, t′′ such that t1 = E(v1 v2) ∨ t1 = E(lazy x = t′ in t′′).
Let E′ = E t2
=⇒ t = E′(v1 v2) ∨ t = E′(lazy x = t′ in t′′)

Case t1 ∈ Val ∧ t2 /∈ Val :
analogically to case t1 /∈ Val .

Case t1 ∈ Val ∧ t2 ∈ Val :
=⇒ with E = ◦ it follows t = E(t1 t2) (trivial).

�

Theorem 4.5 (Progress):

` µ|S : T =⇒ (∃µ1, x, v : µ = (µ1, x = v) ∧ S = φ, x) ∨ ∃µ′, S′ : µ|S −→ µ′|S′
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Proof :
Let ` µ|S : T .
=⇒ ∃µ1, S1, x, t : µ = (µ1, x = t) ∧ S = S1, x (by inversion µ and S must not be empty)
From lemma 4.4 follows:
t ∈ Val ∨ ∃E, v1, v2, x1, t1, t2 : t = E(v1 v2) ∨ t = E(lazy x1 = t1 in t2)
Case t ∈ Val ∧ S1 = φ:

trivial.

Case t ∈ Val ∧ S1 6= φ:
=⇒ µ|S −→ µ1[x := t]|S1

Case t = E(v1 v2):
Case v1 = λx1 : T1.t1:

=⇒ µ|S −→ µ1, x = E(t1[x1 := v2])|S
Case v1 = x1:

From ` µ|S : T it follows that x1 ∈ dom(µ).
=⇒ µ|S −→ µ|S, x1

Case t = E(lazy x1 = t1 in t2):
=⇒ µ|S −→ µ1, x1 = t1, x = E(t2)|S

�

4.2.3 Preservation

To prove the preservation property we lemmas similar to the ones in section 3.3.

Lemma 4.6 :

Γ ` E(t) : T =⇒ ∃T ′ : Γ ` t : T ′

Proof : Structural induction on E.
Cases are similar to the ones for lemma 3.5.

�

Lemma 4.7 (Weakening):

Γ ` t : T ∧ x /∈ dom(Γ) =⇒ Γ, x : T ′ ` t : T

Proof : Straightforward induction on t.
�

Lemma 4.8 (Substitution):

Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′ =⇒ Γ ` t[x := t′] : T

Proof : Structural induction on t
The cases t = x, t = λx : T1.t2 and t = t1 t2 are like in the proof for lemma 3.7. The only
new case is the one for the lazy construct:

Case t = lazy x1 = t1 in t2:
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Let Γ, x : T ′ ` t : T ∧ Γ ` t′ : T ′.
By inversion it follows Γ, x : T ′ ` t1 : T1 ∧ Γ, x : T ′, x1 : T1 ` t2 : T
The weakening lemma 4.7 gives us Γ, x1 : T1 ` t′ : T ′

By induction hypothesis it follows Γ ` t1[x := t′] : T1 ∧ Γ, x1 : T1 ` t2[x := t′] : T
This implies Γ ` (lazy x1 = t1 in t2)[x := t′] : T

�

Lemma 4.9 :

Γ ` E(t) : T ∧ Γ ` t : T ′ ∧ Γ ` t′ : T ′ =⇒ Γ ` E(t′) : T

Proof : Structural induction on E.
Cases are similar to the ones for lemma 3.8.

�

Theorem 4.10 (Preservation):

Γ ` µ|S : T ∧ µ|S −→ µ′|S′ =⇒ Γ ` µ′|S′ : T

Proof :
Let Γ ` µ|S : T ∧ µ|S −→ µ′|S′.
By inversion it follows:
dom(Γ) ∩ dom(µ) = ∅ ∧ µ ` S : x0 ∧ <µ acyclic and there exists some Γ′ ⊇ Γ such that
dom(Γ′) = dom(Γ) ∪ dom(µ) ∧ Γ′x0 = T ∧ ∀x = t ∈ µ : Γ′ ` t : Γ′x.
Furthermore there are four possibilities:
Case 1: µ|S = (µ1, x = E((λx1 : T1.t1)v))|S1, x ∧ µ′|S′ = (µ1, x = E(t1[x1 := v]))|S1, x
Case 2: µ|S = (µ1, x = E(lazy x1 = t1 in t2))|S1, x ∧ µ′|S′ = (µ1, x1 = t1, x = E(t2))|S1, x
Case 3: µ|S = (µ1, x = x1 v)|S1, x ∧ µ′|S′ = (µ1, x = x1 v)|S1, x, x1 ∧ x1 ∈ dom(µ1)
Case 4: µ|S = (µ1, x = v)|S1, x ∧ µ′|S′ = µ1[x := v]|S1 ∧ S1 6= φ

Case 1: µ|S = (µ1, x = E((λx1 : T1.t1)v))|S1, x ∧ µ′|S′ = (µ1, x = E(t1[x1 := v]))|S1, x
=⇒ Γ′ ` E((λx1 : T1.t1)v) : Γ′x (by inversion)
=⇒ Γ′ ` (λx1 : T1.t1)v : T0 for some type T0 by lemma 4.6.
=⇒ Γ′ ` (λx1 : T1.t1) : T1 → T0 ∧ Γ′ ` v : T1 (by inversion)
=⇒ Γ′, x1 : T1 ` t1 : T0 (by inversion)
=⇒ Γ′ ` t1[x1 := v] : T0 by lemma 4.8, since Γ′ ` v : T1.
Since Γ′ ` E((λx1 : T1.t1)v) : Γ′x and Γ′ ` (λx1 : T1.t1)v : T0 and Γ′ ` t1[x1 := v] : T0,
it follows by lemma 4.9:
Γ′ ` E(t1[x1 := v]) : Γ′x
Therefore it holds: ∀x = t ∈ µ′ : Γ′ ` t : Γ′x
The state µ′ does not contain more dependencies than µ: depµ′ ⊆ depµ

=⇒<µ′ is acyclic, since <µ is acyclic.
As we changed only the term of the topmost stack variable, the stack S ′ respects µ′:
µ′ ` S′ : x0

Therefore it holds: Γ ` µ′|S′ : T

Case 2: µ|S = (µ1, x = E(lazy x1 = t1 in t2))|S1, x ∧ µ′|S′ = (µ1, x1 = t1, x = E(t2))|S1, x
=⇒ Γ′ ` E(lazy x1 = t1 in t2) : Γ′x (by inversion)

23



=⇒ Γ′ ` lazy x1 = t1 in t2 : T0 for some type T0 by lemma 4.6.
=⇒ Γ′ ` t1 : T1 ∧ Γ′, x1 : T1 ` t2 : T0 for some type T1 by inversion (x1 is fresh).
By lemma 4.7 it follows:
Γ′, x1 : T1 ` t1 : (Γ′, x1 : T1)x1 and Γ′, x1 : T1 ` lazy x1 = t1 in t2 : T0

Furthermore lemma 4.7 gives us: ∀x = t ∈ µ : Γ′, x1 : T1 ` t : (Γ′, x1 : T1)x
=⇒ Γ′, x1 : T1 ` E(lazy x1 = t1 in t2) : (Γ′, x1 : T1)x
Since Γ′, x1 : T1 ` lazy x1 = t1 in t2 : T0 and Γ′, x1 : T1 ` t2 : T0 it follows by lemma 4.9:
=⇒ Γ′, x1 : T1 ` E(t2) : (Γ′, x1 : T1)x1

Therefore it holds: ∀x = t ∈ µ′ : Γ′, x1 : T1 ` t : (Γ′, x1 : T1)x
Furthermore we have: dom(Γ) ∩ dom(µ′) = ∅ and dom(Γ′, x1 : T1) = dom(Γ) ∪ dom(µ′)
As the terms responsible for the dependencies of the stack variables are not changed in µ ′,
it holds that µ′ ` S′ : x0.
The last thing to show is that <µ′ is acyclic. Obviously µ′\{x1 = t1} is acyclic.
The only variable in µ′ that can depend on x1 is x, but x1 cannot depend on x.
=⇒<µ′ is acyclic.
Therefore it holds: Γ ` µ′|S′ : T

Case 3: µ|S = (µ1, x = x1 v)|S1, x ∧ µ′|S′ = (µ1, x = x1 v)|S1, x, x1 ∧ x1 ∈ dom(µ1)
As x = x1 v ∈ µ it follows: x <µ x1.
=⇒µ′ ` S′ : x0, since µ ` S : x0 and µ = µ′.
Therefore it holds: Γ ` µ′|S′ : T

Case 4: µ|S = (µ1, x = v)|S1, x ∧ µ′|S′ = µ1[x := v]|S1 ∧ S1 6= φ
All free lazy variables in v are greater than x. Variables depending on x are less than x.
Therefore the substitution [x := v] cannot introduce new dependencies.
=⇒<µ′ is acyclic.
The substitution does no affect dependencies between variables which are smaller than x.
Since S1 contains only variables which are smaller than x, it follows: µ′ ` S′ : x0

There exist Γ1, T1 such that Γ′ = Γ1, x : T1 ∧ Γ1 ` v = T1. Lemma 4.8 gives us:
∀x1 = t1 ∈ µ1 : Γ1 ` t1[x := v] : Γ′x1

=⇒ ∀x1 = t1 ∈ µ′ : Γ1 ` t1 : Γ1x1

As dom(Γ) ∩ dom(µ′) = ∅ and dom(Γ1) = dom(Γ) ∪ dom(µ′) it holds: Γ ` µ′|S′ : T
�

4.3 Lazy Linking

In open programming systems loading modules may be quite expensive if for example the
module is only available over a slow network connection. Therefore it is of interest to load
modules only if they are really needed and not only used in some branch of the program
that will not be executed. We want a module to be loaded at the latest possible time which
includes that the module might never be loaded. Such a mechanism is called lazy linking.
As we have seen before dynamic linking needs a form of dynamic type analysis. Therefore
we will formalise lazy linking in a calculus which provides the type case we have used before.
We will not include a construct for dynamic type name generation, because it is not needed
to understand lazy linking. The laziness formalised in the previous section provides some
background we will use in the development of this calculus, λL

F , an extension of system F.
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We will use abstract types (see section 1.2) as modules. Basically all modules we consider
consist of some type T and some term t that may provide operations to work with instances
of type T . Therefore loading a module introduces two new names which can be used for type
T and term t. The lazy construct we defined previously introduces only one binder, hence
we change its syntax to the following form:

lazy <X,x> = t in t′

Here we require t to be a module. The scope of the type name X and the variable x is the
term t′. There are two possible situations which can trigger the evaluation of term t. In the
first one x occurs as left hand side of an application. During the reduction of a type case the
two contained types need to be compared. If X is free in one of these types, the substitution
of X with its representation may change the outcome of this comparison. Therefore we will
evaluate a module if its corresponding type name is free in a type case. This strategy is a bit
too eager, since it can trigger the evaluation of modules even if the outcome of the comparison
is determined in advance, but it simplifies the needed reduction rules.

As we allow not only lazy term variables but also lazy type variables the state we use
contains elements of the following form: <X,x> = t. Since the variables X and x of an
abstract type always occur in combination, it is sufficient to store only term variables in the
stack. We want a state to bind every variable once at the most. In the simply typed case this
is valid because a state is a function. Since states map pairs of variables, this property does
not hold anymore. In the following we only consider states where each variables occurs in the
domain once at the most. If we write BV (µ) for some state µ, this is the set of all variables
bound by µ.

To express modules (or abstract types) we will not use the encoding explained in sec-
tion 1.2. In this encoding the implementation is passed to the clients by applying the abstract
type to them. This scheme is not adaptable for our state and stack model as we cannot apply a
term to a state or even a configuration. Therefore we will extend the calculus with constructs
to express abstract types. We will use the construction developed by Mitchell and Plotkin
[5] who gave abstract types an existential type. The notation we will use to express abstract
types is:

<T, t> as ∃X.T ′

Here T is the representation type, t contains the operations and T ′ is the signature using
the type name X. We impose a small restriction on type abstraction as abstract types must
not provide more than one operation (the one of type T ′). This restriction can be compensated
for by including things like records in the calculus, which would provide a way to pack more
than one operation in the type T ′. We will not include records in our calculus to keep it
simpler and focus on the more important topics.

The complete syntax of the calculus λL
F can be found in figure 7. As you can see, we model

environments as lists again. This will simplify the rules for well-formed environments. The
reduction rules in figure 8 are similar to the ones of λL

s and system F. Rule eight is the one
which triggers the evaluation of modules, whose type name is free in a type case. Since such
a type case can contain several type names and we want to formulate deterministic reduction
rules, we need to clarify which module should be evaluated first. For this purpose we introduce
the function firstµ which returns deterministically the variable of such a module. As we must

25



x ∈ Var Variables
X ∈ TVar Type Variables
T ∈ Typ ::= X | T → T | ∀X.T | ∃X.T Types
t ∈ Ter ::= x | λx : T.t | t t | λX.t | t T | case v : T of x : T ⇒ t else t Terms

| lazy <X,x> = t in t | <T, t> as T
v ∈ Val ::= λx : T.t | λX.t | x | <T, v> as T Values

κ ∈ Kind ::= ∗ Kinds
Γ ∈ Env ::= ∅ | Γ, x : T | Γ, X : κ Environments

µ ∈ State = TVar × Var
fin
⇀ Ter States

S ∈ Stack ::= φ | S, x Stacks

Figure 7: λL
F -Syntax

evaluate all these modules, it is not essential what strategy this function uses to determine a
module. One possibility is to select the module whose type name is in the leftmost position
in the types T and T ′ of the type case.

For the typing relations we have to define, what the dependency relation looks like:

depµ = {(x1, x2) | ∃X1, X2 : {<X1, x1>, <X2, x2>} ⊆ dom(µ) ∧ {X2, x2} ∩FV (µx1) 6= ∅}

Now the typing rules in figure 9 are straightforward. As usual for abstract types we require
the condition that the type of a lazy construct must not contain the abstract type.
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E ::= ◦ | E t | v E | E T | <T,E> as T

(1)
µ, <X,x> = E((λx′ : T.t) v) | S, x

−→ µ, <X,x> = E(t[x′ := v]) | S, x

(2)
µ, <X,x> = E((λX.t)T ) | S, x

−→ µ, <X,x> = E(t[X := T ]) | S, x

(3)
µ, <X,x> = E(lazy <X1, x1> = t1 in t2) | S, x

−→ µ, <X1, x1> = t1, <X,x> = E(t2) | S, x
(X1 and x1 fresh)

(4)
µ, <X,x> = E(x1 v) | S, x

−→ µ, <X,x> = E(x1 v) | S, x, x1

(if x1 ∈ BV (µ))

(5)
µ, <X,x> = E(x1 T ) | S, x

−→ µ, <X,x> = E(x1 T ) | S, x, x1

(if x1 ∈ BV (µ))

(6)
µ, <X,x> = E(case v : T of x′ : T ′ ⇒ t else t′) | S, x

−→ µ, <X,x> = E(t[x′ := v]) | S, x

(

BV (µ) ∩ FV (T, T ′) = ∅
T = T ′

)

(7)
µ, <X,x> = E(case v : T of x′ : T ′ ⇒ t else t′) | S, x

−→ µ, <X,x> = E(t′) | S, x

(

BV (µ) ∩ FV (T, T ′) = ∅
T 6= T ′

)

(8)
µ, <X,x> = E(case v : T of x′ : T ′ ⇒ t else t′) | S, x

−→ µ, <X,x> = E(case v : T of x′ : T ′ ⇒ t else t′) | S, x, x1

(

BV (µ) ∩ FV (T, T ′) 6= ∅
firstµ(T, T ′) = x1

)

(9)
µ, <X,x> = <T, v> as T ′ | S, x

−→ µ[X := T ][x := v] | S
(if S 6= φ)

Figure 8: λL
F -Reduction
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Environments

` ∅

Γ ` T : ∗ x /∈ dom(Γ)

` Γ, x : T

` Γ X /∈ dom(Γ)

` Γ, X : κ

Types

` Γ X ∈ dom(Γ)

Γ ` X : ΓX

Γ ` T1 : ∗ Γ ` T2 : ∗

Γ ` T1 → T2 : ∗

Γ, X : ∗ ` T : ∗

Γ ` ∀X.T : ∗

Terms

` Γ x ∈ dom(Γ)

Γ ` x : Γ x

Γ, X : ∗ ` t : T

Γ ` λX.t : ∀X.T

Γ, x : T ` t : T ′

Γ ` λx : T.t : T → T ′

Γ ` t : ∀X.T ′ Γ ` T : ∗

Γ ` t T : T ′[X := T ]

Γ ` t : T ′ → T Γ ` t′ : T ′

Γ ` t t′ : T

Γ ` v : T Γ, x : T ′ ` t : T ′′ Γ ` t′ : T ′′

Γ ` case v : T of x : T ′ ⇒ t else t′ : T ′′

Γ ` t : T ′[X := T ]

Γ ` <T, t> as ∃X.T ′ : ∃X.T ′

Γ ` t : ∃X.T Γ, X : ∗, x : T ` t′ : T ′ X /∈ FV (T ′)

Γ ` lazy <X,x> = t in t′ : T ′

Stacks

x ∈ BV (µ)

µ ` φ, x : x

x1 <µ x2 µ ` S, x1 : x

µ ` S, x1, x2 : x

Configurations

dom(Γ) ∩ BV (µ) = ∅ µ ` S : x0 <µ acyclic

∃Γ′ ⊇ Γ : dom(Γ′) = dom(Γ) ∪ BV (µ) ∧ Γ′x0 = T ∧ ∀x = t ∈ µ : Γ′ ` t : Γ′x

Γ ` µ|S : T

Figure 9: λL
F -Typing
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